
1. Introduction

For decades, Alpine geologists and petroleum industry had only 
a limited access to the subsurface architecture of sedimentary 
basins and foothills, relying either on outcrops, horizontal 
tunnels or vertical wells to extrapolate 1D or 2D stratigraphic 
and structural information into a 3D volume, the depth to which 
such extrapolation was permitted being ultimately very limited. 
Fortunately, continuous innovation on geophysical techniques 
provides now increasingly accurate images of the Earth interior, 
not only at the scale of the sedimentary infill of the basins, but 
also at the scale of the entire lithosphere. These new data provide 
accurate information on the overall architecture of the continental 
crust and lithospheric mantle, i.e. the depth to the Moho, which 
constitutes locally a major decoupling horizon, and the depth 
to the 1300°C isotherm, which constitutes the asthenosphere-
lithosphere boundary (Artemieva, 2009; Roure et al., 2010b; 
Cloetingh et al., 2013; and references therein).

Seemingly, early explorationists were relying extensively on 
surface seeps and outcrops of potential source rocks to evaluate 
the petroleum potential and identify the most promising areas for 
drilling (Lafargue et al., 1994; Bessereau et al., 1997; Koltun et 
al., 1998). However, coupled analytical and numerical techniques 
have been progressively developed to decrease the risk of drilling 
dry wells.

This paper will first summarize, using a number of real 
case studies in France, Europe and the Mediterranean, what we 
have learned within the last 3 decades from crustal and mantle 
imagery on the architecture of orogens and sedimentary basins. 
It will then describe the integrated workflow developed at IFP-
EN during the same period for the prediction of the petroleum 
potential and reservoir risk assessment in foothill domains 
and adjacent forelands, using numerous case studies from the 
Apennines, Albania and Venezuela. Finally, the impact of mantle 
dynamics on lithosphere thickness, thermicity, topography and 
the overall coupling between deep and surface processes and its 
impact on the petroleum systems in foreland fold-and-thrust belts 
(FFTB) will be further illustrated by recent studies in Canada and 
Mexico, and compared with the current architecture, thermicity 
and rheology of the European lithosphere on both sides of the 
Tornquist-Teisseyre Line.

2. ECORS data and crustal architecture of the Pyrenees, 
Alps and Hercynian orogens

The French ECORS programme was initiated in the eighties, 
with a first profile dedicated to the recording of a regional profile 
across the Paris Basin, outlining a flat Moho and layered lower 
crust below the former Hercynian orogen, and a dominantly 
transparent crust north and below the Midi Fault, which 
constitutes the limit between the former Carboniferous tectonic 
wedge and its foreland (Cazes et al., 1986).

Thanks to bilateral collaboration with Spain and Italy, 
ECORS was also able to record continuous deep seismic profiles 
across two younger, Cenozoic orogens, i.e. the Pyrenees and the 
Alps, both being still characterized by important crustal roots 
associated with a high topography (ECORS Pyrenees Team, 
1988; Choukroune and ECORS Pyrenees Team, 1989; Roure et 
al., 1989 a, b; Nicolas et al., 1990; Roure et al., 1990a).

More recently, mantle tomography images could bring 
additional data to better constrain the current architecture of the 
Pyrenees and the Alps, as well as of the Paris Basin, which indeed 
constitutes an epi-sutural, post-orogenic basin that developed 
on top of the former Hercynian orogen (Souriau et al., 2008; 
Averbuch and Piromalo, 2012).
Alltogether, as discussed below, these 3 ECORS profiles now 
provide end-member references for our understanding of intra-
cratonic and collisional orogens.

2.1. A comparison between the ECORS Pyrenees and the 
ECORS-CROP Alps profiles

Figures 1a and 1b evidence the overall crustal architectures of the 
Pyrenees and the Western Alps, as imaged by the French-Spanish 
ECORS Pyrenees and French-Italian ECORS-CROP Alps profiles, 
respectively. Surprisingly, these two crustal cross-sections of the 
Pyrenees and the Alps look quite similar, despite the fact that 
these orogens result from very distinct geodynamic scenarios 
(Roure et al., 1996). Actually, only about 150 km of shortening 
occurred in the Pyrenees, accounting for the Late Cretaceous to 
Oligocene trans-pressional inversion of a former intra-cratonic 
system of Albian trans-tensional pull-apart basins, the other, out-
of-the-plane component of the deformation being accommodated 
by trans-current motion of Iberia relative to Europe along their 
common plate boundary, which is more or less superimposed to 
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the current surface trace of the North Pyrenean Fault (Roure et al., 
1989 a, b). In contrast, the Western Alps result from the closure 
of the Ligurian Tethys which once separated Apulia (also referred 
to Adria or African Promontory in the literature) and Europe, a 
few hundred of km of oceanic lithosphere having been subducted 
during the Late Cretaceous and Paleogene before reaching the 
current stage of continent-continent collision since the Neogene.

In the case of the Pyrenees (ECORS Pyrenees Team, 1988; 
Choukroune and ECORS Pyrenees Team, 1989; Roure et al., 
1989 a, b; Fig. 1a), the shallow part of the structural section is 
relatively cylindrical and displays two well developed flexural 
basins, i.e. the Ebro Basin in the south and the Aquitaine Basin in 
the north, with an overall fan shape of the intervening Pyrenean 
thrust belt which is characterized by south-verging thrusts in 
the south and north-verging thrusts in the north. In contrast, the 
crustal architecture becomes totally asymetric at depth, with a 
progressive deepening of the Iberian Moho from the Ebro River 
in the south towards the Axial Zone of the Pyrenees in the north, 
whereas the European Moho remains relatively flat or is even 
becoming shallower between the North Pyrenean thrust front 
and the Axial Zone. In the mean time, both Iberian and Aquitaine 
forelands are still characterized by well imaged south-verging 
Hercynian thrusts in the middle crust, and by a highly reflective 
layered lower crust, the later being significantly thicker on the 
Spanish side as compared to the French side, despite the fact that 
both the Ebro and Aquitaine crustal domains recorded a similar 
Hercynian and Alpine evolution.

