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Description of the subject. Understanding the current situation and evolution of forests is essential for a sustainable 
management plan that maintains forests’ ecological and socio-economic functions. Remote sensing is a helpful tool in 
developing this knowledge. 
Objectives. This paper investigates the new opportunities offered by using Sentinel-2 (S2) imagery for forest mapping in  
Belgian Ardenne ecoregion. The first classification objective was to create a forest map at the regional scale. The second 
objective was the discrimination of 11 forest classes (Fagus sylvatica L., Betula sp., Quercus sp., other broad-leaved stands, 
Pseudotsuga menziesii (Mirb.) Franco, Larix sp., Pinus sylvestris L., Picea abies (L.) H.Karst., young needle-leaved stands, 
other needle-leaved stands, and recent clear-cuts). 
Method. Two S2 scenes were used and a series of spectral indices were computed for each. We applied supervised pixel-based 
classifications with a Random Forest classifier. The classification models were processed with a pure S2 dataset and with 
additional 3D data to compare obtained precisions.
Results. 3D data slightly improved the precision of each objective, but the overall improvement in accuracy was only 
significant for objective 1. The produced forest map had an overall accuracy of 93.3%. However, the model testing tree species 
discrimination was also encouraging, with an overall accuracy of 88.9%. 
Conclusions. Because of the simple analyses done in this study, results need to be interpreted with caution. However, this 
paper confirms the great potential of S2 imagery, particularly SWIR and red-edge bands, which are the most important S2 
bands in our study. 
Keywords. Belgian Ardenne ecoregion, tree species, remote sensing, satellites, per-pixel classification, random forest.

Cartographie forestière et composition spécifique par classification supervisée par pixel d’imagerie Sentinel-2
Description du sujet. Étudier l’état et l’évolution des forêts est essentiel pour assurer une gestion durable maintenant leurs 
fonctions écologiques et socio-économiques. La télédétection est un outil précieux pour le développement de ces connaissances.
Objectifs. Cette étude analyse l’opportunité offerte par l’imagerie Sentinel-2 (S2) pour cartographier les forêts de l’écorégion 
de l’Ardenne belge. Le premier objectif de classification était la création d’une carte forestière à l’échelle régionale. Le second 
objectif était la discrimination de 11 classes forestières (Fagus sylvatica L., Betula sp., Quercus sp., other broad-leaved stands, 
Pseudotsuga menziesii (Mirb.) Franco, Larix sp., Pinus sylvestris L., Picea abies (L.) H.Karst., young needle-leaved stands, 
other needle-leaved stands, and recent clear-cuts).
Méthode. Deux scènes S2 ont été utilisées et une série d’indices spectraux ont été générés pour chacune d’entre elles. Nous 
avons réalisé une classification supervisée par pixel avec l’algorithme de classification Random Forest. Les modèles de 
classification ont été générés avec un jeu de données S2 pur et avec des données 3D supplémentaires pour comparer les 
précisions obtenues.
Résultats. Les données 3D ont légèrement amélioré la précision de chaque objectif, mais l’amélioration globale de précision 
fut uniquement significative pour l’objectif 1. La carte forestière produite avait une précision globale de 93,3 %. Le modèle 
testant la discrimination des espèces d’arbre fut encourageant également, avec une précision globale de 88,9 %.
Conclusions. Tenant compte des simples analyses réalisées dans cette étude, les résultats doivent être interprétés avec prudence. 
Cependant, ce travail confirme le grand potentiel de l’imagerie S2, particulièrement les bandes SWIR et red-edge, qui jouèrent 
un rôle essentiel dans ce travail.
Mots-clés. Écorégion de l’Ardenne belge, espèces d’arbre, télédétection, satellite, classification par pixel, forêt aléatoire.
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1. INTRODUCTION 

Forest ecosystems provide important services to 
society, and sustainable management and adapted 
policies are essential to maintain their ecological 
and socio-economic functions. Forest managers and 
policy makers must consider the relationships between 
forest function and ecosystem characteristics and the 
evolution of forests in order to manage forests and 
make regional decisions (Führer, 2000; Lindenmayer 
et al., 2000). Given the globalization of today’s 
society, this need has become even more important, 
as understanding forests is important for international 
agreements and reporting requirements (e.g. the Kyoto 
Protocol). 

For decades, field inventories have been used to 
better characterize forest. National inventories exist 
in countries around the world and have evolved over 
time to adapt to users’ needs (Tomppo et al., 2010). 
Field inventories provide timely and accurate estimates 
of forest resources and their evolution at a large scale. 
Nevertheless, this method is time-consuming and quite 
expensive. Furthermore, an inventory of an entire area 
is, for obvious reasons, impossible and sample-based 
procedures are necessary. Therefore, technological 
innovation is becoming crucial to improve the efficiency 
of measurements and estimations while making the 
production of inventory data simpler (McRoberts & 
Tomppo, 2007). 

Remote sensing is one of the technological 
tools at our disposal: it decreases the cost of data 
acquisition, increases the area it is possible to cover 
without sampling, and enables the production of 
high-resolution forest attribute maps. Remote sensing 
enables the production of map layers that give precious 
information about the distribution of forest resources. 
These complement sample-based procedures in the 
field and today are commonly used by researchers and 
managers (McDermid et al., 2009). 

