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ABSTRACT

Two Devonian asteropygine trilobite specimens exhibiting rare cases of encrustation are
recorded. An almost fully articulated exoskeleton of Rhenops australocustos from the lower
Emsian in Luxembourg carries hederelloid colonies on its cephalon and thorax. The colonies
are interpreted to have attached syn vivo (i.e. to the living trilobite) and the relation with
their host was likely commensal. A cephalon of Philonyx philonyx from the upper Emsian in
Germany exhibits five putative morphotype encrusters identified as hederelloids, auloporid
corals, cornulitids, bryozoans and foraminifers. This is the first documented evidence of a
foraminifer on a trilobite host. This cephalon is either a moult or a carcass.
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1. Introduction

Associations of fossil sclerobionts and biotic hosts present
unique windows into the past, offering valuable clues about
ecology, community dynamics, environmental conditions and
life habits. Sclerobiont-host relationships have been studied
extensively in miscellaneous host groups including trilobites,
brachiopods, cephalopods, crinoids, decapods, gastropods and
bivalves. In many cases it is difficult to assess whether the host
was still alive at the time of encrustation. Trilobites were almost
ubiquitous in marine environments of the Palaeozoic, having
adopted a wide variety of life habits, ranging from pelagic to
endobenthic. The mineralised trilobite exoskeleton encompassed
an astonishing range of morphologic forms some of which may
have been suitable, if not adapted at times, for epizoans to grow
on. This notion seems to stand in sheer contrast with the
comparatively few published examples of encrusted trilobite
specimens (e.g. Solle, 1968; Tetreault, 1992; Kloc, 1992, 1993,
1997; Kacha & Sari¢, 1995, 2009; Brandt, 1996; Miiller, 1997;
Basse, 1998; Key et al., 2000, 2010; Vinn et al., 2017; Basse &
Miiller, 2004, 2016; Alberti, 2014, 2018; Zapalski & Klug,
2018; Vinn et al., 2024a). Since trilobites are extinct there are
no close living analogies to assess their frequency and
behaviour as hosts, although certain comparisons might be made
with other marine arthropod groups. For instance, Waugh et al.
(2004) noticed that epizoans are more common on living marine
decapod crustaceans than on fossils, which they attributed to a
preservation bias. Other possible causes for the loss of epizoic
growth on trilobites include the opportunistic nature of the
epizoan’s settlement and the life habit of the host (Brandt,
1996). Indeed, antifouling behaviours such as burrowing,
grooming, frequent ecdysis and a nocturnal mode of life have
been shown to be effective in lowering epibiont occurrences in
extant brachyurans (e.g. Becker & Wahl, 1996; Bauer, 2013;
Key et al., 2024).

Here we present two examples of encrustation in
asteropygine trilobites from the Lower Devonian (Emsian) of
Germany and Luxembourg.

2. Material and methods

The first specimen is an exoskeleton of Rhenops australocustos
Basse et al., 2006, which was collected from a pelitic sequence
of earliest(?) Emsian (Early Devonian) age in the
Réideschbaach locality near Heiderscheid, Eislek, northern
Luxembourg (van Viersen & Miiller, 2024). A silicone cast was
made from the external mould. The specimen is kept by the
Musée national d’histoire naturelle, Luxembourg, under
registration number EIA 750.

The second specimen is the holotype (silicone cast of the
external mould) of Philonyx philonyx (Richter & Richter, 1952),
Senckenberg Forschungsinstitut und Naturmuseum, Frankfurt
am Main; old number SMF X 1282a, new number SMF 58393a
(Basse, 2006, p. 276, fig. 495). The specimen is from the
Emsian Kahleberg-Group of Festenburg near Oberschulenberg,
TK 25 sheet 4128 Clausthal-Zellerfeld, Ober-Harz, Germany.

Both silicone casts were whitened with magnesium oxide
prior to photography.

