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ABSTRACT. Numerous naturally CO,-rich mineral water springs, locally called pouhons, occur in the Stavelot-Venn Massif.
These water springs show a particular composition with a high content of iron, manganese and lithium, and are characterised by a red-
orange colour resulting from iron hydroxide precipitation near the land surface. Radon measurements have shown that these
ferruginous deposits are weakly radioactive. The Upper Cambrian black shales of the La Gleize Formation are also known to display
radioactive anomalies. These rocks show enrichment in HFSE (Pb, U, Y, Ce, Zr, Ti, Nb) and are depleted in transition metals (Co, Ni,
Cu, Zn). Specific minerals such as florencite-(Ce), monazite-(Ce), xenotime-(Y) and zircon have been identified and are probably at
the origin of the radioactive anomalies. Uranium was gradually leached from these minerals, transported in solution, and finally
concentrated in ferruginous muds. These muds are mainly composed of goethite (most often amorphous), residual quartz and calcite
in some samples. The most probable hypothesis is that uranium is adsorbed in small concentrations on the goethite surface. On the
other hand, the Ottré Formation (Ordovician) appears to be the main source of lithium, iron and manganese. Pouhon waters have

therefore probably leached rocks of various mineralogy and chemical composition during their sub-surface circulation.

KEYWORDS: Stavelot-Venn Massif, pouhon, black shales, uranium, ferruginous mud.

1. Introduction

Numerous naturally ferruginous and CO,-rich mineral water
springs, locally called pouhons, occur in southeast Belgium.
These water sources are mainly concentrated in the Cambro-
Ordovician formations of the Stavelot-Venn Massif (SVM).
Some are exploited, such as the mineral and thermal waters of
Spa (Marie-Henriette) or the mineral waters of Bru-Chevron.
These sources are also known for their curative properties and
were first mentioned in journals (Naturalis Historiae) of Pliny
the Elder (77-79 AD).

Although these water springs have been known and
exploited for a long time, many questions remain as their age,
their underground circulation pathway, the origins of the CO,
and their particular composition. Indeed, hydrogeological
interpretations are relatively difficult in the SVM due to its
complex geological setting. Pouhons are characterised by a red-
orange colour resulting from iron oxide and hydroxide
precipitation linked to changing redox conditions near the
surface. Radon measurements have shown that these ferruginous
deposits are weakly radioactive (Vanderschueren, 2011).
Uranium, at the origin of radon activity, was probably gradually
leached from rocks, transported in solution, and finally
concentrated in ferruginous muds. In this paper, we present a
combined geological, mineralogical, geochemical, and
hydrogeological study of pouhons; these data will improve our
global understanding of these ferruginous springs.

2. Geological setting

The SVM, mainly located in Belgium (Fig. 1), is the largest and
the best-studied Cambro-Ordovician inlier of the Ardenne
Allochthon. It is part of the Rhenohercynian fold-and-thrust belt
(Fielitz & Mansy, 1999; Verniers et al., 2001) and is situated
close to the Variscan front complex. The SVM has undergone a
complex geodynamic history. It was affected by the Caledonian
orogeny during the Ordovician and the Silurian, and by the
Variscan orogeny at the end of the Carboniferous (Ziegler et al.,
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1979; Cocks & Fortey, 2009; Torsvik et al., 2012). The SVM
was therefore severely deformed and fractured.

The SVM shows continuous terrigenous sedimentation (with
minor volcanic episodes) from the lower Cambrian to the
middle Ordovician for a total thickness of about 3000 m
(Geukens, 1986, 1999; Verniers et al., 2001). It is subdivided
into three lithostratigraphic units: the Deville, Revin, and Salm
Groups (Geukens, 1986, 1999; Verniers et al., 2001; Herbosch
et al., 2020).

The Deville Group (upper part of lower Cambrian) is
subdivided into two formations: (1) The Hour Formation (old
name: Dvl) which consists of greenish quartzites and green
slates and (2) the Bellevaux Formation (Dv2) formed by an
alternation of greenish to purplish slates and white quartzites
(Geukens, 1986, 1999; Verniers et al., 2001).

The Revin Group (middle to upper Cambrian) is composed
of three formations (Geukens, 1986, 1999; Verniers et al.,
2001): (1) the Wanne Formation (Rv1-2) which consists of
greenish to dark slates and greenish quartzites, (2) the Venne
Formation (Rv3-4), consisting of heterogeneous alternations of
dark slates and quartzites, and (3) the La Gleize Formation
(Rv5) formed of siltites and black slates, sometimes graphitic.
The term ‘black shales’ is the most appropriate to describe the
fine-grained and laminated organic-rich sediments of this
formation.

Finally, the Salm Group (lower to middle Ordovician)
consists of three formations subdivided into eight members. (1)
The Jalhay Formation (Sml) comprises the Solwaster, Spa, and
Lierneux members. This formation is formed of greenish to
bluish slates, quartzites, and silty slates (locally called
quartzophyllade). (2) The Ottré Formation (Sm2) includes the
Meuville Member, the Les Plattes Member, in which coticule
veins are found, and the Colanhan Member. This formation is
mainly composed of red to purplish slates enriched in iron and
manganese. (3) The Bihain Formation (Sm3) includes the
Ruisseau d'Oneux and Salmchéteau members. This formation is
composed of dark silty slates (locally called quartzophyllade),
and greyish quartzites (Geukens, 1986, 1999; Verniers et al., 2001).
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No sedimentation was recorded during the Silurian due to
the Caledonian orogeny (Verniers et al., 2001). The SVM is
directly surrounded by discordant conglomerates (Bultynck &
Dejonghe, 2001).