Today advances in technology such as satellite 
remote sensing and digital photogrammetry have 
increased the possible applications of remote sensing 
and image classification. Light detection and ranging 
(LiDAR) data and photogrammetry technologies have 
made it possible to use 3D data, such as Canopy Height 
Models (CHM) when investigating forests. These 
technologies improve the classification accuracy of 
forest classes (Waser et al., 2011). However, 3D data is 
still rare at the large scale and the technology remains 
expensive. 

This may be different for satellite imagery. On 28 
February 2008, the European Union (EU) and European 
Space Agency (ESA) signed an agreement over the 
creation of the COPERNICUS program. The aim of this 
program is to provide earth surface monitoring services 
(European Commission, 2015) (Land, Atmosphere 

& Marine Monitoring, Climate Change, Security & 
Emergency Management Services). The launch of 
the two Sentinel-2 (S2) satellites is an opportunity to 
enhance forest characterization on a large scale. The 
satellites multispectral 13-band sensors produce high-
quality images at a 5-day equatorial temporal resolution 
(Suhet & Hoersch, 2015). Such an availability of free 
data is unprecedented and will substantially promote 
research in this topic. 

In preparation for the arrival of the new S2 
imagery, Inglada et al. (2017) present a methodology 
to automatize the production of a land cover map at the 
country scale using high-resolution optical image time 
series. Using this methodology, the study constructs 
a map of metropolitan France with a coefficient of 
kappa 0.86 describing 17 land cover classes, including 
broad-leaved forest and coniferous forest. In the first 
study to use pre-operational S2 data, Immitzer et al. 
(2016) test both a pixel-and object-based classification 
of tree species in Germany for 7 classes, getting an 
overall accuracy (OA) of 0.64 and 0.66, respectively. 
These studies demonstrate the powerful potential of 
satellite imagery for forest mapping, and research is 
necessary to exploit the potential of these new S2 data. 
In their review of tree species classification studies, 
Fassnacht et al. (2016) observe the increasing number 
of works on this topic over the last 40 years. However, 
they note that most investigations are oriented toward 
optimizing classification accuracy over a relatively 
small test site and it is therefore often difficult to draw 
general conclusions from these studies. The authors 
recommend using well-defined applications in future 
research in order to avoid purely data-driven studies of 
limited values and increase understanding of broader 
factors affecting tree species classification. 

In this context, we use S2 imagery to investigate 
image classification in European temperate forests at 
the regional scale. Our study has three goals: 
– to create a highly accurate regional forest map using 

S2 imagery; 
– to evaluate the potential of S2 imagery in identifying 

the main tree species encountered in the study area;
– to assess the benefits of incorporating 3D data into 

our study of the previous two goals and therefore 
determining how precise S2 data is in these 
approaches. 

For these purposes, we implemented supervised 
classification per pixel using a random forest (RF) 
algorithm. We used two S2 images acquired at different 
dates to take account for species seasonality. Then, we 
computed a range of spectral indices. After a step of 
variables selection, we trained random forest classifiers 
for two datasets: the first contains only S2 bands 
and spectral indices, while the second also contains 
3D data. The quality of the results was assessed and 
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compared in terms of a confusion matrix with a strong 
reference dataset.

2. MATERIALS 

2.1. Study site 

The study was conducted for the entire Belgian 
Ardenne ecoregion. This region constitutes a plateau 
whose altitude increases gradually from the South-
West to the North-East, culminating at nearly 700 m. 
The annual mean temperature is smaller than 9 °C 
and annual precipitations are nearly 1,200 mm. With 
an afforestation rate of 58%, the Ardenne represents 
333,850 ha of forest and is the largest forest area in 
Wallonia. This forest is mainly coniferous (64%), 
according to Wallonia’s Regional Forest Inventory 
(RFI) (Alderweireld et al., 2015), and the most 
frequently found tree species are (in order of quantity): 
spruce (Picea abies [L.] H.Karst.), oak (Quercus sp.), 
beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga 
menziesii (Mirb.) Franco), pine (Pinus sp.), and larch 
(Larix sp.). These six species represent 85.8 % of the 
forest. Most of the time, coniferous stands are pure 
species plantations. Deciduous stands are most of the 

time naturally regenerated and thus present an uneven-
aged structure and a composition dominated by beech 
and oak, the level of mixture being driven mainly 
by soil depth and topography. Figure 1 provides an 
overview of the study site. 