The broad picture of this orogenic system relates to a 
progressive decoupling of the Iberian crust from its underlying 

infra-continental mantle at or near the Moho surface, the brittle 
European upper mantle acting as the main indenter forcing the 
Iberian mantle lithosphere to subduct. During wedging, part of 
the Iberian upper crust is thrust towards the south whereas the 
other part is progressively back-thrust towards the north on top of 
the European upper mantle indenter. In the mean time, a ductile 
flow of the Iberian lower crust is propagating towards the south, 
thus accounting for its progressive thickening as far south as the 
Ebro basin.

New tomographic data also document the fate of the Iberian 
mantle lithosphere down to about 200 km, i.e. to a depth which 
could not be investigated by the ECORS survey, but which is 
still consistent with the 150 km of shortening estimated earlier 
on the basis of seismic interpretation and cross-section balancing 
(Souriau et al., 2008).

In the case of the Western Alps (Nicolas et al., 1990; Roure 
et al., 1990a; Fig. 1b), the shallow part of the section is currently 
asymetric because of the post-Messinian reconfiguration of the Po 
Basin and activation of the Montferrato and Northern Apennines 
thrust systems, most shallow deformation being accounted for 
by a northwest-verging thrust system extending from the Outer 
Crystalline Massifs (e.g. Mont Blanc) as far west as the Bresse 
Graben. Seismic profiles from the industry help however to 
document east-verging thrust systems in the eastern, Italian side 
of the Alps, which are currently inactive, all these Alpine thrusts 
being sealed by the Messinian unconformity (Roure et al., 1989b).

Unlike in the Pyrenees, it is the infra-continental mantle 
lithosphere of Europe which is progressively subducted beneath a 
back-stop or buffer made up of the brittle Apulian upper mantle. 
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Figure 1: Crustal architecture along reference ECORS profiles:
a. Crustal section of the Pyrenees along the ECORS profile. Notice the progressive wedging of the Iberian lithosphere along the Moho surface, and the 
thickenning of its lower crust as due do a lateral flow of ductile material. Instead, the brittle European upper mantle behaves as an indenter, whereas the 
mantle lithosphere of Iberia is progressively subducted into the asthenosphere (after Choukroune et al., 1989, and Roure et al., 1989a, modified).
b. Crustal section along the ECORS-CROP Alpine profile. Notice the progressive wedging of the European lithosphere along the Moho surface, the local 
stacking and thickening of the European lower crustal material beneath the Internal zones, and the rapid uplift of the brittle Apulian upper mantle which 
behaves as a buffer (after Roure et al., 1989b and 1996, modified).
c. Crustal section of the Paris Basin along the ECORS profile, outlining a flat layered lowered crust beneath the former Hercynian thrust belt, and an 
overall transparent crust in the Brabant foreland which extends below and north of the Midi Fault (after Cazes et al., 1986, modified).
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Also, rather than flowing laterally and becoming thickened 
forelandward as observed beneath the Ebro Basin, the ductile 
European lower crust is progressively thickened and stacked near 
the plate boundary, i.e. just beneath the internal units of the Alps.

New tomographic surveys around the Alps and the Apennines 
can still detect velocity anomalies at about 600 km beneath the 
Western Mediterranean, which are best interpreted as remnants of 
the oceanic lithosphere of the former Ligurian Tethys which once 
separated Europe from Apulia, but has now been detached from 
the Earth surface and is entirely recycled into the asthenosphere 
(Spakman and Wortel, 2004).

Obviously, only the continent-continent collisional stage 
of the Alps can still be identified by means of deep reflection 
seismic, the amount of Neogene intra-continental shortening 
in the Alps being in the same order of magnitude as the overall 
amount of shortening in the Pyrenees. This is probably the 
reason why crustal sections across these two orogens, but also 
crustal sections crossing other intra-continental thrust belts such 
as the Merida Andes in Venezuela and the Eastern Cordillera in 
Colombia (Colletta et al., 1997), look so similar.

2.2. New insights of mantle tomography on the long term 
subsidence mechanisms of the Paris Basin

The main result of the ECORS profile beneath the Paris Basin 
(Fig. 1c) was the identification of a layered lower crust and flat 
Moho beneath its main Mesozoic and Cenozoic depocenters, 
which rest unconformably on top of the eroded remnants of the 
former Hercynian orogen (Cazes et al., 1986). The same type of 
layering is actually observed also beneath the forelands of the 
Pyrenees and the Alps, i.e. beneath the Ebro and Aquitaine basins, 
as well as below the Molasse Basin and the Jura Mountains, but 
it is instead lacking in the foreland of the Hercynian orogen north 
of the Midi Fault, making likely that such reflectivity and layering 
developed during the Permian post-orogenic extensional collapse 
of the orogen, or during younger episodes of intra-continental 
rifting and extension.

However, this ECORS profile was unable to document 
any major Triassic or Jurassic normal fault and rift structures 
that would have contributed to the long lasting Mesozoic and 
Cenozoic subsidence of the basin. Fortunately, more recent 
studies have elucidated this puzzling question of how to account 
for subsidence without active rifting and/or post-rift thermal 
cooling of the lithosphere:

(i) As documented by the erosional pattern of the Vosges and 
Black-Forest on the one hand, and the dominantly northeast-
trending attitude of the Cenozoic depocenters of the Paris Basin 
on the other hand, most if not all its post-Cretaceous subsidence 
can be interpreted as long wave-length buckling of the European 
foreland lithosphere during Alpine collision (Bourgeois et al., 
2007).

(ii) New tomographic surveys account also for a velocity 
anomaly in the upper mantle beneath the central part of the Paris 
Basin, which can be interpreted as a metamorphic, eclogitized 
high density remnant of the former Hercynian slab which has not 
been entirely detached (Averbuch and Piromalo, 2012). This sub-
crustal load is assumed to have controlled the overall subsidence 
of the basin during the entire Mesozoic times, without the need 
for any thermal rejuvenation or rifting.

