
1. Introduction

Amongst the most popular ecological research issues currently 
ranks the study of changes in local and global biodiversity 
or community composition (Loreau et al., 2001; Hooper et 
al., 2005). Not all ecological communities comprise the same 
number of species and are influenced by combinations of 
numerous factors (Currie, 1991; Fraser & Currie, 1996). Of 
such factors, local evolutionary history, climate and disturbance 
events are the most important; they jointly act in shaping local 
biodiversity and ecosystem functioning (Krebs, 2001). Any 
changes in environmental conditions, ranging from competition 
and predation to climatic changes and resource availability, will 
consequently have an impact on the local community structure 
(Hooper et al., 2005). Therefore, communities are best viewed 
as open, non-equilibrium systems. This has also been confirmed 
by palaeoecological data which demonstrate conclusively that 
communities change dramatically over time, and that community 
stability is never reached, not even on a short-time scale (e.g. 
Whitehead, 1981; Jackson et al., 2000).
 Sea level fluctuations are amongst the more important 
changes in marine ecosystems. Such fluctuations are caused 
mainly by climatic changes or tectonic activity (Blum & Tornqvist, 
2000; Siddall et al., 2003; Church et al., 2004) and result in 
cycles of transgressions and regressions. During transgressions, 
the coastline moves landwards and the shelf area enlarges 
(Cattaneo & Steel, 2003). With this comes the tendency for more 
and larger grain-sized sediment to be trapped in the alluvial 
and coastal plain environments, while finer-grained material is 
deposited in the basin. Evidently, local sediment texture varies 
according to sea level and ultimately to palaeoenvironment 
or community structure (Peron et al., 2005). Previous studies 
have linked lithology with fossil assemblages, allowing exact 
positioning of successive units, high-resolution stratigraphy and 
reconstructions of palaeoenvironmental conditions (Dupuis et 
al., 1991; Steurbaut, 1998). Although remains of Elasmobranchii 
(selachians and batoids) are common in the fossil record, few 
studies quantified such fossils as indicator taxa in this context.
 The Belgian Basin is well suited for palaeoenvironmental 
studies of Eocene strata because of its fairly complete sections with 
integrated sequence stratigraphy (Steurbaut, 1998; Vandenberghe 
et al., 2004). Moreover, these strata often yield abundant fossil 
material and the elasmobranch faunas of the Belgian Ypresian 
were first described in detail by Casier (1946). Casier (1950), 
Nolf (1972), Herman (1974, 1982a, 1982b, 1984, 1986), Herman 
& Crochard (1977, 1979), Herman et al. (1989), Van Simaeys 
(1994) and Smith et al. (1999) subsequently presented updates. 
In the present study, we compare the elasmobranch faunas 
of two successive facies of Ypresian age along the southern 

margin of the North Sea Basin (Steurbaut, 2006), with the 
lithological differences of these levels likely reflecting different 
palaeoenvironmental conditions (for a discussion, see Willems & 
Moorkens, 1991 and Steurbaut, 2006). We predict that there is 
a close link between lithology and diversity and composition of 
elasmobranch communities, comparable to what has been recorded 
for other taxa (e.g. Steurbaut & Nolf, 1991). Similar to present-
day observations, this would imply that former environmental 
conditions, such as sea level and local deposition, at least in part 
determine local biodiversity. This would furthermore confirm the 
principle of uniformitarianism, also referred to as the principle of 
actualism, which states that never-changing mechanisms underlie 
biological and geological phenomena (Baker, 1998). In addition, 
the present paper provides a list of 36 elasmobranch taxa from 
Marke, including some species that were not recorded previously 
from the Belgian Ypresian. Several taxa are in urgent need of 
revision, in particular the Carcharhinidae and Myliobatidae (see 
also Adnet & Cappetta, 2008; Underwood et al., 2011).

