1 Royal Belgian Institute of Natural Sciences, Operational Directory Earth and History of Life, rue Vautier, 29, B-1000 Brussels, Belgium; louis.taverne@gmail.com, thierry.smith@naturalsciences.be.
2 Royal Museum for Central Africa, Department of Geology and Mineralogy, Leuvensesteenweg, 13, B-3080 Tervuren, Belgium; thierry.de.putter@africamuseum.be, florian.mees@africamuseum.be.
* corresponding author.

ABSTRACT. The osteology of Cabindachanos dartevellei gen. and sp. nov., a fossil fish from the marine Danian or early Selandian deposits of Landana (Cabinda Territory, Central Africa), is here studied in detail. This fish is known by only one partially preserved specimen that shows typical characters. The opercle is greatly hypertrophied. The preopercle has a very broad dorsal limb and a long narrower ventral limb. There is a wide plate-like suprapreopercle. The lower jaw is deep, with a well-marked coronoid process formed by the dentary. The articulation between the quadrate and the mandible is located before the orbit. The first supraneurals are enlarged. One of these undescribed specimens was labelled by Edgar Casier as “Neopterygii indéterminé”. It is a member of the teleostean order Gonorynchiformes and of the family Chanidae. (Teleostei, Gonorynchiformes). Cabindachanos dartevellei differs from all the other known fossil or recent chanid fishes by the gigantic development of its opercle and by the loss of the subopercle. The straight angle formed by the two limbs of the preopercle and the well-developed posterior median crest of the supraoccipital indicate that C. dartevellei belongs to the subfamily Chaninae and the tribe Chanini.

KEYWORDS: Teleostei, Gonorynchiformes, Chanidae, Cabindachanos dartevellei gen. and sp. nov., osteology, relationships, marine Paleocene, Landana, Cabinda, Central Africa.

1. Introduction

A diverse and very rich palaeontological material from marine Upper Cretaceous and Paleogene deposits was discovered by the Belgian explorer and palaeontologist Edmond Dartevelle during the two expeditions (1933 and 1937-38) that he conducted in the Lower Congo Basin and in the Cabinda Territory. The numerous fossil fishes that he found there were described in three monographs (Dartevelle & Casier, 1943, 1949, 1959). However, some fish remains among the recorded material were left as undetermined samples and were not mentioned in the three monographs.

One of these undescribed specimens was labelled by Edgar Casier as “Neopterygii indéterminé”. It is a member of the teleostean order Gonorynchiformes and of the family Chanidae. The aim of our paper is to describe this sample and to determine its relationships.

2. Stratigraphy

The specimen was discovered in 1937 in the Landana cliff section, a marine Paleogene fossil site located in the Cabinda enclave, a province of Angola. This fossil site, currently located on the west African coast at 2 to 3 km south of the Shiloango river mouth (GPS coordinates: 05° 13’ S, 12° 07’ E), forms part of the Paleogene marine margin of the Congo Basin (see Dartevelle & Casier, 1943, p. 48, fig. 23).

The lithological section of the Landana section has been subdivided into 32 sedimentary layers (“couches” in Dartevelle & Casier, 1943). The bio- and chemostratigraphic context of these layers has recently been unraveled in order to refine their age constraints (Solé et al., in press). This study has revealed the almost complete absence of Danian deposits, contrary to prevailing inferences. Material for comparison comes from the Musée National d’Histoire Naturelle, Paris (MNHN), from the Royal Belgian Institute of Natural Sciences (IRSNB) and from the Capasso regisseur collection in Chieti, Italy (CLC).

3. Material and methods

The material studied herein belongs to the palaeontological collections of the Royal Museum for Central Africa (MRAC, Tervuren, Belgium), Department of Geology and Mineralogy. The sample was observed with a stereomicroscope Leica MZS. The drawings of the figures were made by the first author (L. T.) with a camera lucida. Aspersions with ethanol were used to improve the observations. Material for comparison comes from the Musée National d’Histoire Naturelle, Paris (MNHN), from the Royal Belgian Institute of Natural Sciences (IRSNB) and from the Capasso registered collection in Chieti, Italy (CLC).