2.2. Remotely sensed data 

Sentinel-2. The onboard S2 sensor is a passive multi-
spectral instrument (MSI). It provides 13 spectral 
bands (Table 1). In order to simplify pre-processing, 
the only two available S2 images with less than 10% 
cloud cover over the entire Ardenne ecoregion were 
selected. Their sensing times were 2 August 2015 and 
8 May 2016 (further referred as D1 and D2). These 
dates have a potential interest as they could help 
to difference some broad-leaved species between 
themselves or from resinous species. Indeed in this 
region, in May, Fagus sylvatica and Betula sp. have 
begun foliation period since more than a month while 
Quercus sp. have just started (https://fichierecologique.
be). It is widely acknowledged that reflectance from 
the Earth’s surface, called top-of-atmosphere (TOA), is 
significantly modified by the atmosphere (Jensen, 2005; 
Lillesand et al., 2008; Richards, 2013). There are many 
remote sensing studies that have investigated how to 

Figure 1. The study area, the Belgian Ardenne ecoregion, is shown in yellow. A more detailed view is presented in the top left 
corner (orthophoto 2016, Public Service of Wallonia) — La zone d’étude, l’écorégion de l’Ardenne belge, est en jaune. Une 
vue plus détaillée est présentée dans le coin supérieur gauche (orthophoto 2016, Service Public de Wallonie).
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reduce the effects of the atmosphere on the signal 
(Kaufman et al., 1997; Song et al., 2001; Guanter 
et al., 2008). This is even more important in case 
of multi-temporal date analyses (Agapiou et al., 
2011; Hagolle et al., 2015), therefore we used the 
atmospheric correction proposed by the Sen2Cor 
processor (version 2.2.) (Müller-Wilm, 2016). 
Hence, Level-1C data were processed into Level-
2A (bottom-of-atmosphere corrected reflectance 
images). S2 bands at 20 m of spatial resolution 
were resampled at 10 m during this step (nearest 
neighbor method). Then we compiled a layer 
stack of 20 spectral bands with D1 and D2. 

3D data. Three Canopy Height Models (CHM) 
and one slope layer, based on LiDAR and 
photogrammetric point clouds, were used 
covering the entire study area at a resolution of 
1 m.

A CHM was made using LiDAR (LiDAR 
DSM - LiDAR DTM) and referred to as CHM3 
in this paper. The average point density of 
small footprint discrete airborne Lidar data was 
0.8 points.m-1. Survey flights were realized by the 
Public Service of Wallonia from 12 December 
2012 to 21 April 2013 and from 20 December 
2013 to 9 March 2014. The survey covered 
Wallonia with a regional digital terrain model 
(1 m ground sampling distance [GSD]). A digital 
surface model (DSM) at the same resolution was 
also computed and a slope layer was generated 
based on the Lidar digital terrain model (DTM). 

For two other CHMs, raw images from 
two regional orthophoto datasets (acquired by 
the Public Service of Wallonia) were used to 
generate two high-density photogrammetric point 
clouds. Both survey flights took place between 
April and September, the first in 2006 and 2007 
(0.50 m GSD), the second in 2009 and 2010 
(0.25 m GSD). Considering that the regional 
topography did not change significantly, hybrid 
CHMs were computed using photogrammetric 
DSM and LiDAR DTM, as described above, 
following the approach of Michez et al. (2017) 
(photogrammetric DSM-LiDAR DTM). Their 
spatial resolution is 1 m. The precision of this 
approach has been evaluated in Michez et al. 
(2017) using field tree height measurements 
(root mean square error smaller than 3 m). These 
hybrids CHM are called CHM1 and CHM2 in this 
paper. They were used in this study to improve the 
detection of recent clear cuts and young stands, 
adding height information in the past.

These four layers (CHM1, CHM2, CHM3, 
and SLOPE) were aggregated at 10 m of spatial 
resolution using median value. Ta
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3. METHODS 

3.1. Image classification models 

To accomplish our first two goals, we defined two 
models of classification. The model called Objective 1 
created a forest map, and was trained to identify four 
classes: broad-leaved stands, coniferous stands, recent 
clear-cuts, and non-forest areas. The non-forest class 
dataset contained an equal proportion of observations 
for agricultural lands, urban landscapes, and water 
bodies. In order to create our forest map, we applied 
the obtained classifier to the entire study area. We then 
generated a forest land use map by merging the three 
forest classes into one. By first growing a model with 
four classes, clear cuts are integrated into the produced 
forest map, as it forms an integral part of the forest 
estate covered by management plans.

Second model called Objective 2 aims at 
classifying the tree species present in the study site to 
evaluate the discrimination potential of S2 data using 
a pixel-based approach. Based on the RFI, we defined 
11 classes that corresponds to the main species or 
types of stands: beech, birch (Betula sp.), oak, other 
broad-leaved stands (OB), Douglas fir, larch, Scots 
pine (Pinus sylvestris L.), spruce, young needle-leaved 
stands (YN), other needle-leaved stands (ON), and 
recent clear-cuts (RCC). Young stands correspond to 
plantations between 4 and 12 years old, and recent 
clear-cuts are stands that have been harvested in the 
last four years. For each class, pixels contain at least 
80% of the species or group of species. 

The global workflow of the study is synthesized in 
figure 2.

3.2. Dataset preparation 

In order to determine the most pertinent classification 
variables in each model, we added a large selection of 
spectral indices to the original S2 dataset. Each indice 
was generated for D1 and D2. The list is presented in 
table 2.

We then created another dataset that include 3D 
data and compared results of the two datasets for 
each classification objective. In other words, for each 
objective we tested the following datasets: the S2 
bottom-of-atmosphere data D1 and D2 with spectral 
indices (S2) and the S2 bottom-of-atmosphere data D1 
and D2 with spectral indices and 3D data (S2-3D). 