2. Stratigraphy

During the Ypresian, the epicontinental sea which flooded 
present-day Belgium, underwent numerous major and minor sea 
level changes, as a result of the interplay between changes in the 
earth’s astronomical parameters and local subsidence (Steurbaut, 
2006; Vanhove et al., 2011). During transgressions and regressions 
siliciclastic particles in the basin were redistributed into a series of 
alternating clay and sand layers (Steurbaut, 1998; Vandenberghe 
et al., 1998). The elasmobranch remains in the present study were 
collected at a former clay pit near Marke (western Belgium; co-
ordinates N 50° 48’ 15” – E 3° 13’ 06”), a site especially famous for 
its crustacean faunas (Iserbyt & Christiaens, 2004). It is situated 
in an area with numerous outcrops of Ypresian strata (Steurbaut 
2006), about 30 km south of the well-known Egem quarry. 
Particularly at Marke, most of the section exposed is assignable 
to the Roubaix Clay Member, with the base of the Aalbeke Clay 
Member overlying it (Steurbaut & Jacobs, 1993; Steurbaut, 
1998). Both units belong to the Kortrijk Clay Formation, of early 
Ypresian age. Throughout the section, elasmobranch teeth appear 
to be concentrated at specific levels, such as sequence boundaries 
or transgressive surfaces (Steurbaut, 2006). We collected teeth 
from two of such concentrations, both within the Roubaix Clay 
Member, but with less than 100 kyr between them (E. Steurbaut, 
personal communication). It has been postulated that both levels 
were deposited in well-oxygenated infralittoral settings, at depths 
of 50 to 100 m (Steurbaut, 2006). The first level, described as 
‘layer 7’ by Steurbaut & Jacobs (1993) and Steurbaut (1998), is a 
silty clay of 2.6 m in thickness, with scattered molluscs, and a 5 
cm-thick level (layer Y) in the middle of it, containing numerous 
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black oysters, Turritella and bony fish otoliths. The other level 
sampled (‘layer 4’) is a 1.3 m thick, heavily bioturbated sandy silt 
with some phosphatic nodules and shell impressions (oysters at 
the base, Turritella near the top). A markedly bioturbated layer of 
silty sand (thickness 20 cm) occurs near the middle of this level.  
Below, we shall be referring to levels 7 and 4 as the ‘clay’ and 
‘sand’ level, respectively. Both investigated levels clearly differ 
in sea depth (Vandenberghe et al., 2004; Vanhove et al., 2011), 
with the ‘clay’ level being indicative of a deeper sea than the 
‘sand’ level. It should be noted that both levels differ from layer 
6, which yields few teeth, but which is especially well known 
for its abundant phosphatic nodules with crustacean remains (see 
Iserbyt & Christiaens, 2004).   

3. Material and methods

Samples from both levels were taken between 2001 and 2007, 
sieved on a 1-millimetre mesh after which the residu was 
handpicked. In total, the ‘clay’ and ‘sand’ levels yielded 1594 
and 551 teeth, respectively (Table 1).  Given the fact that 
some teeth could not be identified to the species level, due to 
poor preservation, uncertainties about their dental position or 
unresolved taxonomic matters, we restricted our quantitative 
analyses to the family level (see Table 1). Systematics follow 
Cappetta (2006). 
 We calculated the frequency of occurrence (%) for each 
family and stratigraphic level, by dividing the number of teeth 

Order Family Species nc - ns χ², d.f. = 1 p
►Squaliformes  

• Squalidae 3 - 0 1.78 0.18
- Squalus smithi Herman, 1982

• Dalatiidae 58 - 0 34.99 <0.001
- Isistius trituratus (Winkler, 1874)

►Squatiniformes
• Squatinidae 8 - 3 0.01 0.9

- Squatina prima (Winkler, 1874) 
►Heterodontiformes

• Heterodontidae 6 - 1 0.54 0.46
- Heterodontus sp.