4. Anatomical abbreviations used in the text figures

AN: angular; ANT: antorbital; ASPH: autosphenotic; DN: dentary; DSPH: dermosphenotic; EPI: epiotic (=epipctal); FR: frontal; IOP: interopercle; IORB 1-4: infraorbitals 1 to 4; MX: maxilla; NA: nasal; OP: opercle; PA: parietal; QU: quadrate; PMX: premaxilla; POP: preopercle; PT: posttemporal; PTE: pterygoid; RART: retroarticular; SN 1-7: supraneurals 1 to 7; SOC: supraneurals; SOP: subopercle; SPOP: suprapreopercle; ext. c.: extrascapular sensory commissure; l.: left; pop. c.: preopercular sensory canal; ot.: otic sensory canal; r.: right; soc. cr.: supraoccipital crest; sorb. c.: supraorbital sensory canal.

5. Systematic paleontology

Division Teleostei Müller, 1845
Infraclass Ostariophysi Sagemehl, 1885
Series Anotophsy Rosen & Greenwood, 1970
Order Gonorynchiformes Regan, 1909
Suborder Chanoidae Berg, 1940
Family Chanidae Jordan, 1887
Genus Cabindachanos gen. nov.

Type species. Cabindachanos dartevellei gen. and sp. nov. (here designated).

Diagnosis. As for the species (monospecific genus)

Etymology. The generic name refers to the Cabinda Territory (Central Africa) and to the genus Chanos.

Cabindachanos dartevellei gen. and sp. nov.

Diagnosis. Small chanid differing from the other members of
the family by its greatly hypertrophied opercle and by the loss of the subopercle. Parietals reduced and broader than long. Supraoccipital with a well-developed posterior median crest. Preopercle with a broad dorsal limb and a long narrow ventral limb. Dorsal and ventral limbs of preopercle forming a straight angle. Large plate-like suprapreopercle. Two greatly enlarged elements within the anterior supraneurals. Scales cycloid, longer than deep, with thin and horizontally oriented circuli.

Etymology. The specific name is given in honour of Edmond Dartevelle (1907-1956), a famous Belgian paleontologist and explorer, who has greatly contributed to the scientific knowledge of Central Africa.

Holotype. Specimen MRAC RG 4629 (collected in 1937 by E. Dartevelle at Landana, Cabinda Territory, layer 1, marine Danian or early Selandian, Lower Paleocene [No 4108 in Dartevelle’s registry]). The sample is composed of three pieces belonging to the same fish: (a) a partly preserved skull, the pectoral fin, and the beginning of the body [right side, length: 125 mm] (Fig. 1A); (b) the counterpart of the pectoral fin and the beginning of the body [right side, length: 67 mm] (Fig. 1B); (c) the counterpart of a part of the opercle (Fig. 3A).

Osteology
1. The skull (Fig. 2)
The head is incompletely preserved. The ethmoid region, a great part of the skull roof and the upper jaw are missing.

The nasal is a small narrow tubular bone that carries the most anterior portion of the supraorbital sensory canal. Only a posterior fragment and the lateral margin of the right frontal are present. The right parietal, a fragment of the left parietal, the right pterotic and the right epiotic (= epioccipital) are also preserved; these are small bones. The right parietal is broader than long. A trace of the otic sensory canal is preserved on the pterotic. The skull is lateroparietal, the two parietals being separated by the supraoccipital. The strongly developed acuminate postorbital process of the autosphenotic is visible under the frontal. The supraoccipital bears a well-marked posterior median crest that greatly extends behind the rear of the skull.

The posterior region of the lower jaw is deep, with a strongly developed coronoid process formed by the upper branch of the dentary. A large angular and a smaller autogenous retroarticular are also visible. The anterior region of the mandible is missing.

A part of the quadrate is the only preserved element of the palatine arch.

Six elements of the circumorbital series are present. The anotrbial is a small bone that is sutured with the upper margin of the rather wide first infraorbital. The second and the third infraorbitals are longer but less deep. The fourth infraorbital is a large plate-like bone ornamented with very small tubercles. Two fragments of a long dermosphenotic are also present just before the autosphenotic. No supraorbital is preserved.

The preopercle has two well-developed limbs forming a straight angle. The dorsal branch is a little shorter but also much broader than the ventral branch. Some traces of the preopercular sensory canal are present on the preopercle. A small part of the interopercle is visible under the ventral branch of the preopercle. The opercle is greatly hypertrophied, more or less ovoid and deeper than long (Fig. 3A). The lower margins of the opercle and of the preopercle are located at the same level. There is no place for a
subopercle. A broad plate-like suprapreopercle covers the anterior dorsal corner of the opercle. Some regions of the preopercle and of the opercle are ornamented with very small tubercles.