All together, there were 10 S2 Bands, 34 indices 
by sensing time, 3 CHM dates, and 1 slope layer. So, 
depending on whether we included 3D data, we had 89 
or 93 variables by dataset. 

Reference pixels were produced from delineated 
management forest units (DFU) extracted from 
the regional forest administration geodatabase and 

from four bands (RGB and IR) 0.25 m resolution 
orthophotos covering the entire region. These image 
layers are available for the years 2006, 2009, 2012, and 
2015 (http://geoportail.wallonie.be). 

DFU were used for both Objectives 1 and 2 
to extract reference data for forest classes. Before 
that, DFU polygons were visually interpreted to 
verify eventual errors or modifications since the last 
update. For each class, the chosen forest stands were 
supposed to be “pure stands” according to the DFU 
database (percentage > 80%). Table 3 shows by class 
the number of polygons and the number of extracted 
pixels. Reference polygons were delineated for non-
forest classes by visual interpretation of orthophotos. 

3.3. Variable selection and classification 

The following steps were executed in the same way 
for Objectives 1 and 2 using Dataset 1 or 2 (Figure 2). 
Before building classification models, we rationally 
reduced the number of variables by selecting the 
most important using VSurf (Genuer et al., 2016) in 
R software (R Core Team, 2016). The VSurf package 
allows variable selection based on the estimation of 
RF’s variable importance (Genuer et al., 2015). As 
a result, the process provides two variables subsets. 
The first, called “variable interpretation”, is intended 
to show variables highly related to the response 
variable. It does not matter if there is some, or even 
much, redundancy in this subset. The second, called 
“prediction”, is a smaller subset with low redundancy 
intended to assure a good prediction of the response 
variable. 

The following parameters were set to allow the 
maximum performance in a reasonable time with the 
used computer: 
– each RF was built using ntree = 1,000 trees, the 

number of variables randomly sampled as candidates 
at each split (mtry) was set by default (sqrt[p], where 
p is the number of variables); 

– the number of random forests grown was 20 for the 
three main steps of the Vsurf process: “thresholding 
step”, “interpretation step”, and “prediction step” 
(nfor.thres = 20, nfor.interp = 20 and nfor.pred = 20); 

– the mean jump is the threshold of decreasing mean 
OOB error used in the Vsurf’s prediction step to add 
variables to the model in a stepwise manner. It was 
multiplied 4 times (nmj = 4) in order to make this 
step more selective, considering the large number of 
variables. 

For the two objectives, we realized supervised 
classifications per pixel with a RF classifier (Breiman, 
2001), using the randomForest package (Liaw & 
Wiener, 2002) in R software (R Core Team, 2016). 
Only the variables selected during the prediction step 
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Figure 2. Global workflow of the study divided in two goals of classification. The first classification model called Objective 1 
created a forest map, and was trained to identify four classes: broad-leaved stands, coniferous stands, recent clear-cuts, and 
non-forest areas. Second model called Objective 2 aimed at classifying the tree species present in the study site to evaluate the 
discrimination potential of S2 data using a pixel-based approach. After a step of variables selection, random forest classifiers 
were trained for two datasets: the first contained only S2 bands and spectral indices (Dataset S2), while the second also 
contained 3D data (Dataset S2-3D) — Workflow global de l’étude divisé en deux objectifs de classification. Le premier modèle 
de classification nommé Objectif 1 a généré une carte forestière et a été entrainé à identifier quatre classes : les peuplements 
feuillus, les peuplements résineux, les coupes rases récentes et les surfaces non forestières. Le second modèle nommé Objectif 2 
visait à classifier les espèces d’arbre présentes sur le site d’étude afin d’évaluer le potentiel discriminant des données S2 via 
une approche par pixel. Après une étape de sélection de variables, des forêts aléatoires ont été entrainées pour deux jeux de 
données : le premier contenant uniquement les bandes S2 et des indices spectraux (Dataset S2), le second incluant aussi des 
données 3D (Dataset S2-3D).
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of VSurf were considered for this classification. The 
process was executed with 2,000 trees to grow and mtry 
set by default. A series of parameters combinations 
were tested to find the most relevant parameters for 
this study. Before training the models, the number of 
observations by class was randomly downsampled to 
balance classes.

3.4. Accuracy assessment 

All the reference data extracted from DFU polygons 
were used to train Objective 1. The accuracy assessment 
was carried out with a set of points systematically 
distributed over the study area (1 km x 1 km, n = 
5,744 points) and photo-interpreted on the orthophotos. 
Confusion matrices were built comparing attributed 
classes for these points. 

Concerning Objective 2, 10% of the reference 
data extracted from DFU polygons was randomly 
selected to create a validation dataset. The number of 
observations by class was randomly downsampled to 
balance classes for the validation. Confusion matrices 
were built using these validation data. For Objectives 1 
and 2, we computed the OA (overall accuracy) as well 
as producer (PA) and user accuracy (UA) for each class. 