3. Mediterranean basins and mantle delamination

Despite the fact that the Western and Eastern Mediterranean 
basins probably share a similar deep water environment since 
the onset of the Neogene, both having been impacted during the 
Messinian by a similar salinity crisis, they result from two totally 
different geodynamic evolutions: on the one hand, the Western 
Mediterranean is underlain by a thin and hot oceanic lithosphere 
and can be described as a neo-formed Neogene ocean, resulting 
from back-arc opening at the rear of the Apennines-Maghrebian 
orogen (Cavazza et al., 2004 a, b; and references therein). Its initial 
rifting phase has been dated as Oligo-Aquitanian in the Gulf of 
Lion, Gulf of Valencia and Algerian Basin, but is even younger 
in the Tyrrhenian basins, the later being indeed characterized by 
Pliocene or even Quaternary oceanic crust. On the other hand, 
the Eastern Mediterranean is characterized by a thick and cold 

lithosphere, the nature of which, either continental or oceanic, 
being still debated.

For instance, many paleogeographic maps (Dercourt et al., 
2000; Stampfli and Borel, 2004; and references therein) have 
proposed to separate the Apulian Promontory from Africa by 
an intervening Permian, Jurassic or even Cretaceous oceanic 
domain. However, a more or less continuous belt of paleo-oceanic 
ophiolitic remnants occurs onshore on the northern side of the 
Apulian-Eastern Mediterranean domain, making it likely that any 
more external domain relative to this Tethyan suture should be 
considered as part of the former African margin that was actually 
made up of highly contrasted segments, either of platformal (thick 
Kruja, Gavrovo, Puglia, Apenninic and Panormide carbonate 
platforms) or basinal (thin Ionian, Umbrian-Marchesian, Lago-
Negro and Imerese basinal series made up of pelagic limestones 
and radiolarian cherts) affinities (Roure et al., 1991, 2012). For 
instance, the oceanic suture is outlined by the Mirdita ophiolite 
which rests on top of the Kruja platform carbonates in Albania, 
whereas another Tethyan ophiolite rests on top of Gavrovo-
equivalent platform carbonates in Crete.

Worth to mention, the deep Ionian Basin and Libyan Sea 
constitute two reference segments of the Central and Eastern 
Mediterranean which are involved in a roll-back of active 
subduction planes associated with the Calabrian and Aegean arcs. 
They provide good analogues for the former evolutionary stages of 
other, currently inactive segments of the Apennines-Maghrebides 
and Hellenides-Albanides-Dinarides where the lithospheric slab 
has been entirely detached. Mantle tomography, crustal imagery 
and distribution of focal mechanisms have also documented 
recently the architecture of the Moho and subducted lithospheric 
slab in the southeastern Carpathians, which constitutes another 
well documented case of roll-back subduction. There, it can be 
demonstrated that only the infra-continental lithospheric mantle 
of Moesia is currently subducted beneath the Carpathians, 
whereas the shallow Moho observed beneath the foothills is 
continuous with the deeper foreland Moho, thus evidencing a 
progressive delamination of the Moesian lithosphere at the Moho 
level (Bocin, 2010).

The same overall model of crustal delamination of the foreland 
continental crust is likely to operate beneath the Calabrian and 
Aegean arcs, and to have operated also during the Pliocene 
contraction of the Apennines, making likely that the Tyrrhenian 
Moho beneath the foothills of the Southern Apennines is indeed 
continuous with the Adriatic foreland (Fig. 2; Roure et al., 2012). 
The implication of such delamination process for the perspective 
of energy resources is that the deep portions of the Ionian Basin 
and Libyan Sea are probably still underlain by thinned continental 
crust of distal portion of the North African-Apulian margin, and 
not by oceanic lithosphere, making their petroleum potential 
much more attractive and worth to explore.
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Figure 2: Tentative lithospheric section of the Southern Apennines, 
outlining the progressive delamination of the Apulian mantle lithosphere 
induced by the roll-back of the subduction and rise of the Tyrrhenian 
asthenospheric mantle. Notice the continuous Apulian Moho extending 
from the Adriatic foreland in the east to the foothills in the west, and 
the ophiolitic suture which is still locally preserved in the innermost, 
shallowest units of the allochthon (after Roure et al., 2012, modified).
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4. Thin-skinned tectonics and petroleum systems in the 
Apennines and Albanides

Since the nineties, IFP-EN has developed the Thrustpack and Ceres 
numerical codes for the prediction of the petroleum potential in 
compressional systems, the first prototypes having been dedicated 
to 2D kinematic reconstructions (Zoetemeijer et al., 1992; 1993; 
Roure et al., 1991, 1993; Roure and Sassi, 1995), whereas further 
coupling with thermal modules, kinetics of the transformation 
of kerogen into hydrocarbons, HC (hydrocarbon) explusion and 
migration as well as pore fluid pressure reconstruction were then 
progressively implemented for a qualitative evaluation of the 
exploration risks (Schneider, 2003).

More focus is however currently dedicated to the development 
of kinematic reconstructions in 3D, with the objective to couple 
them with classic basin modelling codes able to handle thermal 
evolution and HC generation and migration, 3D modelling being 
actually a pre-requisite for proper quantitative evaluations of HC 
trapped in individual structures (Roure et al., 2010b).

4.1. Forward kinematic modelling of thrust systems

We have first used various case studies in the Neogene foothills 
of the Carpathians, Apennines and Albania to test new numerical 
codes allowing to simulate the forward kinematic evolution of 
thin-skinned thrust systems (Casero et al., 1991; Zoetemeijer et 
al., 1992; 1993; Roure et al., 1993, 2004; Lafargue et al., 1994; 
Roure and Sassi, 1995; Koltun et al., 1998; Swennen et al., 2000; 
Van Geet et al., 2002). 

As illustrated in Fig. 3 which relates to the Northern 
Apennines, the first requisite step is to properly interpret the 2D 
seismic data, in order to propose a coherent geometric connection 
between the various thrusts observed in the structural section, 
even in areas where they are not properly imaged on the seismic 
data. Growth strata and local unconformities are also used to date 
individual deformation events.