2. The girdles
Fragments of two rather narrow posttemporals are preserved. The right one is located just above the opercle and the left one against the supraoccipital median crest. The other scapular bones are hidden by the scales. The pectoral fin contains 14 segmented rays (Fig. 3B). The first ray is pointed distally and the thirteen others branched.

3. The axial skeleton (Fig. 4)
The vertebrae are hidden under the scales. Fragments of a few anterior supraneurals are visible. The first two elements are extremely broadened. The third supraneural is broad but less so than the two preceding pieces. The following supraneurals are rod-like. The first visible supraneural is not especially close to the skull. It is perhaps not the first element of the supraneural series. One long, thin and curved epineural is visible below the first supraneurals.
4. Squamation (Fig. 5)

The scales are cycloid and longer than deep. The posterior region of the scales is thicker than more anteriorly and the posterior margin is smooth. Many very thin circum are visible. They are horizontally oriented. Some fragmentary scales exhibit a few radii in the anterior region.

6. Discussion

6.1. Cabindachanos dartevellei gen. and sp. nov. within Teleostei

Cabindachanos dartevellei gen. and sp. nov. exhibits a few features allowing to determine precisely its relationships within Teleostei. (1) The pelvic girdle is located in the abdominal region. (2) The scales are cycloid. (3) The skull is lateroparietal. (4) The lower jaw is deep, with the dentary forming a well-marked coronoid process. (5) The articulation between the quadrate and the mandible is positioned before the orbit. (6) The preopercle has a very broad dorsal limb and a long and rather narrow ventral limb. (7) The opercle is more or less ovoid and greatly hypertrophied. (8) There is a large plate-like suproopercle. (9) The first supra- neurals are enlarged.

Characters (1) and (2) indicate that C. dartevellei is a rather primitive teleost fish. On the other hand, the combination of characters (3) to (9) only occurs in Chanidae (Poyato-Ariza, 1996a; Grande & Poyato-Ariza, 1999; Poyato-Ariza et al., 2010). The placement of C. dartevellei in this gonorynchiform family is thus fully justified.

6.2. Cabindachanos dartevellei gen. and sp. nov., a valid genus

In all the fossil and recent Chanidae, the opercle is hypertrophied but it does not reach ventrally the level of the lower margin of the preopercle. The subopercle is always present, even in those species with a relatively gigantic opercle, such as Rubiesischthys gregalis Wenz, 1984 from the Berriasian-Valanginian (early Early Cretaceous) of Spain (Poyato-Ariza, 1996b, fig. 2) or Nanachthys longipinnus Amaral & Brito, 2012 from the Aptian (late Early Cretaceous) of Brazil (Amaral & Brito, 2012, fig. 4 A, B, C). Both species still retain a small subopercle.

No other member of the family has such an enormous opercle as in the new chanid fish from Landana and none of them has completely lost the subopercle. These two characters justify the peculiar generic status of Cabindachanos dartevellei.

6.3. Cabindachanos dartevellei gen. and sp. nov. and the African fossil Chanidae

Two fossil species of Chanidae have been described from Africa until now, Parachanos aethiopicus (Weiler, 1922) and Dastilbe batai Gayet, 1989, both from the marine-brackish Aptian-Albian (Lower Cretaceous) deposits of Gabon and Equatorial Guinea (Weiler, 1922; Arambourg & Schneegans, 1935; Casier & Taverne, 1971; Taverne, 1974; Gayet, 1989; Fara et al., 2007, 2010). However, D. batai is known by only one specimen with a very badly preserved skull. Some authors regard this species as a junior synonym of Dastilbe crandalli Jordan, 1910 from the Aptian of Brazil (Davis & Martill, 1999). Others consider that “it is difficult to [give] any precise taxonomic identification” to this sample (Brito & Amaral, 2008, p. 279).