►Orectolobiformes 
• Ginglymostomatidae 1 - 0 0.59 0.44

- Nebrius thielensi (Winkler, 1873)
• Parascyllidae 0 - 1 2.72 0.099

- Pararhincodon ypresiensis Cappetta, 1976
►Lamniformes

• Odontaspididae 305 - 66 15.62 <0.001
- cf. Palaeohypotodus rutoti (Winkler, 1874)
- Brachycarcharias lerichei (Casier, 1946)
- Hypotodus verticalis (Agassiz, 1843)
- Odontaspis winkleri Leriche, 1905
- Striatolamia macrota (Agassiz, 1843)
- Sylvestrilamia teretidens (White, 1931)

• Jaekelotodontidae 3 - 1 0.00 0.97
- Jaekelotodus robustus (Leriche, 1921)

• Otodontidae 1 - 0 0.59 0.44
- Otodus obliquus Agassiz, 1843

• Lamnidae 5 - 2 0.03 0.86
- Isurolamna affinis (Casier, 1946)

• Incertae sedis 1 - 1 0.54 0.46
- Parotodus pavlovi (Menner, 1928)*

►Carcharhiniformes
• Carcharhinidae 653 - 183 10.49 0.001

- Abdounia beaugei (Arambourg, 1935)
- Abdounia minutissima (Winkler, 1873)
- Abdounia recticona (Winkler, 1873)
- Physogaleus secundus (Winkler, 1874)
- Rhizoprionodon aff. ganntourensis (Arambourg, 1952)*

• Scyliorhinidae 35 - 11 0.08 0.78
- Premontreia (Premontreia) degremonti Cappetta, 1992
- Premontreia (Oxyscyllium) gilberti (Casier, 1946)
- Microscyliorhinus burnhamensis (Cappetta, 1976)

• Triakidae 191 - 54 1.98 0.16
- Galeorhinus ypresiensis (Casier, 1946)
- Galeorhinus duchaussoisi Adnet & Cappetta, 2008*
- Pachygaleus lefevrei (Daimeries, 1891)

• Carcharhiniformes indet. 28 - 6 1.27 0.26
- Foumtizia pattersoni (Cappetta, 1976)
- Foumtizia sp. nov.*

►Pristiformes
• Pristidae 1 - 0 0.59 0.44

- Pristis lathami (Galeotti, 1837)
►Rajiformes

• Rhinobatidae 8 - 8 4.35 0.037
- Rhinobatos bruxelliensis (Jaekel, 1894)

►Myliobatiformes
• Myliobatidae 266 - 170 47.58 <0.001

- Aetobatus irregularis (Agassiz, 1843)
- Myliobatis spp.

• Mobulidae 5 - 7 5.73 0.017
- Burnhamia daviesi (Woodward, 1889)

• Dasyatidae 16 - 37 46.54 <0.001
- Dasyatis jaekeli (Leriche, 1905)

  - Dasyatis spp.    

Table 1.  Results of 
the Chi-square tests 
comparing both levels 
studied for frequency of 
collected teeth within 
each family. Number 
of teeth collected in the 
‘clay’ and ‘sand’ level 
is presented (nc - ns) and 
significant differences 
are indicated by bold 
p-values. Total number 
of collected teeth in both 
layers is n = 1594 and 
n = 551, respectively. 
Names of taxa illustrated 
in Plates 1 and 2 are 
shown in bold. 
* New records for the 
Belgian Ypresian.
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collected per family by the total number of teeth collected per 
level. To test whether or not, overall elasmobranch community 
diversity and composition differed between both levels, we 
first conducted a generalised linear model with a Poisson error 
structure and a log link function. Stratigraphic level, family 
and their interaction, were added to the model as categorical 
explanatory variables. Next, we analysed in more detail whether 
the frequency of occurrence of each family differed between 
both levels or not, using Chi-square tests (see also Bennington 
& Bambach, 1996). All analyses were performed in SAS 9.2 
(SAS Institute Inc, Carry, NC, USA) and were two-tailed with a 
significance level of p < 0.05.