In the case of the Northern Apennines and adjacent Po Valley, 
seismic data recorded down to 5 stwt (seconds two-way time) 
only allow to identify the shallower decollement level, located 
within the Cenozoic clastics, and geometric constructions are 
instead required to extrapolate the attitude of the basal, intra-
Triassic decollement in the inner part of the transect where 
the seismic does not allow to image the deepest part of the 
sedimentary section (Fig. 3; Zoetemeijer et al., 1992, 1993; 
Roure, 2008). The distribution of surface anticlines and the 
location of the wide Quaternary piggyback basin located on top 
of the allochthon provide a good validation of the trajectory of 
the still active basal decollement, the Quaternary piggyback basin 
extending over a flat of the basal decollement, whereas most of 
the surface anticlines are directly controlled by kinks between flat 
and ramp segments of the active underlying thrust. Conversely, 
the unconformity at the base of the Upper Pliocene and growth 
strata in the lower Pliocene demonstrate that the shallower, 

intra-Cenozoic decollement was active at an earlier deformation 
stage, during the Lower Pliocene, at a time when the underlying 
Mesozoic carbonates were not yet involved in the thrust system.

As evidenced by early modelling results, it is very important 
to control the evolution of the foreland flexure through time, as 
it will allow or not the development of vertical subsidence and 
thus the preservation of piggyback basins in the inner part of 
the tectonic wedge, or instead a rapid uplift and unroofing of the 
allochthon.

Once the structural interpretations made on time sections 
have been converted into depth sections, restoration to their 
pre-orogenic stage can be performed in order to document the 
future trajectory of the thrusts, their initial spacing, and the initial 
thickness variations of the pre-orogenic, i.e. synrift or passive 
margin sequences. Various kinematic scenarios can then be tested, 
confronting various thrust sequences and various increment/
partition of the deformation along individual thrusts during the 
successive evolutionary stages of the system (Roure and Sassi, 
1995; Sassi and Rudkiewicz, 2000).
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Figure 3: Thin skinned tectonics 
and foreland flexure in the 
Northern Apennines:
a. Structural interpretation 
along a regional seismic profile, 
outlining an early decollement 
level located in the Cenozoic 
clastics, which was active during 
the Lower Pliocene but has 
been refolded during the Upper 
Pliocene and Quaternary, as 
due to the activation of a deeper 
decollement level located within 
the Triassic evaporite. Notice the 
development of a wide Quaternary 
piggyback basin on top of the 
allochthon, recording the long 
lasting flexural subsidence of the 
foreland lithosphere (after Roure, 
2008, modified).
b. Forward kinematic and 
stratigraphic modelling of the 
same section (after Zoetemeijer 
et al., 1992 and 1993, modified).
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4.2. Coupled thermal and petroleum modelling of thrust systems

Once the geologist is satisfied by the consistency of his forward 
kinematic model with respect to the seismic data, (s)he can enter 
a second phase of the modelling that will handle the thermal 
reconstruction and computation of the maturity rank of the 
organic matter.

In this purpose, (s)he needs to provide conductivity values 
for the various lithologies, define the surface temperature through 
times, and to calibrate the basal heat flow and geothermal 
gradient against the present-day temperature data (Bottom Hole 
Temperatures), using also the current distribution of paleo-
thermometers such as Tmax (temperature measured by Rock-
Eval pyrolysis, at which the maximum amount of hydrocarbon 
is released by kerogen; Espitalié et al., 1977), Ro (% of vitrinite 
reflectance measured in oil) and kinetics of the organic matter of 
lacustrine (type I), marine (type II) or continental (type III) origin, 
and any other analytical data such as Apatite Fission Tracks, Th 
(homogenization temperature) of fluid inclusions or calcite twins, 
likely to constrain the paleo-temperatures as well as the paleo-
burial (former thicknesses of the eroded sequences; Roure et al., 
2003 and 2004; Mosca et al., 2004; Sciamanna et al., 2004; Toro 
et al., 2004; Deville and Sassi, 2006; Sassi et al., 2007; Lacombe 
et al., 2009; Tarapoanca et al., 2010; and references therein).

The first 2D modelling tool developed by IFP-EN for petroleum 
prediction in thrust systems, Thrustpack, did not account for the 
flow of fluid-phases and buil-up of overpressures due for example 
to compaction-related dewatering of the sedimentary succession 
during burial, and the generation and migration of hydrocarbons 
(Roure and Sassi, 1995; Sassi et al., 2007). All these fluid transfer

processes have been instead implemented in the Ceres code, 
which uses the same thermal, kinetics and compaction laws as 
Temisflow software (Schneider, 2003; Vilasi et al., 2009; Callot 
et al., 2010). As Temisflow however, Ceres is a backward tool 
that focuses on the progressive backstripping of the structural 
section, which is actually relatively easy to handle in passive 
margins where there is no lateral transport operating in the rock 
mass through time but only vertical compaction, but becomes 
much more difficult to address in thrust systems. To overpass 
this problem, the best workflow is to first built forward kinematic 
scenarios with Thrustpack or other forward modelling tools, and 
then use the template of the intermediate stages as helpfull targets 
to control/build the coeval stages in the backward Ceres tools. 
Fig. 4 illustrates the result of such backward Ceres modelling 
performed along a regional transect in the Albanian foothills, 
using intermediate targets constructed with the Thrustpack 
software (Vilasi et al., 2009).