4. RESULTS 

4.1. Objective 1: forest map 

Comparing the performance of both datasets. 
Table 4 shows the accuracy of the forest maps 
generated using the S2 and S2-3D datasets. These 
results were computed before post treatments and 
are presented to compare dataset performances. The 
presentation of the final forest map is described in 
Section 4.1.3. S2-3D gave the best results, with an 
overall accuracy difference of 0.9% between the two 
approaches. This difference is significant (p-value = 
0.002421, McNemar’s chi-squared test realized on the 
contingency table of correctly classified and incorrectly 
classified points). The PA of the non-forest class had the 
highest difference in accuracy (1.7%) between S2 and 

S2-3D. The lowest difference in accuracy (0.4%) was 
for the PA of the forest class.

Selected variables. The results presented in this section 
are based on the classifier trained with the S2-3D 
dataset, which obtained the best precisions. Figure 3 
illustrates which S2 bands were mostly identified as 
relevant regarding our classification goals. A band was 
counted if it was selected at the VSurf interpretation 
step and each time it was used in a variable selected 
during the interpretation step. For Model 1, the three 
bands used the most were B8A, B11 and B12, all of 
which have a 20 m GSD.

In table 5, variables were sorted according to their 
sensing date and native spatial resolution. The term 
“mixed” means that S2 bands of both spatial resolutions 
were used to generate the index. 

Fourteen variables were selected during the VSurf 
prediction step. The list is presented in descending order 
of occurrence: CHM2, CHM3, B11-D2, CHM1, B7-D2, 
B12-D1, SLOPE, STI-D1, NDTI-D1, RTVIcore-D2, 
B5-D2, MSI-D2, NDrededgeSWIR-D1, and B5-D1. 

Table 3. The number of DFU polygons and extracted pixels by forest class: recent clear cuts (RCC), beech, birch, oak, other 
broad-leaved stands (OB), Douglas fir, larch, other needle-leaved stands (ON), Scots pine, spruce, young needle-leaved 
stands (YN) — Nombre de polygones DFU et nombre de pixels extraits par classe forestière : coupes récentes (RCC), 
hêtre (beech), bouleau (birch), chêne (oak), autres peuplements feuillus (OB), Douglas (Douglas fir), mélèze (larch), autres 
peuplements résineux (ON), pin sylvestre (Scots pine), épicéa (spruce), jeunes peuplements résineux (YN).
 RCC Beech Birch Oak OB Douglas

fir 
Larch ON Scots

pine 
Spruce YN  

Number of polygons 51 64 57 37 34 46 44 45 33 31 47
Number of pixels 7,068 6,327 2,589 4,572 3,623 5,929 5,799 3,251 4,180 4,028 3,858

Table 4. Accuracy comparison of the RF classifiers 
built with the S2 and S2-3D datasets for classification 
Objective 1. A visual interpretation of a systematic 
point grid (1 km x 1 km, n = 5,744 points) was used 
to compute accuracy indices: overall accuracy (OA), 
production accuracy (PA) and user accuracy (UA) by 
class — Comparaison des précisions atteintes résultant 
de l’utilisation des jeux de données S2 et S2-3D pour 
la classification Objectif 1. Une photointerprétation 
d’une grille de points systématique (1 km x 1 km, n = 
5 744 points) a été utilisée pour calculer les indices de 
précision : overall accuracy (OA), production accuracy 
(PA) and user accuracy (UA) par classe.
         S2 S2-3D
OA (%)    91,7 92,6
PA forest (%) 91,9 92,3
UA forest (%) 94,5 95,5
PA non-forest (%) 91,3 93,0
UA non-forest (%) 87,5 88,2
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Production of a forest map. The RF classifier 
generated with previous variables was used to compute 
a final forest map. This map was then filtered using the 
Majority Filter tool of ArcMap® (Number of neighbors 
to use: 8, Replacement threshold: MAJORITY). 
Figure 4 presents the result. A validation was carried 
out for the produced map. The OA value of the 
confusion matrix was 93.3%. PA and UA were 93.2% 
and 95.8% for the forest class while it was 93.3% and 
89.5% for the non-forest class.

4.2. Objective 2: tree species classification 

Comparing the performance of both datasets. In 
order to compare the accuracies of achieved results for 
both the S2 and S2-3D dataset, user accuracies of all 
classes have been summarized by mean to make the 
comparison easier. For dataset S2, OA and the user 
accuracy mean (UA mean) were 88.5% and 88.6% 
while for dataset S2-3D, it was 88.9% and 89%. As 
with Model 1, the 3D dataset gave the best results 
but the differences in precision can be considered as 
negligible: in all cases the value was less than 0.5%.

Selected variables. The results presented in this 
section concern the classifier trained with the S2-3D 
dataset that obtained the best precision values. They 
are summarized in figure 3 and table 5. The three 
most-selected bands at the VSurf interpretation step 
were B8A (NIR narrow), B5 (Red Edge 1), and B11 
(SWIR 1), all of which have a 20 m GSD. 

Eighteen variables were selected during VSurf 
prediction step. The list is presented in descending 
number of appearances: SLOPE, CHM1, CHM2, 
CHM3, RedSWIR1-D2, B8A-D2, B7-D2, B11-D2, 
NDrededgeSWIR-D1, B5D2, MSI-D2, NDWI1-D2, 
B12-D2, B6-D2, B11-D1, STI-D1, B5-D1, and 
LChloC-D1. 