4. Results

We distinguished at least 36 taxa, assigned to 20 families and 9 
orders. Four of these are new for the Belgian Ypresian (see Table 
1). For reasons mentioned above, we restricted our analyses 
to the family level. The Carcharhinidae, Myliobatidae and 
Odontaspididae were in both layers the most frequently collected 
groups, representing over 75% of all teeth collected (Fig. 1). In 
contrast, there are 11 rare families that together make up only 
about 2% of all teeth. Five families are confined to the ‘clay’ 
statum, namely the Squalidae, Dalatiidae, Ginglymostomatidae, 
Otodontidae and Pristidae, while Parascyllids are found 
exclusively in the ‘sand’ level (Table 1). This clearly indicates 
that both levels vary in faunal diversity, but apparently also the 
community composition differs (Table 1; Fig. 1). This is confirmed 
by a highly significant level*family interaction (χ² = 109.2; d.f. = 
15; p < 0.0001) indicating overall differences between both levels 

in occurrence frequency of collected teeth per family. In general, 
selachians are more present in the ‘clay’ level (81.4%) compared 
to the ‘sand’ level (59.7%). More specifically, the families 
Dalatiidae, Carcharhinidae and Odontaspididae were significantly 
more common in the ‘clay’ level. Heterodontidae and Squalidae 
follow the same tendencies. The reverse was observed for all 
batoid families, i.e. Myliobatidae, Dasyatidae, Rhinobatidae 
and Mobulidae, which were significantly more common in the 
‘sand’ level (see Table 1) and make up 40.3% of all collected 
teeth in this level (compared to 18.6% in the ‘clay’ level). The 
following species are recorded for the first time in the Ypresian 
of Belgium: Parotodus pavlovi (Menner, 1928), Rhizoprionodon 
aff. ganntourensis (Arambourg, 1952), Galeorhinus duchaussoisi 
Adnet & Cappetta, 2008 and Foumtizia sp. nov. Several teeth 
of Rhizoprionodon aff. ganntourensis are found (Plate 2J-
K). Despite being incomplete, the abundant occurrence of this 
species at the Egem quarry, from the base of the Egemkapel 
Clay Member going up the sequence, supports this identification. 
These new species for the Ypresian of Belgium, among others, are 
presented in two plates. 