The SVM is divided into two metamorphic domains. The
illite crystallinity and study of quartz veins in the basal
conglomerates (Pridoli) have made it possible to identify an
anchizonal Caledonian metamorphism (Spaeth et al., 1985;
Kramm et al., 1985; Ferket et al., 1998). The conditions of this
metamorphism were estimated between 180-280 °C and 80-130
MPa in the northern part of the Massif, and between 280-380 °C
and 80-300 MPa in the south (Ferket et al., 1998; Fielitz &
Mansy, 1999). The southern part of the SVM was also affected
by Variscan greenschist-facies metamorphism (epizonal conditions)
that superimposed and completely overprinted the Caledonian
metamorphism in this area (Ferket et al., 1998; Fielitz & Mansy,
1999). Conditions have been estimated between 320-450 °C
and 100-300 MPa according to mineral assemblages (Schreyer,
1975; Kramm et al., 1985; Ferket et al., 1998; Fielitz & Mansy,
1999). Some evidence of magmatic activity has also been
identified in the SVM (Lamens & Geukens, 1984).

3. Uranium prospecting in Wallonia

In 1852, André Dumont discovered some crystals of torbernite
(Cu(U0,)2(POy4),-12H,0) during an excursion in the Vielsalm
region and was the first to record the occurrence of uranium-
bearing minerals in the Ardennes (Dumont, 1852). However, it
was not until after the Second World War that interest emerged
in the radioactivity of the Belgian subsoil.

From 1955 to 1962, the Geological Survey of Belgium
carried out a preliminary radiometric prospection using a
portable scintillometer. Some radioactive anomalies have been
identified in the SVM during this campaign. Most of them are
located in the black shales of the La Gleize Formation (top of
the Revin Group) with a radioactivity 4 to 5 times higher than
the regional background (Charlet et al., 1983). Additional
analyses by gamma spectrometry carried out by Charlet et al.
(1977) indicated a relatively high uranium content (about 20
ppm) and a low Th/U ratio (~0.4) in these black shales.

Then, the Geological Survey of Belgium carried out a
carborne prospection to measure uranium, thorium, and
potassium contents in Wallonia subsoil. Again, they observed a
series of anomalies whose spatial distribution seems to confirm
the existence of a more radioactive level at the top of the Revin
Group (Charlet et al., 1983).

Finally, in 1994 and 1995, the Geological Surveys of
Belgium and Grand Duchy of Luxembourg carried out an
airborne campaign. The aircraft followed a north-south
trajectory spaced of one kilometre with measurements taken
every second, i.e. approximately every 70 metres. Data were
interpolated using a statistical kriging method to obtain a
continuous spatial visualization (Vanderschueren et al., 2007).
Results obtained show that the most uranium-rich areas are
located along the Cambro-Ordovician limit, in the upper part of
the La Gleize Formation (RVS5) and the lower part of the Jalhay
Formation (Solwaster Member). Both are composed of black
shales which are probably at the origin of the high uranium
contents. However, these formations have never been studied
from a mineralogical point of view.

4. Hydrogeology
4.1. Hydrogeological setting

Two types of aquifer are known in the SVM: (1) Shallow
aquifers related to differential alteration of the bedrock. The

most interesting aquifer areas correspond to the alteration of
quartzite whereas clay products resulting from slate alteration
form zones of low permeability. (2) Deep aquifer zones
distributed in the more quartzitic and fractured/faulted zones of
the bedrock which probably fed CO,-rich mineral water springs
(Monjoie 1995; Jobé, 2014).

Pouhons result from complex underground processes
involving sequentially water infiltration, interactions with rocks,
CO, assimilation, upwelling and finally water emergence
(Barros et al., 2021). However, their spatial distribution shows
that they are not randomly located but that their location seems
to be controlled by geological and geomorphological factors.
First of all, pouhons are mainly located in the immediate
vicinity of the tectonic structures mapped by F. Geukens in
1999 (Monjoie, 1995; Fig. 1). Geophysical profiles combining
ERT (electrical resistivity tomography) and IP (induced
polarization) methods were carried out above known uplift
zones in the Ardennes region (Defourny et al., 2020). These
profiles always show important contrasts in both electrical
resistivity and chargeability relatively close to the vertical axis
of pouhons (Defourny et al., 2020). Resistivity anomalies are
interpreted as saturated fractures while chargeability anomalies
are probably linked to iron oxides and hydroxides precipitation
in the upper part of the aquifer (Defourny et al., 2020). Faults
and fractures therefore probably act as preferential drains
enabling the uplift of CO,-rich groundwater to the surface.
Then, pouhons are generally located in valleys (Monjoie, 1995;
Fig. 2A-B). Nearly 80% of pouhons are situated closer than 100
m from a river and at an altitude between 300 and 400 m (Fig.
2B). This is probably due to the hydrostatic pressure decrease in
the valleys which would favour the release of CO, and then the
upwelling of water (Monjoie, 1995). Finally, we notice that
pouhons located in the SVM are mainly concentrated in rocks of
the Revin Group (Fig. 1).