3. Encrustation along the exoskeletal fringe

Previously, epizoic growth on asteropygine trilobites had been
reported on the long pleural spines of Psychopyge from the
Emsian of the Lahn Syncline in Germany (e.g. Basse & Miiller,
2016), similar to cases in spiny odontopleurids (e.g. Kloc, 1997;
Basse & Miiller, 2004). Alberti (2018) recorded a Psychopyge
cephalon from the same area with the long anterior ledge

covered by various encrusters. Spines on marine organisms have
been attributed various functions ranging from sensory devices,
structural deterrents against predators, aids for floating or
stabilisation on the substrate, attachment points for epibionts as
a means of camouflage, and as an energetically inexpensive way
of entering size refuge at an early development stage (e.g.
Johnsen et al., 2013). Van Viersen & Kloc (2022) considered
exceedingly spiny asteropygines such as Psychopyge to be
obligate bottom dwellers with limited capabilities of coaptation
and thus, not heavily reliant on pleural spines for their defence
against predators. According to Wahl (1997), epibiotic cover
inducing a change of contour, shape or colour of its host can
prevent detection from optically searching predators. Feifarek
(1987) studied contemporary spiny bivalves and concluded that
rather than having a defensive function, their spines evolved to
attract fouling organisms that aid in concealing the host. Perhaps
epizoic growth on the pleural spines along the exoskeletal fringe
and the anterior cephalic ledge was beneficial to members of
Psychopyge in effectively masking their characteristic
appearances as to avoid recognition as potential prey. Although
the relatively scanty encrusters in the aforementioned examples
may not have sufficed to achieve this, other (soft bodied)
epizoans may have been attached to the trilobite yet not
preserved. For instance, the cephalon of Philonyx discussed
below shows various traces of epizoic growth, some of which
have deteriorated almost beyond recognition.

4. The Rhenops case
4.1. Description of the host specimen

A single fouled exoskeleton among dozens of Rhenops
australocustos specimens collected at the Réideschbaach
locality is available for study (Fig. 1A, B). This individual
shows damage to the left pleural lobe and the pygidium is
slightly dislocated. The hypostome was preserved in situ in the
counterpart specimen but unfortunately it was lost during
preparation. The silicone cast reveals many fine details of the
dorsal cuticle, including a range of fine to coarser sculpture,
pitted areas on the axial and pleural lobes of thorax and
pygidium, and the presence of a narrow band enclosed by a
dorsally and ventrally disposed granule rows along the
horizontal fringe of the exoskeleton. This band was previously
documented by van Viersen & Kloc (2022) in an exceptionally
well-preserved specimen of the Devonian asteropygine
Hollardops and shown to be densely pitted. The pits were
construed by van Viersen & Kloc as inset points for setae as part
of the sensory apparatus. The cephalon and anterior thoracic
segments of the Rhenops specimen are slightly tectonically
deformed (i.e. skewed along the sagittal line) and the thorny tips
on the extremities of the genal spines shown by other specimens
of this species (see, e.g., van Viersen & Miiller, 2024, pl. 1, fig.
4) are lost. The thoracic pleural spines are also incompletely
preserved. The anterior three to four pleural extremities reveal a
truncated morphology giving way to the large genal spines; the
remaining pleurae are damaged. Species of Rhenops from the
Rhenish Massif (see, e.g., Basse, 2003) generally adhere to the
fan-like pleural spine design discussed by van Viersen & Kloc
(2022) and it is conservative to assume that this also applies to
R. australocustos. In that case the posterior thoracic pleurae
almost certainly carried consecutively longer spines posteriorly,
with the last thoracic pleural spines being about as long as the
anteriormost pygidial pleural spines. Metamerically repeated
median thorns are located on the occipital ring, all thoracic axial
rings and the first seven or eight pygidial axial rings. Pits are
scarce on the posterior half of the pygidium which is probably a
preservation artefact since sculpture is equally missing here.
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Figure 1. Rhenops australocustos Basse et al., 2006, silicone cast of EIA 750; Lower Devonian, lower Emsian of Réideschbaach, Eislek,
Luxembourg; cephalon and thorax carrying hederelloids. A. Dorsal view of exoskeleton. B. Close-up of cephalon and anterior two thoracic segments.
C. Reconstruction of studied individual carrying hederelloids. All scale bars equal 10 mm.
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4.2. Taxonomic placement of the sclerobiont

The sclerobiont gross morphology is similar to auloporid
tabulate corals, cyclostome bryozoans, and hederelloids. The
latter is a predominantly Devonian group of runner-like colonial
encrusters that were previously regarded as cyclostome
bryozoans (Bassler, 1939), but this view is no longer supported
by more recent analyses of morphological details (Alvarez &
Taylor, 1987; Taylor & Wilson, 2003). Instead, Taylor &
Wilson (2008) provided arguments to associate the group with
phoronid worms. According to Alvarez & Taylor (1987),
hederelloid colonies have long, tubular zooecia, usually
somewhat vermiform, ornamented by faint transverse
annulations. The zooecia bud from the sides of a stolon ranging
from 0.35 mm in width in the smallest colonies to 0.59 mm in
the largest.

