The scleractinian corals: a perspective

Vassil N. ZLATARSKI & Joel L. STAKE

131 Fales Rd., Bristol, RI, U.S.A., vzlatarski@yahoo.com
Department of Biology, Rivier College, 420 South Main Street, Nashua, NH 03060, U.S.A., jstake@rivier.edu

ABSTRACT. Though scientific interest in scleractinian corals originated in the 16th century, the knowledge base continues to grow and is far from complete. The progress of the research on these organisms is represented here as an exponential process and its history may be divided into three periods. In the beginning, Plant period (1576-1727), these organisms were interpreted as plants. The Animal period (1727-2007) brought in their consideration as animals and includes three phases that introduce new research approaches (phase 1: variability, microstructure, transplantation; phase 2: multiple skeletal characters, global spatial and temporal attention; phase 3: life history, molecular biology). Recently, the number of sources of scleractinian knowledge has increased to five: morphology, paleobiology, ecology, life history and molecular biology. Scleractinian corals are no longer considered alone but as holobionts, along with their symbiotic zooxanthallae and other associated microbiota. The accumulated multidisciplinary data and new integrative concepts urge a holistic interpretation and have been indicating (since 2007) the commencement of the present, Holistic period. This analysis of the current status of scleractinian knowledge provides a list of proposed directions for future research.

KEYWORDS: Taxonomy, morphology, paleobiology, ecology, life history, molecular biology.

1. Introduction

Scleractinian corals have been of interest to scientists since the 16th century and yet our understanding of them remains far from satisfactory. Scientists forming the international Scleractinia Working Group recognized “that existing classification systems for scleractinians are inadequate, and a revised system that better reflects new molecular results needs to be adopted as soon as possible” (Budd et al., 2010). In addition to the higher classification, “generic definition of the Scleractinia remain[s] in chaos” (Stolarski et al., 2006). Though new research approaches over the past half century have contributed considerably to resolution of the taxonomy of this group, the existing concepts are being challenged and accumulated data are in need of new interpretations. Presently, “the combined use of morphological and molecular tools holds great promise for ending confusion in scleractinian systematics” (Budd et al., 2010). Studies of life history and ecology also are contributing to the holistic understanding of the Scleractinia. This article reviews the progress of scleractinian knowledge and its current status and provides suggestions for future work.

2. History

The goal here is not to present a detailed history of scleractinian studies but rather to trace the progress and timing of research.

Figure 1. Progress of scleractinian knowledge. Legend: ▼: A new step in research. ○: Multinational collaboration.
The history of research on scleractinian corals may be divided into three periods. A graphical presentation of the progress of scleractinian knowledge reveals here an exponential growth (Fig. 1).

The First period (1576-1727) may be named the Plant period. During this time, scleractinian corals were interpreted as plants. M. Lobel illustrated two scleractinians, *Dendrophyllia ramea* and *Madrepora oculata* in 1576 and in 1591 (Vaughan & Wells, 1943), and naturalists illustrated many scleractinians as botanical objects.

The Second period (1727-2007) may be called the Animal period, during which scleractinian corals were considered animals. Peyssonnel was the first, in 1727 and 1753 (Vaughan & Wells, 1943), to maintain that they are not plants but animals. In 1758, the 10th Edition of Linnaeus’s “Sistema Naturae” marked the starting point of zoological nomenclature. Initially, studied coralla were found fortuitously. The taxonomy was purely typological. Milne Edwards published “Histore naturelle des Coralliaires” (1857-1860) based on living and fossil species.

This period includes three phases that introduce new research approaches. They are not applicable to the azooxanthellate representatives of the order because their predominantly deep-sea distribution made *in situ* access for study difficult, and those azooxanthellate corals living in shallow water are small and frequently cryptic. The time around the end of the 19th and beginning of the 20th centuries was marked by the first phase of research (variability, microstructure, transplantation), which (except for microstructure) resulted from entrance into the natural coral habitat. During this phase, the extraordinarily rich variability of coralla was established, the species problem was considered and forms were introduced (Quelch, 1886; Vaughan, 1901, 1907; Hofmeister, 1925, 1926). Aggregated colonies (Duerr, 1902) and growth forms (Wood Jones, 1907) were described. The new knowledge prompted transplantation experiments (Vaughan, 1911; Mayor, 1924; Mayor’s work reviewed in Stephens & Calder, 2006). In addition, skeletal microstructure was applied as the basis of higher classification (Ogilvie, 1896). The order Scleractinia was created by Bourne in 1900. During the first half of the 20th century, paleontologists were leading the research and synthesized the results on scleractinians (Vaughan & Wells, 1943; Wells, 1956).