4.2. Hydrochemistry

CO,-rich mineral water springs in the SVM generally show
calco-magnesian bicarbonate hydrochemical facies (Fig. 3). The
average chemical composition of pouhons is given in Table 1.
They are naturally oversaturated in CO, (up to 4 g/l). These high
carbon dioxide contents imply a slightly to moderately acidic
pH inducing a higher aggressiveness. However, waters are
moderately mineralised as shown by the electrical conductivity.
Pouhons show a particular composition with a high content of
iron and manganese (Jobé, 2014; Table 1). They also frequently
contain unusually high concentrations of lithium (Table 1). On
the other hand, they are characterised by low content of nitrate
indicating the absence of anthropogenic pollution. Relatively
close springs can show significant hydrochemical variations due
to the different pathways of waters through the complex
network of fractures or due to the aquifer from which they
originally came (Monjoie, 1995).

The *0- ?H analyses show that these waters are situated on
the meteoric waters line, excluding a volcanic origin (Fig. 4A-
B). Isotopic signature suggests that pouhons are primarily fed by
meteoric water (Barros et al.,, 2021). The origin of CO; in
pouhons is still unknown and seems relatively complex.
According to Jobé (2014) and Barros et al. (2021), CO, could
result from a combination of various processes. Two hypotheses
are generally advanced: (1) CO, would be produced by
dissolution of marine limestones and/or carbonate nodules
according to this reaction: CaCO; + 2H" — Ca®* + CO, (g)-
However, no carbonate rocks were found in the SVM. They
may occur at depth below the Midi-Eifel overthrust suggesting
that meteoric water should infiltrate at least 2 km (Barros et al.,
2021). (2) CO, would be of mantellic origin and produced by
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Figure 1. Location of analysed rock samples and poufions in the SVM (modified after Geukens, 1999; Herbosch et al., 2020).

volcanic degassing related to the neighbouring Eifel area. The
extension of the Eifelian mantle plume at depth or the presence
of an unknown shallow magmatic reservoir under the SVM may
then both constitute a potential source of CO, (Barros et al., 2021).
Recent isotope analyses indicate that the §°C of CO, ranges
from -9 to -2%o and up to ~15% of He from magmatic origin has
been identified in dissolved gases (Barros et al., 2021; Fig. 5).
Therefore, it seems that CO,shows a mixed origin, i.e. both
carbonate and magmatic (Barros et al, 2021). The low

temperatures of springs (~10 °C) and the presence of CO, gas
emanation on the surface (locally called “mofettes’) suggest that
CO, probably rises from its source and is added to groundwaters
at shallower depths (Barros et al., 2021).

4.3. Radioactivity of pouhons

The natural radioactivity of waters is directly related to the
nature of rocks that they interact with during their underground
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Figure 2. (A) Pouhon locations on the topographic map of the SVM. (B) Geostatistical data of pouhons.

circulation pathway. Most natural groundwaters contain radon
produced by the disintegration of uranium. Measurements of
radon activity in pouhon waters were carried out by
Vanderschueren (2011). Most of them show moderate activity
(10 to 100 Bg/l) with some exceptions which show higher
radiation levels (1220 Bq/l).

As mentioned before, pouhons show an orange-red colour
linked to iron oxide and hydroxide precipitation. Iron is initially
reduced to Fe*' in conditions of pH (between 4 and 6) and Eh

Piper diagram

A Bru pumping well
@ Spa pumping well
O Still water wells
@ Pouhons

(between -0.3 and +0.2 V) prevailing at depth (Defourny et al.,
2020). However, conditions become more oxidizing during
groundwater upflows inducing rapid oxidation of Fe*" to Fe**
according to this reaction: 4Fe*" + 30, + 2H,0 = 4FeO(OH). In
addition, the release of CO, close to the surface induces an
increase in pH which can also lead to iron hydroxide formation.
Radon measurements have shown that these ferruginous
deposits are also weakly radioactive (Vanderschueren, 2011).
Uranium at the origin of radon activity was therefore solubilised

Figure 3. Piper diagram of

pouhon waters.
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Average chemical Table 1. Average chemical
composition of pouhons composition of pouhons (Barros
oH 570 et al., 2021).
EC (uS/cm) 550.00
Ca (mg/l) 43.30
Mg (mg/l) 27.20
Na (mg/l) 28.80
K (mg/l1) 3.80
Cl (mg/) 17.60
Sio, (mg/) 22.00
HCO; (mg/I) 310.00
Fe (mg/l) 15.00
Mn (mg/) 1.30
Li (ug/1) 62.70
COo, (g/1) 1.90

from an initial source, transported in solution probably under the
form of UO,*" and finally concentrated in ferruginous muds. It
is necessary to characterise the mineralogy of these muds to
determine which mineral phase carries the high uranium (or
thorium) contents.