5. SUBTRAP (SUBThrust Reservoir APpraisal in 
Foreland Fold-and-Thrust Belts (FFTB)

Dewatering processes with channelization of compaction, 
commonly overpressured fluids along horizontal conduits below 
efficient seals, or vertical escape of mud diapirs have been well 
studied by numerous ODP legs in the modern Oregon, Nankai 
and Barbados accretionary wedges (Vrolijk, 1990; Vrolijk et 
al., 1990; Cochrane et al., 1994; Morgan et al., 1994). Despite 
the fact that meteoric water is also likely to invade tectonic 
wedges onshore, the fluid circulations and deformation pattern 
in synflexural and synkinematic siliciclastic deposits of foreland 
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Figure 4: Thin-skinned tectonics and petroleum systems in Albania.
a) Regional structural transect across the Periadriatic depression and adjacent Ionian inverted basin in Albania (after Roure et al., 2004, modified).
b) Results of a coupled 2D kinematic and petroleum modelling along the same transect, accounting for two independant HC kitchens. Oil generated early 
in the Mesozoic source rocks from the autochthonous foreland have migrated westward across the Adriatic Sea, such long distance migration accounting 
for HC accumulations along the Italian side of the basin. Instead, Triassic and Liassic source rocks cropping out in the core of the growth anticlines of 
the Albanian foothills are still immature, implying that HC stored in underlying reservoirs from the allochthon originated in adjacent synclines where 
tectonic burial forced the source rocks to enter the oil window (after Vilasi et al., 2009, modified).
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basins and adjacent foothills are quite similar to the processes 
operating in active offshore wedges (Guilhaumou et al., 1994 
and 1996; Larroque et al., 1996). As these processes can impact 
either positively or negatively the overall sandstone reservoir-
rock properties, they have been a major target for the SUBTRAP 
(SUBThrust Reservoir APpraisal) Joint Industry Project operated 
by IFP-EN from 1996 till 2002, with the support of numerous 
national and international companies, and the involvement of 
many university teams and national research institutes (Roure et 
al., 2005 and 2010a).

One of the main focus of SUBTRAP was the study of the 
Oligocene sandstone reservoirs of the Naricual Formation along 
a regional transect in eastern Venezuela, from the Serraña del 
Interior in the north, as far south as the Faja Petrolifera near 
the Orinoco River in the south, thus crossing the entire foothills 
domain, giant subthrust plays of El Furrial and adjacent fields 
in the Maturin basin, as well as the entire flexural basin (Figs 5 
& 6). Quartz overgrowths and pressure-solution between detrital 
grains constitute the two damaging processes likely to impact the 
overall porosity and permeability of these sandstones, and the 
SUBTRAP study aimed at better understand and predict their 
impact on reservoir quality (Bordas-Le Floch, 1999; Roure et al., 
2003; Toro et al., 2004). 

The workflow applied to this case study involved numerous 
steps, the first one aiming at the construction of a regional 

structural section using available seismic profiles and wells, 
and its restoration to its pre-orogenic configuration. We then 
performed a forward kinematic and thermal modelling of this 
regional transect using the 2D Thrustpack software. Bottom 
hole temperatures and maturity ranks of the organic matter 
(Tmax and Ro) were also used in order to calibrate the basal 
heat flow and eroded thicknesses, the main result of the thermal 
modelling being a temperature-burial versus time curve for the 
main reservoir interval of the El Furrial and other available wells 
(Roure et al., 2003). In the mean time, Bordas-Le Floch (1999) 
was studying the aqueous fluid inclusions of the crystal quartz 
overgrowths, for which a mean Th value of 110°C was measured, 
that is quite colder than the current 130 to 160°C temperature of 
the reservoirs. When plotting these temperature values measured 
on fluid inclusions on the temperature-burial versus time curve 
derived from the Thrustpack modelling, it became obvious that 
the main cementation event impacting the reservoir quality was a 
fossil one, dating back to the period when the reservoir was less 
buried than today, and still attached to the foreland autochthon 
(Roure et al., 2005). Ultimately, colleagues from the university 
of Cergy-Pontoise studied also the Anisotropy of Magnetic 
Susceptibility (AMS) in numerous oriented plug samples from 
deep cores of the El-Furrial field (Fig. 5c), demonstrating that 
the Oligocene sandstone reservoirs currently uplifted in the 
tectonic wedge were still recording the signature of Layer Parallel 
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Figure 5: Main results of the SUBTRAP Venezuelan case study: (I) Dating of the diagenetic events: a. Structural section of the Eastern Venezuelan 
transect across the Serraña Foothills in the north and the Maturin Basin and Orinoco foreland in the south (after Roure et al. 2003, modified). The 
Naricual sandstone reservoir is located between the light green Upper Cretaceous Querecual source rock and the brown Miocene Carapita seal.
b. 2D forward kinematic and stratigraphic modelling of the same section (after Roure et al. 2003, modified). The Upper Jurassic synrift sequence is 
in blue. The Cretaceous passive margin sequence is in green. The Naricual Oligocene sandstone reservoir is in Orange, whereas the Miocene flexural 
sequence (Carapita seal) is in grey.
c. AMS (Anisotropy of Magnetic Susceptibility) diagrams recorded in Oligocene sandstone reservoirs of the Naricual Formation in the forelimb, crestal 
culmination and backlimb of the El Furrial anticline (after Roure et al. 2003, modified). Notice that none of the plugs studied has preserved the signature 
of burial compaction, that would account for a vertical axis of symmetry (stage 1). Instead, most samples document an intermediate fabric (stage 2), 
which records the effect of Layar Parallel Shortening (tectonic compaction) operating in the footwall of active thrusts, when the El Furrial reservoir unit 
was still attached to the foreland autochthon. Only a few sites near the kink axes of the El Furrial anticline actually record more evolved fabrics (stage 
3), accounting for very localized deformation of the reservoir matrix after the onset of thrusting.
d. Left: Burial and temperature versus time curve representative of the same Oligocene sandstone reservoir. Bottom right: Thin-section outlining 
the habitat of fluid inclusions in the quartz overgrowths and at the interface between the overgrowth and detrital grains. Top right: Histogram of Th 
measurements in the fluid inclusions of the quartz overgrowths (after Bordas-Le Floch, 1999 and Roure et al., 2003, 2010, modified).
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Shortening (LPS), that resulted in tectonic-induced pressure-
solution when the reservoir was still attached to the autochthon, 
without any obvious signature of younger compaction.

The main conclusion from this first Venezuelan study was 
that it is now possible to date diagenetic events by coupling fluid 
inclusion data with petroleum modelling. It demonstrated also 
that the main process damaging sandstone reservoirs in FFTB 
is the pressure-solution associated with LPS, that operates when 
the reservoir unit is getting close to the deformation front. A 
companion study made on the Eocene sandstone reservoirs of the 
Mirador Formation of the Cusiana oil field and other key wells 
from the foothills of the Eastern Cordillera in Colombia helped 
to confirm the over-regional significance of our Venezuelan 
observations (Roure et al., 2003; Toro et al., 2004).