4.3. Palaeoecology of the sclerobiont-host association

Hederelloids are known from the Lower Devonian of the
Rhenish Massif, but are not abundant here (e.g. Solle, 1952,
1968; Brassel, 1977). They have been found to preferentially
colonise the inner shells of dead brachiopods, bivalves,
orthoconic nautiloids, and were also reported from the rostral
plate and pygidium of homalonotid trilobites (Solle, 1968;
Miiller, 1997). In contrast, Stilkerich et al. (2017) reported in
vivo encrustation by hederelloids of the ammonoid /voites from
the Hunsriick Slate that evidently influenced the growth pattern
of the host.

Generally, hederelloids are found less commonly on living
mobile substrata than on dead biological substrata. In analogy to
palacoecologically comparable bryozoans, this is particularly so
when it comes to ephemeral substrata where the host regularly
sheds its integument (Key et al., 1996a). Establishing breeding
colonies on those moulting hosts indicates short life cycles, high
growth rates, and early reproduction for sessile epizoan
organisms (Abell6 et al., 1990). However, if these requirements
are successfully met, there are many benefits for epizoans on
mobile substrata, such as reduced competition for a suitable
substrate, reduced risk of predation, enhanced gene dispersal,
and ample food supply (Key et al., 1996a). Therefore, extant
arthropods, such as brachyuran crabs, horseshoe crabs, and
pycnogonids, are regular hosts of epizoic bryozoans and similar
organisms (e.g. Key et al., 1996b, 2000, 2010, 2024).

Alvarez & Taylor (1987) observed auloporid corals growing
over the commissure from the dorsal to the ventral valve of a
brachiopod and interpreted this as evidence for colony growth
continuing after the death of the host. This is also a possibility
with respect to the Rhenops specimen. Van Viersen & Miiller
(2024) gave reasons to suggest that the hederelloid colony grew
here in the course of the trilobite’s life. The facial sutures of
asteropygines were functional and played a key role in ecdysis.
The observations that the hypostome and librigenae are in place
indicate that the studied specimen represents a deceased animal
(e.g. Whittington, 1997). In that case, the colony may have
settled on the living trilobite or, less likely, it settled
postmortem, on the carcass. On the other hand, the slightly
dislocated and rotated pygidium, might be taken as evidence to
suggest that the specimen is, in fact, an exuvia. In that case, the
colony may have grown on the living trilobite and was disposed
of along with the moult, or settlement and growth fully took
place on the moult (i.e. after ecdysis). This last scenario is not
credible because the moult would have been prone to
disarticulation faster than the colony could grow to its current
extent. This might have taken up to several weeks, although it is
a rough estimate based on growth rates in bryozoans of overall
similarity (van Viersen & Miiller, 2024).

Considering the scenario that the colony attached to the
living host, we do not believe that there was a trophic exchange
between the two because the central area of the dorsal
exoskeleton is too far away from the mouth and appendages to
be able to interact with the hederelloids. Rather the relationship
was commensal. The location of the large hederelloid on the
cephalon was haphazard yet favourable, as it encompasses a
large, stable, dorsally high surface on the trilobite, affording
optimal prospect of gathering nutrients. The epizoic presence
was not lethal and questionably beneficial to its host other than
that it may have afforded some sort of camouflage. Van Viersen
& Kloc (2022) elaborated on the feeding habits of Hollardops,
suggesting that it used its shovel-like cephalon to plough
through the top layer of the substrate which was guided and
disposed of laterally along the cephalic border and the steep
front of the genal spine, and so exposing the appendages to fresh
sediment. Taking into account the morphologically very similar
cephala of both taxa, it is likely that Rhenops had the same
feeding habits. The epizoic growth was sustainable in that a firm
base was established in the deep axial, palpebral, occipital and
posterior border furrows, while remaining at a distance from the
regions of the exoskeleton that would have been involved in
ploughing activities (van Viersen & Miiller, 2024). A
reconstruction of the R. australocustos specimen is proposed
here, assuming close analogies of hederelloids with extant
phoronid worms (Fig. 1C).