Parachanos Arambourg & Schneegans, 1935 and Dastilbe Jordan, 1910 are two closely allied fossil chanid genera. They differ by only a few characters. The supraoccipital of Parachanos is devoid of a median posterior crest, while a small crest is present in Dastilbe (Fig. 6; Taverne, 1974, fig. 1; Dietze, 2007, fig. 3). The maxilla of Parachanos is short and obliquely oriented; the maxilla is longer and more horizontally positioned in Dastilbe (Fig. 7; Poyato-Ariza, 1996a, figs 7, 9; Poyato-Ariza et al., 2010, fig. 7.6). The subopercle of Parachanos is much larger than that of Dastilbe (Fig. 8). In the caudal skeleton of Parachanos, both the first preural (PU1) and the first ural (U1) vertebrae bear a reduced neural spine (Taverne, 1974, fig. 3; Poyato-Ariza, 1996a,
fig. 17; Taverne & Capasso, 2017, fig. 13), as in the archaic chan-
id species *Aethalionopis robustus* (Traquair, 1911) from the Upper Barremian of Belgium (Taverne, 1981, fig. 8; Taverne & Capasso, 2017, fig. 11). The reduced neural spine on PU1 is re-
tained but that on U1 is lost in *Dastilbe* (Blum, 1991a, figs p. 279; 
Poyato-Ariza, 1996a, fig. 16; Dietze, 2007, fig. 10 A, B; Taverne & 
Capasso, 2017, fig. 14).

Both *Parachanos* and *Dastilbe* possess a well-developed subopercle and, thus, differ from *Cabindachanos*.

6.4. Cabindachanos dartevellei gen. and sp. nov. within Chanidae

Chanidae are subdivided into two subfamilies, the Chaninae, with the genera *Chanos* Lacépède, 1803, *Caues* Costa, 1857, *Tharrhias* Jordan & Branner, 1908, *Dastilbe*, *Parachanos* and *Aethalionopis* Gaudant, 1966, and the Rubiesichthyinae, with the genera *Rubiesichthys* Wenz, 1984, *Gordichthys* Poyato-Ariza, 1994 and *Nanaichthys* Amaral & Brito, 2012 (Poyato-Ariza, 1996a; Grande & Poyato-Ariza, 1999; Poyato-Ariza et al., 2010; Taverne & Capasso, 2017, fig. 6; Taverne & Capasso, 2017, fig. 13), as in the archaic chan-
id species *Aethalionopis robustus* (Traquair, 1911) from the Upper Barremian of Belgium (Taverne, 1981, fig. 8; Taverne & Capasso, 2017, fig. 11). The reduced neural spine on PU1 is re-
tained but that on U1 is lost in *Dastilbe* (Blum, 1991a, figs p. 279; 
Poyato-Ariza, 1996a, fig. 16; Dietze, 2007, fig. 10 A, B; Taverne & 
Capasso, 2017, fig. 14).

Both *Parachanos* and *Dastilbe* possess a well-developed subopercle and, thus, differ from *Cabindachanos*.

8. References

Gonorynchiformes) from the Cretaceous of Brazil with affinities to 
https://doi.org/10.1371/journal.pone.0037247

Arambourg, C. & Schneegans, D., 1935. Poissons fossiles du bassin sédimen-
taire du Gabon. Annales de Paléontologie, 24, 139–160.

Bassani, F., 1882. Descrizione dei pesci fossili di Lesina accompagnata da 
appunti su alcune altre ittiofaune Cretacee (Pietraroia, Voiron, 
Comen, Grotidischtz, Crespano, Tolfa, Hakel, Sahel-Alma e Vestfàlia. 
Denkschriften der kaiseraler Akademie der Wissenschaften, Ma-
thematisch-naturwissenschaftliche Classe, Wien, 45/2, 195–288.


Dietze, E. & Casier, L., 1971. Note préliminaire sur le matériel palé-
öichthyologique écocrétacique récolté par la Spanish Gulf Oil Com-
pany en Guinée Equatoriale et au Gabon. Revue de Zoologie et de 
Botanique Africaines, 83/1–2, 16–20.


https://doi.org/10.1111/1475-490X.00094

De Putter, T., Baynon, G., Mees, F., Ruffet, G. & Smith, T., 2016. Clo-

Dietze, K., 2007. Redescription of *Dastilbe crandalli* (Chanidae, Eu-
teleostei) from the Early Cretaceous Crato Formation of North-
Eastern Brazil. Journal of Vertebrate Palaeontology, 27/1, 8–16. 


Fara, E., Gayet, M. & Taverne, L. 2010. The fossil record of Gonorynch-
iformes. In Grande, T., Poyato-Ariza, F.J. & Diogo, R. (eds), Gono-


Manuscript received 05.06.2018, accepted in revised form 19.12.2018, available on line 23.01.2019.