During the second leg of the SUBTRAP project, we came 
back to this Venezuelan case study, this time with the objective 
to reconstruct the pore-fluid pressure evolution in the same 
Oligocene sandstone reservoirs of the Naricual Formation, and 
to get estimates on the velocity of the fluids in the reservoir 
through times (Schneider et al., 2004; Roure et al., 2010a). We 
had actually in mind that part of the silica could be exotic and 
brought to the Oligocene sandstone by the aquifers, because the 
volume of quartz overgrowths is sometimes larger than what can 

be reasonably generated by in situ pressure-solution. We also 
assumed that overpressures could prevent the reservoirs from 
further compaction, and it was therefore mandatory to know at 
what time these Oligocene reservoirs became overpressured.

Our team successfully attempted the measurement of Al 
traces in the quartz overgrowths in sandstone plugs collected at 
various distances from the contact between individual sandstone 
beds and clay intervals, the Al content decreasing significantly 
from the top to the core of the sandstone layers (Schneider et al., 
2004; Roure et al., 2010). As the Naricual sandstones are made 
up of pure quartz grains, without any feldspar nor clay, the Al 
signature found in the quartz overgrowths in the close vicinity 
of the clay interbeds was a clear evidence that exotic materials, 
in addition to the in situ pressure-solution among quartz grains, 
were also contributing to the cementation, the later being thus 
operating in a partially open system.

Further evidence of fluid transfers from one aquifer to the 
other during thrusting was also provided by the study of the stable 
isotope content of quartz overgrowths. Actually, we identified a 
second and sometimes a third generation of quartz overgrowths 
around a few detrital grains. Even if more than 90% of the quartz 
overgrowths in the Naricual sandstone relate to the first generation, 
we attempted to measure by laser the δ18O values in the different 
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Figure 6: Main results of the 
SUBTRAP Venezuelan case 
study: (II) Fluid transfers and 
pore fluid pressure regimes 
during compression: 
a. Results of coupled 2D fluid 
flow and pore fluid pressure 
modelling along the same 
Eastern Venezuelan transect 
(after Schneider, 2003 and 
Roure et al., 2010a, modified). 
The two deformation stages 
illustrated here document the 
early motion of the Pirital thrust 
(top), and onset of motion along 
the Furial thrust (bottom), at a 
time when the Pirital thrust was 
still active. Notice the overall 
lateral forelandward escape 
of fluids in the Oligocene 
sandstone reservoirs (upper 
orange layer) below and south 
of the Pirital Thrust, but also the 
local transfer of fluids between 
older, Cretaceous sandstone 
aquifers of the Barranquin 
Formation (lower orange layers) 
and the Oligocene Naricual 
sandstone reservoirs across 
the Pirital Thrust. The green 
layer between the Oligocene 
Naricual sandstone and the 
Lower Cretaceous Barranquin 
sandstone is made up of 
Upper Cretaceous series and 
includes the main source rock 
horizon (Querecual Formation, 
Cenomanian-Turonian in age).
b. Right: Thin-section outlining 
multiple generations of 
syntaxial quartz overgrowths 
around the same detital grain. 
Left: Plot of δ180 values 
measured in the successive 
syntaxial quartz overgrowths 
(Sy), accounting for major 
changes in the composition of 
paleo-fluids between the main 
cementing event and younger 
episodes of silicification (after 
Schneider et al., 2004 and Roure 
et al., 2010a, modified).
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generations of quartz overgrowths (Schneider et al., 2004; Roure 
et al., 2010a, b). Surprisingly enough, even if Th measured in 
the three successive generations of quartz overgrowths showed 
the same trapping temperature, their δ18O values appeared 
significantly distinct, suggesting that the main cementation event 
was buffered/equilibrated with the initial formation water of the 
Oligocene, but that a different fluid circulated in the Oligocene 
sandstone during the second and third episodes of cementation. 

Looking at the results of the fluid flow and pore-fluid pressure 
modelling performed with the Ceres software along this transect 
(Schneider, 2003), it is clear that the Pirital Fault could operate 
as a conduit for the transfer of fluids from the Lower Cretaceous 
sandstone aquifer of the Barranquin Formation of the hangingwall, 
towards the Oligocene sandstone aquifer of the footwall, when 
these two aquifers were put at the same depth due to the reverse 
motion of the fault (Fig. 6). Further results of the Ceres modelling 
strongly suggest that the Oligocene sandstone reservoir of the El 
Furrial field has been overpressured at least since the time of its 
structural closure. Fluids were stationary in the reservoir until the 
foreland basin became tilted towards the south, when compaction 
fluids from the Oligocene started to escape laterally towards the 
foreland, parallel to the bedding, during a squeegee episode of 
water flushing.

6. Dynamic topography and its control on post-orogenic 
changes in HC drainage areas

Diachronous slab detachment operating along discrete segments 
of the Apennines-Maghrebides arc is known to induce a major 
unflexing, uplift and unroofing of the entire foothills domain and 
even adjacent portions of the autochthonous foreland. This is well 
evidenced by the occurrence of Langhian deep water turbidites of 
the former Mahgrebian foredeep, which are currently located at 
1 km of elevation in Tiaret, a few km south of the Tellian front 
(Roure et al., 2012; Roure, 2013). Seemingly, the entire Pliocene 
accretionary wedge has been uplifted above the sea level in Sicily. 
Marine Pliocene series are indeed cropping out at more than one 
km of elevation in the Peloritan Mountains in the north, and have 
been already uplifted at a few hundred of meters above sea level 
along the southernmost thrust front near Gela.