5. The Philonyx case
5.1. Description of the host specimen

The asteropygine trilobite Philonyx was erected by Richter &
Richter (1952) as a monotypic subgenus tentatively placed in
Asteropyge. To date, the type species, Philonyx philonyx from
the upper Emsian in the Harz Mountains, Germany, is only
known from the holotype incomplete cephalon (Figs 2, 3).
Philonyx as a taxon of independent generic rank has been
questioned recurrently in view of its inadequately documented
morphology. Van Viersen (2025) argued that Philonyx be
provisionally retained as an uncertain subgenus of Comura.
Well-preserved specimens of morphologically similar species
placed in Quadrops and Comura have been recorded from
coeval strata in southern Morocco (e.g. Lebrun, 2018). Those
specimens afford insights into the potential thoracic and
pygidial morphologic ranges of Philonyx, which may have
included both long pleural and dorsal spines.

The cephalon is crushed resulting in the opening of the
preocular facial sutures, fractures in the cephalic border and
exaggerated overhang of the librigenal fields. There are a small
convex anterior ledge and a possible pair of exsagittally
positioned broad spines. The anterior glabellar and lateral L2
lobes bear large pustules of varying sizes and shapes. The
librigenae are in place, suggesting that theoretically, the
specimen is a carcass, but the genal angles and posterior borders
are almost fully lacking. Perhaps this damage was caused by
natural mechanical wearing (transportation?) or durophagous
predation activity. The symmetry of the damage on both ends of
the cephalon, however, is conspicuous and could nevertheless
indicate a moult. Only the bases of the palpebral spines are
preserved; these spines were probably moderately long when
comparing the Moroccan taxa. The stout occipital spine is
broken off but almost fully present in the internal mould (see
Basse, 2003, figs 496, 497).
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Figure 2. Philonyx philonyx (Richter & Richter, 1952), silicone cast of SMF 58393a; Lower Devonian, upper Emsian of Festenburg near
Oberschulenberg, Harz Mountains, Germany; cephalon with various sclerobionts. A. Oblique anterior view. B. Dorsal view. Abbreviations:
au, auloporid; br, bryozoan; co, cornulitid; fo, foraminifer; he, hederelloids. Photographs courtesy of M. Basse. Scale bar equals 10 mm.

5.2. Taxonomic placements of the sclerobionts

The cephalon is covered with various epizoans, many of which
are too fragmentary to be discussed in detail. At least five
different morphotypes of epizoans are identified. The first
morphotype shows long, tubular, slender stolons with an
approximately uniform width and regular branching pattern
(Fig. 3C). This morphotype is strongly reminiscent of the
hederelloids on the Réideschbaach specimen.

In the second morphotype, the stolons are larger and, again,
zooecia are not clearly preserved, but were apparently only
slightly wider than the stolons, if wider at all, and situated on
slightly bulbous sections along the stolons (Fig. 3A). We
suppose that the second morphotype represents auloporid corals
rather than hederelloids, but we cannot exclude the possibility
that both morphotypes represent different ontogenetic stages of
one and the same organism.

The third morphotype differs from the first by its greater
size and especially in having a distinctly bag-shaped
morphology, i.e. strongly widening towards the aperture. The
latter is markedly raised from the otherwise -creeping
exoskeleton. The presence of outer growth rings on the former

exoskeleton is indicated in the upper specimen in Figure 3B;
otherwise, an outer ornament is lacking or not preserved. The
morphology of this morphotype is consistent with its
interpretation as cornulitid tubeworms (e.g. Morris & Rollins,
1971; Sparks et al., 1980; Vinn et al., 2024b). It is apparent that
at one point the slender tubeworm overgrew the previously
established coral or hederelloid specimen. The conical shells of
possible cornulitids clearly represent two species. The broadly
conical form is similar to Cornulites devonicus (Pacht, 1858)
while the slender form resembles somewhat C. sokiranae Vinn
et al., 2019. Both cornulitid species occur as epibionts on living
brachiopod shells in the Upper Devonian of central Russia, and
likely exploited feeding currents of their brachiopod hosts (Vinn
etal., 2019).