Figure 3. Frequency of selection for each S2 band (Table 1) by the VSurf selection process (Genuer et al., 2016) during the 
interpretation step. A band is counted if selected itself or inside a spectral indice variable — Fréquence de sélection de chaque 
bande S2 (Tableau 1) par le processus de sélection VSurf (Genuer et al., 2016) durant la phase d’interprétation. Une bande 
est comptabilisée si elle est sélectionnée elle-même ou au sein d’une variable d’indice spectral.

Table 5. Percentage of selected S2 variables by spatial 
resolution and acquisition date of S2 image. The class 
“mixed” lists the variables computed with 10 m S2 
bands and 20 m S2 bands — Pourcentage des variables 
S2 sélectionnées par résolution spatiale et par date 
d’acquisition de l’image S2. La classe « mixed » concerne 
les variables générées avec des bandes S2 à 10 m et des 
bandes S2 à 20 m.

By date 
(%)

By spatial resolution 
(%)

8/2/2015 5/8/2016 10 m mixed 20 m 
Objective 1 32.1 67.9 7.1  21.4 71.4 
Objective 2 47.4 52.6 5.3  34.2 60.5
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Figure 4. On the top in RGB colour composition, one of the two S2 images (05/08/2015) used in this study. On the bottom, 
the forest map of the Belgian Ardenne ecoregion generated by merging the three forest classes of the classification result 
“Objective 1” into one. Both maps present a more detailed view in their top left corner — En haut en composition colorée 
RGB, l’une des deux images S2 (08/05/2015) utilisée dans cette étude. En bas, la carte forestière de l’écorégion de l’Ardenne 
belge, générée en fusionnant les trois classes forestières du résultat de la classification « Objectif 1 » en une seule. Les deux 
cartes présentent une vue plus détaillée dans leur coin supérieur gauche.
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Accuracy of the best classifier. Achieved accuracies 
with the S2-3D dataset are presented in detail by a 
confusion matrix (Table 6). The OA was 88.9%. The 
worse PA concerned the larch (79.9%) and recent 
clear cut  (83.2%) classes. The worst UA were for 
beech (83.8%) and larch (86.3%). 

5. DISCUSSION 

5.1. Variable selection 

It is interesting to observe the difference between 
Objectives 1 and 2 in figure 3. In Objective 1, the 
most selected bands were found, in order of number 
of appearances, B11, B8a, and B12. In Objective 2 the 
most selected bands were B8a, B5, and B11. These 
results are in line with the goals of classification 
models and band properties. Indeed, Objective 1 aimed 
at distinguishing forest classes (coniferous stands, 
broad-leaved stands, and recent clear-cuts) from non-
forest areas. The second classification objective was 
separating tree species classes present on the study 
site. B11 is sensitive to forest above ground biomass 
and B12 facilitates distinction of live biomass, dead 
biomass, and soil (Table 2), thus B11 and B12 have 

more importance in Objective 1 where there are 
non-forest classes. B5 and B8a are more related to 
Objective 2; indeed, vegetation classification is the 
only goal in this case. Figure 3 shows the importance 
of shortwave infrared (SWIR) (B11 and B12) and the 
red-edge band B5 for both models, as mentioned in 
other studies (Schuster et al., 2012; Fassnacht et al., 
2016; Immitzer et al., 2016; Radoux et al., 2016). 

Looking at table 5, we can see that the most 
selected variables have a GSD of 20 m. As a 
consequence, the resolution of the resulting maps was 
not really 10 m; even more without the use of 3D data. 
This confirms the relevance of spectral bands sensed 
by S2 but reminds us that spectral resolution can be 
more important than spatial resolution for vegetation 
discrimination at a regional scale. 

Selected variables were well distributed between 
the two S2 images taken on different dates, especially 
for Objective 2. It appears that image interaction was 
useful. Choosing the time of image acquisition in 
relation to species’ phenological cycle is a possible 
way to improve discrimination. Immitzer et al. (2016) 
test a classification of tree species in Germany for 
seven classes on a single date. Their results show an 
OA of 0.64, an accuracy lower than what we found 
in this study, even for Dataset S2. This was probably 

Table 6. Confusion matrix of classification Objective 2 for Dataset S2-3D. The validation of Objective 2 was realized with 
10% of the reference data. Classification Objective 2 concerned 11 classes: recent clear cuts (RCC), beech, birch, oak, other 
broad-leaved stands (OB), Douglas fir, larch, other needle-leaved stands (ON), Scots pine, spruce, young needle-leaved 
stands (YN). Producer accuracy (PA) and user accuracy (UA) are presented for each class — Matrice de confusion de la 
classification Objectif 2 pour le jeu de données S2-3D. La validation de la classification Objectif 2 a été réalisée en utilisant 
10% des données de référence. La classification Objectif 2 concernait 11 classes : coupes récentes (RCC), hêtre (Beech), 
bouleau (Birch), chêne (Oak), autres peuplements feuillus (OB), douglas (Douglas fir), mélèze (Larch), autres peuplements 
résineux (ON), pin sylvestre (Scots pine), épicéa (Spruce), jeunes peuplements résineux (YN). La précision du producteur 
(PA) et la précision de l’utilisateur (UA) sont présentées pour chaque classe.
Prediction Reference
 RCC Beech Birch Oak OB Douglas

fir 
Larch ON Scots

pine 
Spruce YN UA (%)