5. Data collection and analyses

Various rocks collected in the SVM and almost 200 samples of
ferruginous muds analysed by H.W. Vanderschueren to measure
their radon activity were available to characterise their
mineralogy (Fig. 1; Fig. 6A-H). All these samples were milled
to obtain a homogeneous powder and analysed from a
mineralogical and geochemical point of view, with particular
attention to black shales of the La Gleize Formation recognised
as presenting radioactive anomalies.

Major oxides (SiO,, ALOs;, TiO,, Fe;Oso, MnO, MgO,
Ca0, Na,0O, K,0, P,0s, LOI) and some trace elements (Nb, Y,
Zr, Sr, Rb, U, Th, Pb, Zn, Ni, Co, Ga, Ba, Cr, Ce) were obtained
by X-ray fluorescence (XRF) with an ARL 9400XP
spectrometer. Lithium borate fused glass discs were made to
measure major elements while trace elements were analysed on
pressed powder pellets. Matrix corrections were realised, and
accuracy is estimated as better than 1% for major elements and
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Figure 5. Variation of percentage mantle He and 8'*C values for CO,

-rich groundwaters in Belgium (Ardennes) and Germany (Barros et al.,
2021 after Griesshaber et al., 1992).

5% for trace elements.

Mineralogical analyses were performed by powder X-ray
diffraction (XRD) using a Bruker D8-ECO diffractometer
(CuKao radiation, A 1.5418 A). X-rays are filtered through a Ni
filter to limit the KB contribution. The goniometer covers a 26
angle between 2 and 70° with a step of 0.02° and a counting
time of 1 second per step. X-ray powder patterns were
interpreted using the Bruker EVA 3.2 programme with the
ICDD database (PDF-2 version). Quantification of mineral
phases was performed by Rietveld refinement of the powder
diffraction patterns, by using the Bruker TOPAS 4.2
programme. Chemical analyses have not been used to constrain
the Rietveld refinements.

Qualitative chemical analyses were performed with a JCM-
6000 NeoscopeTM electron microprobe (Mineralogy
Laboratory, Natural History Museum, Luxembourg) using an
accelerating voltage of 15 kV on polished section and
ferruginous muds. EDX detector is an SDD of JEOL
technology.

Infrared spectra were performed on ferruginous muds by a
Thermo Nicolet NEXUS 470 FTIR spectrometer with a 1 cm’
resolution, over the 400-4000 cm range. The samples were
prepared by mixing 2 mg of a sample with KBr and compressed
to form a pellet which was dried for a few hours at 110 °C.
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Figure 6. Various outcrops sampled in the SVM. (A) Black shales of the La Gleize Formation (Spa). (B) Detailed view of the outcrop. (C) A
quarzitic layer enriched in pyrite in black shales of the La Gleize Formation (Spa). (D) Quartzites from the Deville Group (Hourt). (E) Quartzites of
the Revin Group (Quarreux). (F) Black slates of La Venne Formation (Trois-Ponts). (G) Red slates of the Ottré Formation (Meuville). (H) Purplish
slates and coticule of the Les Plattes Member (Thier del Preu).
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6. Mineralogical and geochemical analyses
6.1. Black shales of the La Gleize Formation

The black shales of the La Gleize Formation have a typical
mineralogical composition. They are mainly composed of quartz
(Si0,), muscovite (KAI,[Si3AlO0](OH),), chlorite ((X5Al)
[Si;Al040](OH)s with X = Fe, Mg or Mn), feldspar (((Na,K);.
xCay)[(Al1+4Si;. <)Os]) and minor pyrite (FeS,) and rutile (TiOy;
Fig. 7A-B). Variations in mineralogical proportions are given in
Table 2. Monazite-(Ce) (CePOy) and zircon (ZrSiO,) have also
been detected by X-ray powder diffraction in some samples but
their proportions are generally relatively low.

SEM analyses have made it possible to detect more specific
minerals such as barite, florencite-(Ce), monazite-(Ce),
xenotime-(Y), and zircon (Fig. 7C-H); these minerals are
described below.

6.1.1. Florencite-(Ce), CeAl;(PO,),(OH)s

Florencite-(Ce) has been identified in various samples, as
irregular grains with diameters between 5 and 50 um. They are
generally associated with pyrite although isolated grains have
also been observed (Fig. 7C). Semi-quantitative EDX analyses
indicate that florencite mainly contains Ce, Al and P, with
smaller amounts of La and Nd.

6.1.2. Monazite-(Ce), Ce(PO,)

Monazite-(Ce) is relatively abundant and was identified in most
samples, as polygranular masses with a size ranging from 50 to
200 pm (Fig. 7D-E). The EDX analyses show that these grains
mainly contain Ce and P, with smaller amounts of La and Nd.

6.1.3. Sphalerite, (Zn,Fe)S

Sphalerite grains are very small (<10 pm) and always occur as
inclusions in pyrite (Fig. 7F). Their EDX analyses show the
presence of Zn and S, with smaller amounts of Fe and Cd.

6.1.4. Xénotime-(Y), YPO,

One grain of xenotime-(Y) has been identified in the Viel
sample, as an isolated grain of very small size (1-2 um). The
EDX analysis shows Y and P as main constituents, thus
confirming the identification.