The fourth morphotype is represented by only two
examples, one of which is comparatively well-preserved (Fig.
3E). It consists of nine chambers, starting with a small
subcircular proloculus with a diameter of about 0.6 mm
followed by uniserially arranged, closely appressed, arch-shaped
adult chambers. Adult chambers expand laterally and become
flared and may afford the test a leaf or fan-like appearance. The
aperture consists of multiple openings at the periphery of the
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Figure 3. Philonyx philonyx (Richter & Richter, 1952), silicone cast of SMF 58393a; Lower Devonian, upper Emsian of Festenburg near
Oberschulenberg, Harz Mountains, Germany; details of sclerobionts. A. Morphotype attributable to auloporid corals (indicated by black arrows).
B. Two cornulitid tubeworms. C. Encrusting foraminifer (upper white arrow) and putative hederelloid (lower white arrow). D. Encrusting
(trepostome) bryozoan. E. Encrusting foraminifer with proloculus to the left. All scale bars equal 1 mm.

final chamber. The inner septa are subdivided and resemble
irregular dashed lines. They represent the openings of the
previous chambers (foramina), allowing efficient protoplasmic
communication in both longitudinal and transverse directions.
The test is attached to the substrate and reaches a size that is
about 2.2 mm long and 1.9 mm wide. The second, incompletely
preserved specimen is attached to the left eye socket of the
trilobite (Fig. 3C, upper arrow). The morphology of these

sclerobionts is consistent with an interpretation as encrusting,
multichambered foraminifers.

The fifth morphotype is indicated by a regular pattern of
subrectangular cells, each typically about 0.3 mm wide,
consistent with an interpretation as a thin sheet-like colony of
encrusting bryozoans (Fig. 3D). A closer determination seems
impossible due to the lack of skeletal material.
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5.3. Palaeoecology of the sclerobiont-host association

Tentaculitoid tubeworms are common components of
Palaecozoic encrusting communities and lived as active
suspension feeders using a lophophore to gain their food
(Richards, 1974; Taylor & Vinn, 2006). Such tubeworms were
found previously encrusting the inner surface of an Ordovician
trilobite pygidium (Vinn et al., 2017). However, the encrustation
of trilobite pygidia in the Ordovician of Estonia most certainly
took place post mortem. On the other hand, if the studied
trilobite cephalon was encrusted while the host was alive, it is
possible that cornulitids benefitted from water currents created
by the movement of the trilobite host. The trilobite provided a
hard substrate to the cornulitids on the otherwise soft seafloor.
Moreover, selecting the appropriate living substrate can equip
an epibiont with many advantages similar to those of a mobile
lifestyle, such as the ability to evade adverse conditions, elude
predators, and endure burial (Coletti et al., 2023). The trilobite
host may have protected the cornulitids from burial in the
conditions of fast sedimentation or sudden sediment flows.
Epizoic and epiphytic foraminifers were recorded, e.g., from
Carboniferous algae (Cossey & Mundy, 1990) and hardgrounds
(Vinn & Mironenko, 2025), extant seagrasses (Langer, 1988,
1993), as extant epizoan commensals on brachiopods (Zumwalt
& Delaca, 1980), on agglutinated tubes of gammarid
amphipods (Langer & Long, 1994), and on arthropods such as
the Norwegian lobster Nephrops (Farmer, 1977). In contrast,
Devonian foraminifers are very scarce before the Givetian and
are thought to have been endobenthic (Vachard et al., 2010).
Kloc (1997) mentioned encrusting foraminifers on the trilobite
Dicranurus from the Lower Devonian of Oklahoma, but these
were neither described nor figured. The case reported herein is,
to our knowledge, the second report of encrusting foraminifers
on trilobites and the first case where these are figured and
described. Morphology and preservation indicate that we are
dealing with multichambered, calcareous foraminifers with a
leaf-like test that resemble semitextulariids such as
Semitextularia Miller & Carmer, 1933. Semitextulariid
foraminifers, however, are characterised by a short early biserial
portion with up to four pairs of biserially arranged chambers and
an interior that is subdivided by vertical chamber partitions.
Both features are absent in the encrusting foraminifers recorded
here. They may therefore represent a new genus yet to be
described. Semitextulariids are regarded as the oldest known
plurilocular foraminifers previously recorded from the Eifelian
to Frasnian with a former global distribution in shallow marine,
well-illuminated habitats of the inner shelves, such as tropical
reefs and lagoons (Vachard & Massa, 1989; Dubicka et al.,
2021). It also has been hypothesised that these taxa represent the
carliest photosynthetically active symbiont-bearing benthic
foraminifers (Dubicka et al., 2021). If this is also true for the
epizoic foraminifers found here, this would suggest a habitat
within the euphotic zone, probably in a warm, clear, nutrient
poor environment most favourable to photosymbiosis (e.g.
Hallock, 1981, 1987; Lee et al., 2010; Schmidt et al., 2004).
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