A second phase of the second period (multiple skeletal characters, global spatial and temporal attention) of research on Scleractinia marked the middle of the last century. By paying special attention to micromorphology and microstructure, the paleontologist J. Alloiteau (1952, 1957) founded a Parisian coral school whose members studied Scleractinia of all geological periods beginning with those of the Triassic (Sorauf et al., in this volume). His successor Chevalier (1971, 1975, 1987) started in situ research on living corals and published the most complete description on skeletal variability every 1966-1998 in: Lathuilière & Barta-Calmus, 1999 pioneered the study of functional micromorphology. SCUBA made the euhetic and the upper part of the mesophotic habitat accessible for research (Zlatarski & Martinez Estellea, 1982; Zlatarski, 2008, 2009). Since the 1970s, Cairns (2007) and Zibrowius (1980) published revisions of museum material and new collections of azooxanthellates.

A third phase of the second period (life history, molecular biology) began in 1984 as a series of discoveries of new aspects of scleractinian nature including: evolutionary consequences of long generation times and frequent propagation through vegetative fragmentation (Potts, 1984), the existence of simultaneous multispecific spawing (Harrison et al., 1984; Oliver & Willis, 1987), the possibility for reticulate speciation (Veron, 1995), the usage of molecular systematics (Chen et al., 1995), the presence of intrageneric hybridization (Willis et al., 1997), the impact of bleaching (Hoeg-Guldberg, 1999) and the unusual growth forms in aquaria (Carlson, 1999). Veron (1995, 2000, 2003) summarized his worldwide observations on zooxanthellate Scleractinia. Both mitochondrial and DNA markers revealed incongruence with the conventional gross-morphology-based taxonomy when traditionally defined families were shown to be polyphyletic (Chen et al., 1995; Romano & Palumbi, 1997).

Wallace (1999) published a revision of *Acropora*, the most speciose scleractinian genus in the world, using the contemporary approaches. The returning of attention to the micromorphological and microstructural characters suggested a possibility for harmonizing skeletal and molecular data (Stolarski & Roniewicz, 2001). Difficulty in finding molecular markers suitable for differentiating species-level relationships compounded the problem of large-scale polyphyly. Scleractinian corals were shown to have slowly evolving mitochondrial genomes (Shearer et al., 2002). After analysis of morphological, molecular and reproductive criteria, Wolstenholme (2004) concluded that hybridization events of corals occur in nature but are not frequent. In the late 1980s Hoeksema began publishing on the taxonomy, ecology, phylogeny and biogeography of mushroom corals (Fungiidae) (Gittenberger et al., 2011).

At the beginning of this century we “have a greatly improved toolbox for studying scleractinian evolution” (Bury et al., 2010), but the knowledge about this group is coming in from different disciplines. As a consequence, results concerning morphology, paleobiology, ecology, life history and molecular biology need a holistic approach for analysis. The notion of the coral holobiont no longer considers the coral animal alone, but with its symbiotic zooxanthellae and all associated microbiota in connection with coral health, and has led to the theory of hologenome evolution (Rosenberg et al., 2007). These changes together with the holistic approach (Zlatarski, 2007) and the increasingly integrative character of scleractinian research (Zlatarski, 2008, 2009) indicate the commencement of a Third period (2007-present), which may be named the Holistic period.

Multinational collaboration started with the First International Symposium on the Study of Fossil Corals in 1971 in Novosibirsk (Russia), where the International Committee on Fossil Corals was elected and the International Newsletter of ICFC (now Fossil Corallidaria & Porifera) was started. A glossary of equivalent terms for scleractinian studies in eight languages followed (Zlatarski, 1973), as well as the International Working Group on Scleractinian Corals (Löser & Rosen, 1993), the Steering Group for Revision of Scleractinia for the Treatise on Invertebrate Paleontology (TIP) (since 1996, led by Rosen), the Corallosphere (since 2006, http://www.corallosphere.org) and TIP Project (Stolarski et al., 2006).