6.1.5. Zircon, Zr(SiOy)

Zircon has been frequently identified as isolated crystals of
variable size (10 to 80 pm). Some crystals are euhedral and well
zoned (Fig. 7G-H), and some of these zonations are enriched in
calcium, uranium, thorium, scandium and cerium.

Geochemical data are given in Table 2 and Table 3. The
black shales of the La Gleize Formation mainly contain SiO,
and ALO; as well as K,O, MgO and Fe,O; in lower
concentrations. The proportions of TiO,, MnO, CaO, Na,O and
P,Os generally do not exceed 1 wt.%. Trace element contents
are normalised to the upper continental crust (UCC, McLennan,
2001) and plotted in a semi-logarithmic diagram (Fig. 8A).
These rocks are mainly enriched in V and high field strength
elements (HFSE; Pb, U, Y, Ce, Zr, Ti, Nb) except in Th and Cr,
and depleted in transition metals (Co, Ni, Cu, Zn) and Sr. The
U, V, Ce and Ti enrichments are the most pronounced,
particularly in black graphitic shales (Viel).

A thin level strongly affected by weathering was observed

and sampled (Spox) within the black shales of Spa (SP2 and
SR2; N50.48802, E5.84391). It is mainly composed of goethite,
quartz, muscovite, and chlorite. For this sample, major and trace
elements are normalised to the protolith to determine the
behaviour of these elements during weathering (Fig. 8B). It
shows a significant enrichment in P,Os and transition metals as
well as a depletion in HFSE except for Zr. Copper shows the
highest enrichment, with an average content of 20.5 ppm in
slates and 366 ppm in this sample (Table 3). Uranium
previously enriched in the protolith was not detected in the Spox
sample.

6.2. Other formations of the SVM

Rock samples collected in the other formations have only been
studied by X-ray powder diffraction and XRF (Tables 2 and 3).
The Hourt, La Venne and Jalhay formations show similar
mineralogy and are mainly composed of quartz, muscovite,
chlorite, feldspar and rutile (Table 2).

The Ottré Formation shows more various mineralogy (Table
2). The reddish to purplish colour of these rocks results from the
occurrence of hematite (Fe,0s). This mineral has been detected
in all samples except in the coticule (Cot2). The Lienne valley
ore (UXO) displays the highest proportion in hematite (33.45
wt.%), whereas the average percentage of this mineral in the
host red slates is around 8 wt.%. Spessartine (Mn3;Aly(Si0,);)
has been detected in the coticule (Cot2), the pseudocoticule
(Pseu), the ore from the Lienne valley but also in the slates of
Thier del Preu (Pcotl, Pcot2) and Salmchateau (FCU).
Spessartine does not exceed 10 wt.% in slates, whereas coticule
and pseudocoticule show higher proportions of this mineral
(13.86 wt.% and 36.4 wt.%, respectively). Chloritoid
((Fe** Mg,Mn*")AL,(Si0,)O(OH),) has been identified in the
Lierneux slates (PAC) and in the slates of the Colanhan Member
at Cahay (Cahp, Cahc). Finally, rhodochrosite (MnCO;) has
been identified in the Lienne valley manganese ore (UXO; 6.95
wt.%), pyrolusite (MnO,; 2.10 wt.%) and zircon (1.88 wt.%) in
the Bihain slates (BMEU), and bornite (CusFeS,; 1.13%) in the
Cahay slates (Cahp).

The formations occurring in the SVM show a relatively
similar geochemical signature (Fig. 9A; Table 2). However, the
Ottré Formation stands out and shows significant enrichments in
Fe,05; and MnO (Fig. 9A). The highest manganese contents are
observed in the pseudocoticule (Pseu = 15.65 wt.% MnO), the
Lienne valley manganese ore (UXO = 10.11 wt.% MnO) and in
the coticule (Cot2 = 5.61 wt.% MnO). The CaO and P,Os
contents also tend to increase in the Ottré Formation.

Trace element contents (Table 3) were once again
normalised to the upper continental crust (UCC, McLennan,
2001), and plotted in a semi-logarithmic graph (Fig. 9B). The
Hourt Formation is principally depleted in trace elements. The
Jalhay and La Venne formations show a geochemical signature
similar to that of the La Gleize Formation but are generally less
enriched in trace elements, except in Zn, Ce, Co and Ni. The
Ottré Formation is mainly enriched in Ba, Cr and Co, and
depleted in U and Th. Finally, the Lienne ores, the coticule and
the pseudocoticule show particularly high chromium contents of
676 ppm, 1067 ppm and 940 ppm, respectively.

A correlation matrix grouping majors and trace elements has
been calculated (Fig. 10). Pearson coefficients show that TiO, is
relatively well correlated with Al,05 and K,0. CaO seems to be
correlated with MnO and more particularly with P,Os. Strong
correlations have been observed between Ga, Nb, Rb, TiO,,
Al,03, MgO and K,O. Co and Cr show a high correlation with
MnO. Uranium does not seem correlated with other elements,
except vanadium (0.82).
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Figure 7. Scanning electron microscope (BSE) images of the Spa samples. (A) Euhedral and framboidal pyrite. (B) Elongated rutile. (C) Florencite-
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Table 3. Trace elements (ppm) geochemical XRF analyses of the rock samples collected in the SVM.