As described below, post-orogenic uplift and unroofing 
operate also since the Oligocene along the entire North American 
Cordillera, from the Arctic to the Gulf of Mexico (GOM), mantle 
dynamics at the rear of the Pacific subduction having a major 
impact there on the post-Laramian evolution of drainage areas for 
the HC, with a rapid transfer of clastics sediments away from the 
thrust belt that contributed to the development of gravitational 
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Figure 7: Post-Laramian 
unflexing of the foreland of 
the Sierra Madre Oriental and 
Cordoba Platform in Mexico:
a. Regional transect between the 
Sierra Madre and the Golden 
Lane, outling the post-Laramian 
tilting of the basement beneath 
the Chicontepec foredeep, 
post-Cretaceous subsidence 
of the Golden Lane atoll, and 
Neogene gravitational collapse 
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Gulf of Mexico (after Alzaga et 
al., 2008, a, b, and Roure et al., 
2009, modified).
b. Top left: 2D coupled kinematic 
and petroleum modelling along 
a regional transect crossing the 
Veracruz Basin in the east and 
the Cordoba Platform in the 
west, outlining the recent HC 
charge of the frontal part of 
the foothills allochthon by oil 
generated in the Jurassic source 
rocks of the Veracruz foreland. 
Top right: Authigenic quartz 
crystal collected in cemented 
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reservoir analogues from the 
Cordoba foothills, containing 
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Isochores of the aqueous and 
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deformation along both the US and Mexican margins of the GOM 
(Alzaga et al., 2008 a, b; Roure et al., 2009). 

We shall use here the results of two other SUBTRAP case 
studies on carbonate reservoirs in Mexico and Canada, which 
indeed proved to be extremely useful to better understand the role 
of mantle dynamics on surface processes as well as on the overall 
evolution of the petroleum systems. 

6.1. Post-Laramian tilting of the basement of the Veracruz 
Basin and Golden Lane area (Mexico)

During a project aiming at the prediction of clastics reservoirs in 
the Mexican offshore of the GOM using a coupled Thrustpack-
Dionisos modelling approach accounting for both tectonic and 
sedimentary processes, we studied a regional transect across the 
western margin of the Gulf of Mexico, running from the Sierra 
Madre Oriental and Chicontepec foredeep in the west, as far to 
the GOM in the east, thus crossing the Golden Lane, a famous 
Upper Cretaceous atoll comprising excellent reefal reservoirs 
that contibuted to major oil production early during the nineteen 
century (Alzaga et al., 2008 a, b). The current tilt of this former reef 
and its important Neogene burial cannot be understood without 
considering its initial position during the development of the 
Sierra Madre thrust belt, when it was located at the approximate 
position of the forebulge that separated the Chicontepec flexural 
basin from the already deeper water domain of the GOM (Fig. 7). 
At that time, the Golden Lane operated as a natural barrier which 
prevented the clastics sourced by the erosional products resulting 
from the unroofing of the Cordillera to reach the GOM. Since 
the Oligocene onward, this intervening barrier being subsiding 

rapidly, all the erosional products of the Sierra Madre are instead 
transferred directly to the GOM, where they have induced a rapid 
burial and development of overpressures in undercompacted 
Eocene shales, resulting in the development of listric faults and 
gravitational collapse of the margin.

Farther south, the basement is also tilted towards the east 
beneath the Cordoba Platform and the Veracruz Basin, still in the 
vicinity of the former Laramian thrust front (Ferket et al., 2000, 
2003, 2004; Ortuño et al., 2003). There, the Upper Cretaceous 
platform carbonates of the allochthon are currently devoided of 
any younger siliciclastic turbidites that would account for an 
episode of flexural subsidence prior to their tectonic accretion 
into the Laramian edifice. However, after an accurate search 
for paleo-thermometers, we could find an authigenic quartz 
crystal in a cemented fracture within these Cretaceous shallow 
water carbonates, containing two synchronous sets of fluid 
inclusions, i.e. the first one aqueous, and the second one oil-
bearing. Knowing the water and oil composition, it was then 
possible to cross the isochores of the two fluids, which provided 
an unique opportunity to derive both the paleo-temperature and 
paleo-burial of the reservoir at the time of trapping, assuming a 
dominantly hydrostatic pressure regime (Ferket et al., 2006 and 
2011). Surprisingly enough, these results forced us to admit that 
the Upper Cretaceous carbonates of the Cordoba Platform were 
initially buried beneath at least 3 km of overburden, likely to be 
made up of siliciclastics of the former Laramian foredeep.

When integrating this new constraint of paleo-burial in the 
restored geometries and further Ceres modelling, it becomes 
evident that the current eastward tilt of the basement initiated 

?
-

N

Great

Northern

Easthern

St Laurence
seaway

Divides

CANADA

USA

MEXICO

PACIFIC
OCEAN

ATLANTIC
OCEAN

ARCTIC OCEAN

Gulf of
MexicoSea of

Cortez

Gulf of
St Laurence

Hudson
Bay

2000 km0

Rio Bravo

Colorado

riv
er

Columbiariver

M
ackenzie

St Laurence
riverM

ississippi river

Kootnay pinchout Mississippian pinchout

SW NE
Moose  Mountain

Canmore  coal basinCanmore  coal basin

0

0

10
km

50 km

Eroded thicknesses

asthenosphere

dynamics
lithosphere(5)

(4)

(3)

(2)

(1)

Foreland Fold-and-Thrust Belt

a

cb

Figure 8: Dynamic topography and its controls on post-orogenic changes in HC drainage areas:
a. Structural section across the Alberta fooreland and adjacent foothills of the Canadian Rockies, outlining the huge amount of post-Laramian erosion 
accounted for by paleo-thermometers and 1D thermal modelling (after Faure et al., 2004, modified).
b. Simplified geological map of the North American continent, outlining the main source-sink pattern for the post-Laramian clastics sourced by the 
uplifted Cordilleran and adjacent foreland domains, and further transferred towards the Gulf of Mexico and Mackenzie Delta in the Arctic, where they 
account for gravitational collapse and destablization of the continental margins (after Roure et al., 2009, modified).
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after the Laramian orogeny only, its initial configuration at the 
time of the deposition of the Laramian flexural sequence being 
the opposite, i.e., tilted towards the west (Gonzalez-Mercado et 
al., 2012).

This change in the tilt of the basement had actually a 
tremendous impact on the petroleum systems, the Cordoba 
foothills being one of a few examples around the World where 
the HC charge of the foothills results from a post-orogenic HC 
migration from the foreland towards the foothills.