5. Discussion

Earlier studies of microfossil assemblages have resulted in the 
exact positioning of successive units within the Belgian Basin 
and to a detailed resolution of Ypresian stratigraphy (Steurbaut 
& Nolf, 1986; Dupuis et al., 1991; Steurbaut, 1998). In addition, 
we here provide rare quantitative evidence that elasmobranch 
community diversity and composition also correlates with 
lithology. Our general results indicate that selachian families 
are more commonly observed in, or are even restricted to the 
studied clayey level, while batoids are more clearly linked to the 
sandy level. Both levels were deposited in an inner shelf area, 
the ‘clay’ level being indicative of a deeper sea than the ‘sand’ 
level (Steurbaut, 1998; Vandenberghe et al., 2004). Such sea level 
fluctuations alter local deposition, which comes along with the 
potential to affect community diversity and composition (Krebs, 
2001; Hooper et al., 2005), as observed in the present case study.
 Thus the local presence of a species or species group, 
depends largely on its multiple habitat requirements, such as 
intertwined effects of sea level and the abundance of suitable prey 
items (Krebs, 2001). Interestingly, a central theme in the radiation 
of elasmobranchs is the behavioural and morphological evolution 
of different prey-capture mechanisms in accordance to a wide 
variety of habitats (Motta, 2004; Wilga et al., 2007). In general, 
elasmobranchs feed on a large variety of prey, ranging from 
zooplankton to the largest marine mammals (Motta & Wilga, 
2001). Indeed, a clear difference exists in feeding behaviour 
between benthic and pelagic species. Benthic elasmobranchs 
usually are mechanistic suction-feeding specialists, while most 
epibenthic and pelagic forms are generalists which use ram, 
suction and biting, or a combination of these, to catch a wide 
range of prey (Wilga et al., 2007). Together, a species or species 
group is characterised by both habitat requirements (e.g. sea level 
and abundance of prey) and behavioural, morphological and 
dental adaptations to catch prey.
 The majority of taxa identified in the present study 
are fairly common in the Ypresian of the North Atlantic (e.g. 
Casier, 1946, 1966; Cappetta, 1976; 1992; Ward, 1980; Ward & 
Wiest, 1990; Van Simaeys, 1994; Smith et al., 1999; Adnet & 
Cappetta, 2008). The section at Marke reflects a carcharhinid-
dominated ecosystem, although lamniforms (Odontaspididae) 
were still abundant. This is in accordance with the replacement 
of lamniform-dominated ecosystems by carcharhinid-dominated 
ones during the Eocene, as demonstrated by e.g. Adnet et al. 
(2007) and Underwood et al. (2011). In general, both community 
structures presented herein suggest a relatively shallow-marine 
environment, with rich invertebrate and fish faunas. The occurrence 
of members of the families Heterodontidae, Ginglymostomatidae, 
Pristidae, Myliobatidae and Dasyatidae, and the predominance of 
small Carcharhiniformes are all indicative of a littoral habitat at 
tropical latitudes (Compagno, 1984, 2001; Carpenter & Niem, 
1999). Smaller shallow-water predatory sharks are represented by 
common genera such as Physogaleus, Abdounia and Galeorhinus 
(Plate 2C-F), all presumably somewhat generalist feeders on small 
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Figure 1. Graphical comparison between both levels in occurrence 
frequency of collected teeth within each family. Significant differences 
are indicated (* p<0.05; ** p<0.01; *** p<0.001).
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active prey such as bony fishes (Underwood et al., 2011). Various 
benthic invertebrate feeders occur also, for instance Heterodontus 
(Plate 1E-F), Dasyatis, Rhinobatos and Myliobatis, whereas 
open-water predators like Jaekelotodus (Plate 1J-M), Otodus 
and Parotodus (Plate 1A-D) are poorly represented (Table 1). 
However, significant differences in community structure between 
both levels studied remain, which is most likely related to former 
sea level and its correlated effects of, for instance, depositional 
regimes.
 In detail, we found significantly more batoid teeth in 
the ‘sand’ level, compared with the deeper marine environment 
of the ‘clay’ level. The majority of batoids that we observed were  
Myliobatiformes, which are in general restricted to tropical and 
warm-temperature areas with a preference for shallow waters 
(Carptenter & Niem, 1999). Most Myliobatiformes are also 
benthic predators and evolutionary specialists that evolved a 
flattened morphology allowing them to cover themselves in 
soft-bottom environments (Ferry-Graham et al., 2002). They use 
suction and blowing to fluidise the sediment and extract prey 
concealed therein (Sasko et al., 2006). Thus  sandy substrates and 
low sea levels may be a more favourable environment for such 
benthic taxa. However, the few observed teeth of Heterodontidae 
(Plate 1E-F), Pristidae and Ginglymostomatidae in the ‘clay’ 
and not in the ‘sand’ level may contradict this pattern, given 
that these latter taxa are also typically benthic with a preference 
for shallow water (Compagno, 1984, 2001; Carpenter & Niem, 
1999). Also the single tooth found of the pelagic Pararhincodon 
was assigned to the ‘sand’ layer, contrasting our expectations. 
Nonetheless, the scarcity in the ‘sand’ level of open-water species 
and the absence of deeper-water taxa suggest the body of water 
to have been either shallow, within a bay or behind a barrier. 
 Furthermore, the presence and abundance in the ‘clay’ 
level of large predators [Odontaspididae (Plate 1N-Q; Plate 
2G-H), Otodontidae and Jaekelotodontidae (Plate 1J-M)] and 
some pelagic forms [Squalidae (Plate 2A-B) and Dalatiidae 
(Plate 2L-M)] is suggestive of a better connection with the 
Atlantic. Supporting this view is Isistius, a tropical oceanic 
shark genus, characterised by highly specialised foraging tactics 
and the necessity to migrate to greater depths during daytime 
(Papastamatiou et al., 2010). Squalus also needs to retreat into 
deeper water to stay within their optimum temperature range 
(Compagno, 1984). At Marke, both these squaliform sharks are 
confined to the ‘clay’ level and thus confirm our hypothesis. 
 In contrast to the base of the Egemkapel Clay Member 
(layer IV; Steurbaut, 1998, 2006), the genera Xiphodolamia, 
Hexanchus and Macrorhizodus are missing at Marke. However, 
these taxa are also quite rare in the shallower water deposits from 
Egem (Steurbaut, 2006), given their preference for deep and/
or open water habitats (Compagno, 1984; Adnet et al., 2009; 
Underwood et al., 2011). At Marke, water depth may have been 
greater (50 to 100 m; Steurbaut, 2006), but still not presenting a 
favourable environment for these taxa. However, a sample bias 
can neither be ruled out here, in view of the scarcity of these 
taxa and the larger sample efforts at Egem over recent years. 
Furthermore, Casier (1946) compared presence and absence 
of Eocene elasmobranch taxa throughout the entire North Sea 
Basin. We note that these results should be treated with care, as 
numerous taxa were overlooked at that time and many taxa have 
more recently been reclassified, though still in serious need for 
revision (cf. Adnet & Cappetta, 2008; Underwood et al., 2011). 
Direct comparison with our study is therefore nearly impossible. 
However, we highlight the importance of future quantitative 
studies in order to reconstruct palaeoenvironmental conditions.
 In summary, our data indicate that: (1) as expected, 
elasmobranch community structure and lithology are correlated, 
(2) that communities change considerably over time and that 
community stability is never reached, not even over short 
geological time spans (< 100 kyr). In addition (3), elasmobranch 
diversity and composition may largely depend on the preferred 
environmental conditions by a species or species group, in analogy 
to what is seen in modern communities and thus confirms the 
principle of uniformitarianism. Lastly (4), in order to reconstruct 
palaeoenvironmental conditions within a lithostratigraphical unit, 
it is recommended to quantify all essential parameters (including 
biodiversity) for all strata. 
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Plate 1.
Elasmobranchs from the Ypresian at Marke clay pit, western Belgium.
All teeth belong to AI collection, unless noted otherwise. Collection registration numbers are provided between brackets. Scale bar = 5 mm. 