RCC 223 2 3 1 2 1 3 1 1 0 4 92.5 
Beech 5 238 1 1 8 3 6 11 3 4 4 83.8 
Birch 8 5 259 4 2 3 3 3 0 3 1 89.0 
Oak 1 1 1 229 2 5 8 0 2 1 1 91.2 
OB 6 0 1 5 242 3 4 2 3 2 1 90.0 
Douglas fir 2 2 0 3 4 232 16 3 1 1 2 87.2 
Larch 8 6 0 1 2 4 214 8 4 0 1 86.3 
ON 2 7 0 2 1 7 5 236 0 1 1 90.1 
Scots pine 3 2 2 4 2 0 0 0 249 4 2 92.9 
Spruce 6 2 0 9 2 7 4 1 4 251 3 86.9 
YN 4 3 1 9 1 3 5 3 1 1 248 88.9 
PA (%) 83.2 88.8 96.6 85.4 90.3 86.6 79.9 88.1 92.9 93.7 92.5  
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partially because of our use of images taken on two 
dates. It would be interesting to test the use of images 
taken on several dates during the vegetation period 
in order to benefit from tree species phenology. 
Particularly for broad-leaved species, a series of dates 
from March to May should help to detect differences 
in foliation period. This is a task for future study; the 
growing availability of free data from S2 satellites 
makes this research a possibility. 

During the final VSurf prediction step, all 3D 
data were taken into account and were among the 
best variables for both objectives. The slope was 
the best for Ojective 2, showing that the presence of 
certain species in the study site is strongly related 
to the topography. Fourteen variables were selected 
for Objective 1 and 18 for Objective 2. Except NDTI 
and RTVIcore, all the variables in Objective 1 were 
included in Objective 2. In addition, Objective 2 
included additional indices and S2 bands, which 
helped to discriminate vegetation species. As 
expected, this suggests that more information is 
needed to solve a complex problem like separating 
tree species. Just as the SWIR and red-edge bands 
were the most selected S2 variable during the VSurf 
interpretation step, almost all the variables selected 
during the VSurf prediction step were a SWIR or red-
edge band or a spectral index computed with at least 
one of these bands. 

5.2. Precision of the results 

The produced forest map (Objective 1) had a very 
good precision rate, with an OA of 93.3%. In our 
reference dataset, used for classifier construction, 
the non-forest class was composed of different land 
cover and was less homogeneous than other classes. 
The non-forest class UA was worse than for the forest 
class, probably for this reason. In this study, we did 
not control the behavior of the classifier with small 
woodland areas like isolated trees or bands of trees. 
The precision of the map could be negatively impacted 
by fragmented landscape elements because the spatial 
resolution of S2 is probably too low for this purpose, 
and edge pixels represent a large proportion of the 
total, increasing the bias due to sub-pixel variations 
(not evaluated here) (Stratoulias et al., 2015; Immitzer 
et al., 2016; Radoux et al., 2016). Hence, a possible 
improvement for users of this map could be to choose 
an appropriate definition for the forest that would 
remove these problematic elements. According to the 
Walloon Forest Inventory (Alderweireld et al., 2015), 
the Belgian Ardenne ecoregion includes 333,850 ha 
of forest area. Based on the forest map classification 
and the confusion matrix, an area estimator of forest 
was computed (Olofsson et al., 2013) at 354,761.3 ha 
(± 3,695.57 ha) of forest in the Belgian Ardenne 

ecoregion. The RFI only considers forest elements 
bigger than 0.1 ha and wider than 20 m. This limit 
could partly explain the over-estimation; pixel groups 
smaller than 10 pixels, correctly classified or not, are 
common on the forest map. 

The results of second objective, concerning tree 
species discrimination, were encouraging (Table 6). 
The obtained precisions were better than those in 
previous studies using S2 data (Immitzer et al., 2016) 
and similar or better than those in studies using data 
from other sensors with various spatial and spectral 
resolution (Immitzer et al., 2012). For this number 
of classes and this study area size, these results 
are encouraging. This approach demonstrates the 
possibility of efficiently mapping regional tree species 
with S2 imagery in the future. Nevertheless, the study 
did have some limitations, due to its workflow and the 
reference data used. 

First, because of the availability of data the 
number of different forest stands for some species 
used to extract pixels was limited (from 31 to 64, 
Table 3). This means that the within-species variance 
of training data sets was probably too reduced for a 
large area like the Belgian Ardenne. Furthermore, the 
DFU cover only public forests that represent 57% of 
the study area. It will be important for future studies to 
represent as best as possible the variability of species. 
Further research could also eventually consider 
ecological gradients in analyses (e.g. water proximity, 
elevation, sunlight exposure). For instance, the benefit 
of using ancillary geodata in a classification process 
has been studied in Forster & Kleinschmit (2014).