6.2. Post-Laramian unroofing of the Canadian Rockies and 
Alberta foreland

The same type of post-orogenic uplift and erosion in the foothills 
and adjacent foreland has been also well documented during 
another SUBTRAP case study in the Canadian Rockies and 
Alberta foreland (Faure et al., 2004; Vandeginste et al., 2005, 
2007 and 2009), where paleo-thermometers (Ro) and 1D thermal 
modelling evidence the erosion of more than 3 km of sediments 
in the foothills, decreasing progressively towards the east, with 
still 1 km of erosion recorded 100 km east of the former Laramian 
thrust front in the vicinity of Calgary, which is located at about 
one km above the sea level (Fig. 8).

Actually, it is the entire North American Cordillera and its 
adjacent foreland which have been impacted by post-Eocene 
uplift and erosional unroofing, most of the foothills being 
currently devoided of any Late Cretaceous to Eocene synflexural 
or synkinematic deposits, as it would be expected for such 
geodynamic environment. Looking at a simplified map of North 
America, it is obvious that all the Laramian clastics have been 
removed by erosion, and transferred towards the Arctic and 
MacKenzie Delta on the one hand, and towards the GOM on 
the other hand, resulting in a rapid sedimentation, loading and 
destabilization of the continental margin by means of gravitational 
collapse (Roure et al., 2009).

Unlike in Mexico, accurate data are available in Canada to 
constrain crustal and lithospheric scale cross-sections at the scale 
of the continent, outlining a crustal thinning beneath the inner 
part of the Cordillera, which is consistent with the development 
of Cenozoic normal faults and core complexes where the lower 
crust has been locally exhumed (Price, 1981; Price and Monger, 
2000; Hardebol et al., 2007, 2012). Worth to mention, there is 
also an important vertical offset impacting the overall lithosphere 
thickness beneath the foothills, with a thin, hot and weak 
lithosphere in the west beneath the Cordillera, and instead a thick, 
cold and rigid lithosphere beneath the foreland (Fig. 8). Thermo-
mechanical modelling accounting for mantle convection at the 
rear of the Pacific subduction has demonstrated that such bent of 

the lithosphere-asthenosphere boundary, i.e. bent of the 1300°C 
isotherm, could remain stable for long periods of time (here since 
at least 40 My; Hardebol et al., 2012). In addition to mantle 
convection, hydration of the upper mantle by fluids escaping 
vertically from the subduction zone could have also progressively 
modified its overall chemical and physical properties. No matter 
of the details of the process, it is now obvious that it is the 
mantle dynamics at the rear of the Pacific subduction which 
are controlling the current dynamic topography of the North 
American Cordillera and its adjacent foreland.

6.3. A Cordilleran view on the European lithosphere

A similar step is also observed in Europe along the Tornquist-
Teisseyre Line (TTL), with a thin, hot and weak lithosphere in 
the west and instead a thick, cold and rigid lithosphere in the east, 
beneath the Russian platform (Fig. 9; Artemieva, 2009; Tesauro 
et al., 2008, 2009; Roure et al., 2010b; and references therein).

When looking in detail to the geodynamic evolution of 
Europe, it is clear that the TTL is more or less parallel to the 
former Hercynian thrust front, and that the mantle lithosphere of 
this domain may have been impacted in the past by subduction 
related convections, like today in the North American Cordillera. 
Significantly also, the crust of the former Hercynian orogen has 
been extended and thinned during the Permian collapse of the 
former Carboniferous edifice, as it is currently the case in the 
metamorphic core complexes and Basin and Range Province 
in the North American Cordillera, resulting in the well layered 
reflective lower crust imaged by the ECORS profiles. The 
thermo-mechanical weakness of the West European crust and 
mantle lithosphere allowed also its regular deformation during 
Mesozoic and Oligocene extensional episodes, as well during 
Late Cretaceous-Eocene (Pyrenean) and Neogene (Alpine) 
compressional episodes (Ziegler, 1989; Roure et al., 1990a, 
b, 1994; Ziegler et al., 1995, 1998, 1999, 2006; Roure and 
Colletta, 1996; Cloetingh et al., 2005; Tesauro et al., 2008, 2009), 
whereas the thick lithospheric domains of the Russian platform 
and Western Mediterranean/Arabian plate were little impacted 
by recent deformations as compared to the intervening Tethyan 
FFTB.

7. Conclusions

Crustal and mantle imagery is considerably enhancing our vision 
on the coupling between deep and shallow processes operating 
in compressional orogens. In addition to the well known controls 
of tectonic loading and slab pull on the flexural behaviour of the 
foreland lithosphere, mantle convection and dynamic topography 
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appear as other important processes controlling the post-
orogenic evolution of foothills domains, being likely to impact 
considerably their petroleum systems. One of the main objectives 
of the International Lithosphere Programme (ILP) Task Force 6 
on Sedimentary basins and of the Topo-Europe project is actually 
focused on the study of these couplings (Cloetingh et al., 2007; 
Lacombe et al., 2007; Al Hosani et al., 2012)

Robust 2D numerical modelling tools coupling kinematic, 
thermal and kinetics approaches are already able to predict properly 
the distribution of oil kitchens, drainage areas, timing and style 
of HC migration, which can be either short range and dominantly 
vertical or instead long range and dominantly horizontal (Ziegler 
and Roure, 1996; 1999; Roure, 2007). Additional work remains 
however required to move towards fully quantitative evaluation 
of the HC charge of prospects, that would require the use of 3D 
models which are still difficult to operate in tectonically complex 
environments such as FFTB (Roure et al., 2010b).

Ultimately, a major step forward has been achieved in the 
understanding of natural processes by means of analytical works 
and modelling during the SUBTRAP project and later follow-
up studies. However, any new developments in the study of 
paleo-thermometers, paleo-barometers and radiometric dating of 
diagenetic cements or HC fluids are likely to improve a lot our 
predictions for the energy resources of sedimentary basins and 
foothills (Lacombe et al., 2009; Roure et al., 2010a).
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