A-D. Parotodus pavlovi (Menner, 1928) - ‘clay’ level (AI-Ma01L7)
Lingual (A), labial (B), lateral (C) and basal (D) views.

E-F. Heterodontus sp. - ‘sand’ level (AI-Ma01L4)
Lateral (E) and occlusal (F) views.

G-I. Burnhamia daviesi (Woodward, 1889) - ‘sand’ level (AI-Ma02L4)
Basal (G), occlusal (H) and labial (I) views.

J-M. Jaekelotodus robustus (Leriche, 1921) - ‘clay’ level
Lingual (J), labial (K), lateral (L) and basal (M) views.
Theo Lambrechts collection.

N-Q. Hypotodus verticalis (Agassiz, 1843) - ‘sand’ level (AI-Ma03L4)
Lingual (N), labial (O), lateral (P) and basal (Q) views.
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Plate 2. 
Elasmobranchs from the Ypresian at Marke clay pit, western Belgium.
All teeth belong to AI collection and collection registration numbers are provided between brackets. Scale bar = 1 mm. 

A-B. Squalus smithi Herman, 1982 - ‘clay’ level (AI-Ma02L7)
Lingual (A) and labial (B) views.

C-D. Galeorhinus duchaussoisi Adnet & Cappetta, 2008 - ‘clay’ level (AI-Ma03L7)
Lingual (C) and labial (D) views.

E-F. Galeorhinus duchaussoisi Adnet & Cappetta, 2008 - ‘sand’ level (AI-Ma04L4)
Lingual (E) and labial (F) views.

G-H. cf. Palaeohypotodus rutoti (Winkler, 1874) - ‘sand’ level (AI-Ma05L4)
Lingual (G) and labial (H) views.

I. Pararhincodon ypresiensis Cappetta, 1976 - ‘sand’ level (AI-Ma06L4)
Lateral view.

J-K. Rhizoprionodon aff. ganntourensis (Arambourg, 1952) - ‘sand’ level (AI-Ma07L4)
Lingual (J) and labial (K) views.

L-M. Isistius trituratus (Winkler, 1874) - ‘clay’ level (AI-Ma04L7)
Lingual (L) and labial (M) views.

N-O. Foumtizia sp. nov. - ‘clay’ level (AI-Ma05L7)
Lingual (N) and labial (O) views.

P-Q. Foumtizia sp. nov. - ‘clay’ level (AI-Ma06L7)
Lingual (P) and labial (Q) views.
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