Samples Co Cu Ga Nb Ni Pb Rb Sr Th u Y Zn Zr Ba Ce Cr \"
SP2 6 27 5 11 20 15 38 68 ND 7 33 37 235 268 79 11 78
SR2 8 14 22 20 26 32 135 102 7 19 39 34 275 652 132 47 517
Viel 6 30 35 27 8 19 246 166 11 20 44 72 225 1158 213 98 451

Venne 8 26 25 20 20 18 156 119 3 6 33 81 192 642 111 68 170
Spox 34 366 2 6 85 8 81 145 ND ND 16 146 425 225 52 30 268
DEV 4 ND 7 12 ND 33 32 43 ND 7 14 6 210 335 86 10 23
ETU 5 17 31 23 11 8 213 120 7 6 38 45 215 862 186 84 165

3p 5 25 27 24 13 16 191 91 8 8 43 60 211 825 185 63 232
Pz2 19 28 27 23 42 21 163 125 11 3 43 80 255 794 213 82 137
PG 14 22 27 23 37 10 178 106 6 3 32 92 185 1103 185 87 133
PGC 15 17 21 20 29 12 161 96 6 3 33 99 223 1137 172 66 109
RSAL 41 5 24 19 55 38 196 226 1 ND 21 92 132 1751 151 191 86
Uxo 149 28 ND 9 84 87 41 61 ND ND 37 210 187 635 ND 676 207

MnM1 20 5 16 19 30 28 135 107 17 2 34 62 780 1002 170 96 97
PAC 22 33 22 20 31 6 167 91 2 1 34 54 205 1342 155 90 98
Pcotl 56 7 23 19 84 47 194 344 ND ND 37 81 155 1679 105 253 129
Pcot2 31 22 25 19 56 31 155 250 1 ND 30 89 126 1007 126 202 130
Cot2 33 16 28 22 47 35 169 275 6 1 43 109 140 1738 ND 1067 167

BMEU 50 49 17 15 18 54 166 385 ND ND 45 37 124 848 49 295 158
FCU 52 173 25 20 83 20 137 135 1 ND 36 97 154 2830 45 395 141
CahP 33 15 27 21 55 31 175 235 3 ND 32 105 147 931 126 150 144
Cahc 41 16 25 20 64 31 166 239 ND ND 33 107 130 1130 112 205 163
PSEU 11 29 2 10 5 ND 8 30 ND ND 15 19 91 295 ND 940 319

6.3. Ferruginous muds

Mineralogical analyses have been performed on ferruginous
mud samples. X-ray powder patterns are generally marked by
the presence of two very large peaks, located around 26 values
of 35° and 63°. This shows the extremely poor crystallinity and
probably the amorphous nature of muds. However, some X-ray
powder patterns show better crystallinity. Goethite is the most
frequently identified mineral, but quartz, calcite and dolomite
have also been detected in some samples. Infrared spectra were
also performed, showing absorption bands that coincide fairly
well with those of goethite (3300, 1800, 1000, 890, 795 and
595,470 cm™), indicating once again that these muds are mainly
composed of this mineral (Fig. 11). Other well-marked bands
have been observed, showing that muds contain other phases.
The 1495 cm™ band is certainly produced by vibrations of
carbonate groups, while the band at 1630 cm™ corresponds to
the deformation vibrations of the water molecule (Kodama,
1985). The 1365 cm™ peakis probably associated with the
vibrations of nitrate groups (Kodama, 1985).

From a geochemical point of view (Table 4), these muds are
mainly composed of Fe,O; (£ 65 wt.%), as well as smaller
proportions of SiO; (+ 3.86 wt.%) and P,Os (+ 3.78 wt.%). Loss
on ignition (LOI) is relatively high indicating a significant loss
in volatiles. Sampling conditions did not systematically allow
the collection of pure ferruginous deposits. Contaminations are
noticeable in GER, PIL and SAUV samples with a significant
increase of the silica contents compared to Fe,O;. Regarding
trace elements, muds are mainly enriched in Sr, Ba, Ce, Zr, Cu
and Zn (Fig. 12; Table 4). The RUY sample shows the highest
zirconium content (1843 ppm), and the BAR sample shows a
relatively high zinc level (847 ppm). Uranium and thorium were
not detected.

Images obtained with a scanning electron microscope show
that grains in the muds are formed by an agglomeration of
spheroids (1 pm diameter) comparable to spherulites. An EDX
elemental mapping has also been performed, which clearly
shows that the muds are mainly composed of iron with some

areas enriched in Si, Al and Ca. Some tiny spots of uranium
have also been detected.

7. Discussion

7.1. Origin of uranium in the black shales of the La Gleize
Formation

Black shales of the La Gleize Formation show classical
mineralogy since they are mainly composed of quartz,
muscovite, chlorite, feldspars, with variable quantities of pyrite
and rutile (Table 2). More specific minerals, such as florencite-
(Ce), monazite-(Ce), xenotime-(Y), and zircon, have also been
identified by SEM analyses. It is interesting to note that alluvial
monazite-(Ce) was previously observed by Burnotte et al.
(1989), in rivers cross-cutting the slates of the Revin Group in
the SVM.