3. Current status

The species richness of Scleractinia has not even approximately been calculated. Recently 1,482 valid extant species were recognized, a little more than half of them zooxanthellate (Cairns, 2007). The higher taxonomic categories are pending revisions. Currently, “[c]oral taxonomy and systematics continue to be plagued by a host of problems” (Huang et al., 2009).

The sources of scleractinian knowledge today are various: morphological, ecologic, paleobiologic, life history and molecular biology. Their combined use for studying azooxanthellate scleractinarians indicates the evolutionary origin of the Order deep in the Paleozoic (Stolarski et al., 2011).

Skeletal morphology has been studied since the dawn of scleractinian research and until less than two decades ago was the exclusive basis for scleractinian classification, but it still lacks information about variability and microarchitecture. Where sampling is insufficient (e.g., collecting only clear representatives of different phenotypes and ignoring specimens showing intermediate characters or bimorphic colonies), it presents an impediment for obtaining a more objective taxonomy because it shows only part of the phenotypes’ picture. Neglected, the variability in different levels of biological organization (a structural element, corallite, colony, etc., Zlatarski & Martinez Estellea, 1982) also introduces a typological component into skeletal morphology, life history and molecular biology. Their combined use for studying azooxanthellate scleractinarians indicates the evolutionary origin of the Order deep in the Paleozoic (Stolarski et al., 2011).
Recent progress in scleractinian research has accumulated a considerable base of temporal and spatial information pending new interpretation and urging efficient holistic, multidisciplinary scientific collaboration. The following is a list of proposed directions for further attention, and serves as an appeal for discussion and steps toward future research in these areas:

- **Material** – expand the sample size of material collected to tap the phenotypic and genotypic diversity, the geological past, and species reshuffle for biodiversity conservation (Precht & Aronson, 2011), develop standards for holistic collection of material and photodocumentation and organize virtual species museum (idea of Dr. V. Kosmylnin, personal communication);
- **Phenotypic variation** – study variability at multiple levels, exploring plasticity (Shaish et al., 2007), intraspecific polymorphism and hybrids;
- **Ontogeny** – gain further insight into reproduction, septal insertion, astogeny, pathology and senescence and exploit skeletal growth records;
- **Functional macro- and micromorphology** – bring to light these important aspects of morphology;
- **Paleobiology** – focus research on temporal morphological diversification, reversed actuo-paleontology (Zlatarski, 2010), forecasts from the past, sea-level changes as speciation “pumps”, species reshuffle for biodiversity conservation (Precht & Aronson, 2004), the importance of hybridization in the geological past and fossil behavior;
- **Molecular biology** – connect new molecular findings with taxonomic revision, engage in more integrative collaborations and maximize the potential of molecular techniques in life history, physiology, ecology and skeletogenesis;
- **Skeletogenesis** – further explore the interrelation between
animal and skeleton, and how the genes of soft organisms control the formation of an extracellular 3D-skeleton, particularly the physiology of skeletogenesis (ion transport, organic matrix characterization);

• Mesophotic and deep-sea habitats – prompt scleractinian research and evaluate their conservation and evolutionary potential;

• Speciation – better understand hybridization, histocompatibility and chimeras;

• Coral holobiont and reef ecosystem – direct attention to their coevolution in temporal and spatial dimensions;

• Integrative approach to harmonize the data of all sources of knowledge;

• Preparation of specialists – workshops of the International Association for the Study of Fossil Cnidaria and Porifera, the Projects Corallosphere/TIP and the Integrative Graduate Education and Research Traineeship;

• The importance of coral hybridization urges re-evaluation of species and ecosystem conservation approaches and including scleractinian hybrids in conservation policy and legislation.

5. Acknowledgements

Thanks to Mrs. Margaret McNulty of the Barrington Public Library in Rhode Island for her assistance in obtaining access to many publications and to Mrs. Vera Zlatskars for improving the English. The manuscript benefited a great deal from the suggestions of Dr. S. Cairns, Dr. G. Webb, Dr. V. Kosmynkin and two reviewers, Dr. J. Sorauf and an anonymous one. The second author contributed to this article with respect to molecular biology.

6. References

The scleractinian corals: a perspective

Wolstenholme, J.K., 2004. Temporal reproductive isolation and gametic compatibility are evolutionary mechanism in the Acropora humilis species group (Cnidaria; Scleractinia). Marine Biology, 144, 567-582.

Manuscript received 20.09.2011, accepted in revised form 06.05.2012, available on line 15.09.2012.