Second, we did not manage to account for species 
mixing at the pixel level. Indeed, the probability 
to have a single tree or stand exactly covered by a 
single pixel matching its extent is low (Fassnacht et 
al., 2016). The simplification done when extracting 
pixels from supposedly pure stands resulted in 
interesting conclusions regarding the separate nature 
of species. But it is not yet sufficient to create a map 
of species distribution, since the study area includes 
many mixed pixels. Furthermore, for this study, 
the most important S2 bands were sensed at 20 m 
GSD, increasing these effects. As a consequence of 
these two simplifications, the precision evaluated by 
independent validation was probably over-estimated 
for the application of the classifier over the whole 
study site. 

Choosing an object-based approach and processing 
segmentation with very high resolution images like 
orthophotos would allow researchers to work at 
the scale of one stand or tree group (Kumar, 2006). 
It could partly solve these issues and would give 
researchers the interesting opportunity to combine 
advantages from a time series of S2 images and very 
high-resolution images. 
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5.3. Contribution of 3D data 

In the creation of the forest map, the use of 3D data 
significantly improved the precision. However, 
it appears that at a large scale and at this spatial 
resolution it is possible to get sufficient predictions 
using only S2 imagery. The best improvements using 
3D data were seen in the UA of the forest class and 
in consequence for the PA of the non-forest class. 
Information about tree height should, most of the time, 
limit confusion between other vegetation and forest; 
the observed trend confirmed this idea. Furthermore, 
including old clear cuts in the forest map is a 
complicate task without using anterior CHM’s. Taking 
into account the fact that most of the variables used in 
the classification have a 20 m GSD, the 10 m spatial 
resolution of the 3 CHM is probably an advantage 
for the classification of edges. It could improve the 
precision at those locations where 20 m pixels have 
more chance to overlap the edge between forest and 
non-forest classes. So the quality of geometric limits 
is probably better for the forest map realized with the 
S2-3D dataset. 

In Objective 2, the global improvement brought 
by 3D data was less important than in Objective 1. 
In average, precision did not increase by more than 
0.5%. The only interesting exception is the PA of 
the RCC class, which increased by 5%. As expected, 
the 3 CHM improved the detection of recent clear 
cuts. Surprisingly, the detection of YN class did 
not improve. It appears that their S2 information is 
already distinguishable from that of other classes 
without information about height. The use of CHM 
is not very relevant for the discrimination of tree 
species at this spatial resolution. In contrast, a derived 
variable of environment, like the slope (selected as 
first variable at VSurf prediction step), seems to bring 
more interesting information and improving such an 
approach could be pertinent.

6. CONCLUSIONS 

This paper investigates the new opportunity offered 
by Sentinel-2 imagery to classify forest and forest 
species at large scale. Two cloud-free S2 scenes 
(02/08/2015 and 08/05/2016) were used and a series 
of spectral indices were computed for each. After 
variable selection, we applied supervised pixel-based 
classifications with a random forest classifier. A first 
model of classification aimed at creating a forest 
map of the Belgian Ardenne ecoregion. A second 
tested tree species discrimination for species present 
on the study site. These two models of classification 
were processed with both a pure S2 dataset and with 
additional 3D data and the obtained precisions were 

compared. The precision of produced forest maps was 
evaluated with a visually interpreted systematic point 
grid at intervals of 1,000 m. For the second model, 
the models were validated with 10% of the reference 
data. 

The evidence from this study suggests that this 
approach enables accurate classification without 3D 
data. For Objective 1, classification realized with 3D 
data was significantly better, with an OA difference of 
0.9%. For Objective 2, the improvement in OA was 
negligible (0.4%). The produced forest map had an 
OA of 93.3%. The test of tree species discrimination 
was conclusive and encouraging with an OA of 88.9%. 
Concerning Objective 2, it is important to remember 
that the present study has investigated a simplified 
per-pixel classification with pixels extracted from 
a limited number of pure stands. As a consequence 
of these simplifications, the precision evaluated 
was probably over-estimated for the application of 
the classifier on the whole study site. Despite these 
limitations, the results confirmed the great potential 
of S2 imagery for tree species discrimination. More 
specifically, the SWIR and red-edge S2 bands are 
essential, as they were by far the most important in 
our variable selection process. Their spatial resolution 
of 20 m can lead to restrictions for detailed analyses. 
That is why we recommend that further research 
combines S2 imagery with another data source at 
very high spatial resolution in order to exploit the 
undeniable discrimination power of S2 and a better 
spatial precision. Along the same lines, we achieved 
similar results both using a 3D dataset and without, 
but precisions of edges and the detection of small 
elements seemed to be improved using 3D data. That 
improvement has not been evaluated in this study. The 
main gain of using 3D data was the improvement of 
the forest map and the clear cuts detection. In further 
research, it would be interesting to generate a forest 
map including clear cuts, starting from 3D data only 
at a higher spatial resolution.

The choice of an object-based approach and the 
use of better acquisition dates are possible methods 
to improve our classification results. To further our 
research, we plan to work on the quality of reference 
data and to develop adequate methods to surpass the 
test step and create tree species classifiers operational 
for the production of tree species maps at large scale 
with an assessment of their precision in the best way. 
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