The ionic radius of Ce*" (1.01 A; Shannon, 1976) and Y**
(0.90 A) are relatively close to that of U*" (0.89 A). Uranium
can consequently be incorporated into the crystallographic site
of cerium or yttrium by coupled heterovalent substitutions with
calcium at a single site, without affecting the mineral structure
(Ce*" — 0.5 Ca** + 0.5 U*). This substitution explains the
occurrence of Th and U in many rare-earth minerals such as
florencite-(Ce), monazite-(Ce) or xenotime-(Y). U* can also be
incorporated in the crystal structure of zircon by homovalent
substitution with Zr*" at a single site (Meis & Gale, 1998), and
rutile may also insert some uranium, probably by homovalent
substitutions with Ti*" (Mezger et al., 1989). All these minerals
may incorporate small quantities of uranium into their structure
and are therefore probably at the origin of the radioactive
anomalies observed in these black shales. Uranium was likely
gradually leached from these minerals, transported in solution,
and finally concentrated in ferruginous muds.

From a geochemical point of view, these black shales are
mainly enriched in V and HFSE (Pb, U, Y, Ce, Zr, Ti, Nb; Fig.
8A). Uranium, cerium and vanadium display the highest
enrichments observed in the SVM, although uranium contents
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Figure 8. Trace element
patterns of the black shales of the
La Gleize Formation (A). Trace
element contents normalised to
the upper continental crust
(McLennan, 2001). (B) Trace
element pattern of Spox sample
normalised to the protolith.

are relatively low and do not exceed 20 ppm. It is noteworthy in Fe,0;, MnO, Cr and Co, compared to the other rocks of the
that Ce and Y contents, reaching around 200 and 40 ppm SVM (Fig. 9 A-B). The Fe,0O; enrichment results from the
respectively (Table 3), are similar to those reported by Burnotte occurrence of hematite, whereas the MnO enrichment is directly
et al. (1989) for the black slates of the Revin Group from La related to the occurrence of spessartine and rhodochrosite.
Vecquée and Grand-Halleux. On the other hand, these rocks are These geochemical features are well known in the SVM, and
depleted in transition metals (Co, Ni, Cu, Zn) and in Sr were already described in several papers dealing with the

(Fig. 8A). geochemistry of coticules and pseudocoticules (Krosse &
Such low trace element contents are unusual in these types Schreyer, 1993; Baijot et al. 2011; Herbosch et al., 2016).

of rocks. Black shales are generally enriched in numerous redox Uranium was not detected by XRF in these rocks.

-sensitive metals (V, Cr, Ni, U, Co Cu, Zn) due to the conditions Some correlations have been observed between major and

prevailing in their formation environment (Vine & Tourtelot, trace elements (Fig. 10). Titanium and aluminium are both

1970). The enrichment was probably inhibited in our samples by highly immobile, and the strong correlation between these
the unavailability of metals in the water column or by a high elements probably results from their similar geochemical

sedimentation rate inducing a high clastic dilution. The black behaviour. The correlation between calcium and phosphorus is
graphitic shales of Vielsalm (Viel) show the most significant certainly due to the presence of accessory fluorapatite in these
enrichments. Trace element contents in these rocks are therefore rocks (Hatert et al., 2002), as well as to the incorporation of
probably controlled by the organic matter and/or by the clay calcium in the structure of cerium phosphate minerals. It is
material contents. noteworthy that monazite-(Ce), florencite-(Ce), and xenotime-

(Y) were yet known to occur in the slates of the Ottré Formation
7.2. Geochemistry of the Ottré Formation and correlations at Salmchateau (Hatert et al., 2002; Blondieau et al., 2017). The

correlation between TiO, and Nb can be explained by the ability
The Ottré Formation is characterised by a significant enrichment of rutile to incorporate niobium into its crystal structure. Indeed,
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Nb** may substitute to Ti*" in rutile, the excess charge is then
compensated by metal vacancies or by a complementary amount
of Fe** (Deer et al., 1962; Graham & Morris, 1973). Gallium
and rubidium are particularly well correlated with Al,O; and
K,0; these elements are therefore probably associated with
muscovite. The correlation between chromium, cobalt and
manganese is not well understood. Cr could substitute to Al in
spessartine thus explaining the strong correlation between Cr
and Mn.

7.3. Composition and origin of ferruginous muds

Ferruginous muds are mainly composed of goethite (most often
amorphous), residual quartz, calcite, and dolomite in some
samples. This assemblage suggests that iron initially dissolved
in water precipitates essentially as goethite during groundwater
upflow. Calcite and dolomite could precipitate due to a rapid
drop in CO, partial pressure, a rise in ambient temperature and
an increase in oxidation potential. Infrared spectra confirm that
muds are mainly composed of goethite; however, other peaks,
probably corresponding to carbonate, phosphate and nitrate
groups have also been identified.

Chemical XRF analyses show that the muds are mainly
composed of Fe,O; (~65 wt.%), with smaller proportions of

Si0, (£ 3.86 wt.%) and P,Os (+ 3.78 wt.%; Table 4). The high
LOI observed are probably related to hydroxide and carbonate
groups. Trace element analyses show relatively high content of
Ba, Ce, Zr, Cu and Zn (with some Sr, V, Co, Y; Table 4; Fig.
12), but no correlations have been established between the
geochemical composition of ferruginous muds and the
hydrochemical composition of the waters. This suggests that the
composition of muds is not directly related to the initial
composition of groundwaters. The high zirconium contents
observed in muds certainly result from the gradual leaching of
zircon releasing small amounts of uranium at the same time.
RUY sample shows the highest radon activity and also the
highest zirconium content (1843 ppm). There is a potential
relationship between the zirconium content and the uranium
content in muds although the radon activity does not appear to
effectively correlate with the zirconium content in other
samples.

Uranium and thorium have not been detected by XRF
spectrometry in the mud samples (Table 4). This indicates that
the U and Th contents are relatively low. An elementary EDX
mapping has made it possible to detect some tiny spots of
uranium, which do not seem correlated with other elements. The
most likely hypothesis is that uranium is adsorbed in small
concentrations on goethite surface. Indeed, goethite is
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Figure 11. Infrared spectrum of a ferruginous mud sample (RUY).

characterised by a surface charge and has a high adsorption
capacity for dissolved uranium (Hsi & Langmuir, 1985). These
authors demonstrated that the speciation of uranium in solution
(dependent on pH) significantly controls its degree of
adsorption. The adsorption of U®" is optimal in a pH range
between 5 and 8.5.

7.4. Hydrochemistry of pouhon waters

Pouhon waters are characterised by a particular hydrochemical
composition. They are significantly enriched in iron and

manganese and have frequently abnormally high lithium
concentrations. In the same way, the Ottré Formation is
enriched in Fe,O; and MnO compared to other formations of the
SVM. Dekoninck et al. (2019) carried out geochemical analyses
on slates of the Ottré Formation. Data indicate that these rocks
are also relatively rich in lithium with contents ranging from 50
to 328 ppm. Lithiophorite ((Al,Li)MnO,(OH),) is a weathering
mineral abundantly found in this formation (Fransolet, 1979).
The absence of this mineral in the other formations of SVM
shows that lithium is mainly concentrated in the slates of the
Ottré Formation.
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Table 4. Major oxides (Wt.%)

Samples BAR RUY PIA PLG GER PIL SAUV
and trace elements (ppm)
Si0, 2,51 3.08 5.94 3.89 59.99 27.16 63.82 geochemical XRF analyses of
Tioz ND 0.02 0.08 ND 0.23 0.11 0.41 ferruginous mud samples. LOI =
ALO; 0.21 0.41 0.89 0.26 3.10 2.42 5.13 Loss on ignition; ND = not
Fe,0s 64.03 63.88 66.50 64.15 20.07 34.74 12.26 detected.
MnO 0.03 0.03 0.02 0.07 0.07 0.09 0.03
MgO 0.53 0.63 0.59 0.60 0.94 0.65 0.33
ca0 0.20 2.02 0.33 1.14 2.24 4.65 1.37
Na,0 ND 0.04 ND ND 0.09 0.20 0.25
K0 0.02 0.07 0.12 0.02 0.59 0.59 0.85
P,0s 5.54 3.00 1.69 4.90 0.81 0.06 0.67
Lol 28.95 27.49 25.81 27.10 12.15 30.74 11.18
Tot 102.03 100.67 101.99 102.12 100.29 101.42 96.30
Co 19 17 18 20 14 33 8
Cu 2 20 37 32 313 122 89
Ga ND ND ND ND ND ND 4
Nb ND ND ND ND 7 2 11
Ni 3 4 1 2 10 13 10
Pb 4 ND ND ND 29 16 218
Rb 5 7 8 5 28 26 2
sr 27 154 29 108 65 102 66
Th ND ND ND ND ND ND ND
ND ND ND ND ND ND ND
10 10 21 15 21 72 21
Zn 847 52 ND ND 220 64 231
7 18 1843 149 1 166 152 275
Ba 23 240 0 275 287 301 412
Ce 143 45 52 94 208 24 284
cr 1 ND ND 2 6 13 5
v 4 4 22 ND 43 32 45
\4
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Figure 12. Trace element contents
(ppm) in ferruginous muds. Rb St Ba Pb U Th Y Ce zr C Nb V Co N Cu 2Zn Ga

Although the composition of groundwaters appears to be
closely related to the slates of the Ottré Formation, the extent of
these rocks is relatively limited and pouhons are mainly located
in rocks of the Revin Group. Waters have therefore interacted
and potentially leached these rocks during their upwelling. The
black shales of the La Gleize Formation appear to be the main
source of uranium at the origin of radon activity observed in
ferruginous muds. Moreover, the loss of uranium in the
alteration products (Spox) compared to the protolith
demonstrate the relatively high mobility of this element during

weathering processes. These results suggest that the naturally
CO,-rich waters occurring in the pouhons of the SVM have
probably leached rocks of various mineralogy and chemical
composition during their circulation in the sub-surface.
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