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Alopecurus myosuroides	Huds.	(black-grass)	has	always	been	a	major	concern	for	cereal	growers,	and	the	development	of	
herbicide	resistance	does	not	improve	the	situation.	This	review	article	summarizes	the	different	traits	involved	in	the	dispersal	
pattern	of	herbicide	 resistant	black-grass	 individuals	within	a	 susceptible	field	population.	Therefore,	 the	whole	 life	cycle	
of	black-grass	is	depicted	from	the	seed	to	the	seed.	From	the	early	vegetative	development	to	the	seed	falling,	every	stage	
is	described,	taking	into	account	how	herbicide	resistance	can	influence	or	exert	a	different	impact	compared	to	susceptible	
plants.
Keywords.	Black-grass,	Alopecurus myosuroides	Huds.,	herbicide	resistance,	propagation	models,	seed	dispersal,	life	cycle.

Revue de l’écologie des capacités de propagation du vulpin des champs (Alopecurus myosuroides Huds.) en relation 
avec la résistance aux herbicides.	Alopecurus myosuroides	Huds.	 (vulpin	des	champs)	a	 toujours	été	une	préoccupation	
majeure	pour	les	céréaliculteurs	et	le	développement	de	la	résistance	aux	herbicides	n’améliore	pas	la	situation.	Cet	article	de	
synthèse	résume	les	différents	critères	impliqués	dans	les	modèles	de	dispersion	d’individus	de	vulpin	des	champs	au	sein	d’un	
champ	ou	d’une	population	sensible.	Pour	ce	faire,	le	cycle	complet	du	vulpin	est	décrit	de	la	semence	à	la	semence.	Depuis	
le	développement	végétatif	précoce	jusqu’à	la	chute	de	la	graine,	chaque	étape	est	décrite	en	prenant	en	compte	comment	la	
résistance	aux	herbicides	peut	influencer	ou	exercer	un	impact	différent	par	rapport	à	des	plantes	sensibles.
Mots-clés.	 Vulpin	 des	 champs,	 Alopecurus myosuroides	 Huds.,	 résistance	 aux	 herbicides,	 modèles	 de	 propagation,	
dissémination	des	graines,	cycle	de	développement.

1. INTRODUCTION

Alopecurus myosuroides	Huds.	(black-grass)	is	one	of	
the	commonest	grass	weeds	of	winter	cereals	in	North-
Western	Europe.	The	control	of	this	weed	has	always	
been	a	major	concern	for	farmers,	particularly	because	
of	its	high	reproduction	rate	and	its	strong	competition	
towards	the	crops.	In	order	to	tackle	its	proliferation	and	
limit	 the	dispersal	of	 this	grass	weed,	cereal	growers	
used	to	spray	large	quantities	of	herbicides.	But	soon	
herbicide	 resistant	 plants	 developed,	 thus	 inducing	
a	 new	 source	 of	worries.	 Furthermore,	 the	 spread	 of	
herbicide	resistance,	combining	genetic	evolution	and	
seed	 dispersal,	 has	 important	 consequences	 for	 the	
sustainability	of	cereal	production.	

This	 review	 article	 aims	 to	 gather	 and	 explain	
the	 different	 traits	 involved	 in	 the	 dispersal	 pattern	

of	 black-grass	 individuals	 within	 a	 field	 population.	
Therefore,	 the	 whole	 life	 cycle	 of	 black-grass	 is	
depicted	here	from	the	seed	to	the	seed.	

Before	aiming	to	contribute	to	the	next	generation	
and	get	a	positive	fitness,	the	plant	has	first	to	grow	in	its	
environment,	in	the	best	way	to	produce	the	maximum	
of	flowers	that	might	be	pollinated.	It	implies	a	good	
germination,	correct	early	vegetative	development	and	
sufficient	 height	 to	 struggle	 with	 neighboring	 plants	
for	light	and	nutrient,	and	in	this	case	of	a	gramineous	
plant,	 a	 large	 number	 of	 tillers	 carrying	 fertile	 ears.	
Then,	 for	 this	anemochorous	species,	a	 lot	of	 factors	
are	 involved	 in	 pollen	 spread	 addition	 to	wind	 force	
and	 relative	 humidity,	 such	 as	 ears’	 height	 but	 also	
crop’s	height.	Indeed,	it	is	in	this	particular	boundary	
layer	 above	 the	 crop	 cover,	 that	wind	 takes	 over	 the	
pollen	to	carry	it	to	the	next	fertile	ear.	Afterwards,	the	
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plant	has	to	provide	to	its	offspring,	the	best	conditions	
to	 survive	 once	 they	 will	 be	 released	 within	 the	
environment,	 carried	by	 the	wind,	 animals	or	 simply	
falling	 to	 the	 ground.	And	 thereafter	 starts	 the	 cycle	
again.

As	a	matter	of	fact,	herbicide	resistance	is	usually	
not	considered	as	an	induced	mechanism	in	the	plant	
but	more	likely	as	a	heritable	trait,	transmitted	through	
generations	(Letouzé	et	al.,	2001).	Therefore,	we	can	
assume	that	the	resistance	gene(s)	can	be	conveyed	by	
the	 pollen.	The	 brackets	 for	 the	 “s”	 of	 gene	 are	 due	
to	 the	 fact	 that	we	 still	 do	 not	 know	 exactly	 neither	
how	many,	nor	which	genes	are	involved	in	resistance,	
especially	for	enhanced	metabolism	resistance.	In	the	
case	of	target-site	resistance,	due	to	a	single	mutation	
in	 the	 gene	 coding	 for	 the	 enzyme	 targeted	 by	 the	
herbicide,	 it	 is	 simple	 as	 only	 one	 gene	 seems	 to	 be	
responsible	for	the	resistance	(e.g.	Délye	et	al.,	2007;	
Marshall	et	al.,	2008).

Dispersal	 is	 one	 of	 the	 central	 processes	 in	 the	
dynamics	 and	 evolution	 of	 plant	 populations.	 The	
spatial	dynamics	of	plant	populations	are	determined	
to	a	large	degree	by	the	movement	of	seeds.	At	regional	
scales,	 seed	dispersal	 ranges	will	 set	 the	possibilities	
for	colonization	of	new	sites	(Ouborg	et	al.,	1999).	A	
better	understanding	of	these	dispersal	patterns,	linked	
to	herbicide	resistance,	is	crucial	in	order	to	implement	
good	 strategies	 to	 limit	 and	 control	 the	 extension	 of	
herbicide	 resistance	within	 the	 fields	 or	 even	 over	 a	
larger	area.

Figure 1	presents	the	structure	of	this	review	paper,	
from	 the	 seed	 to	 the	 seed.	Mother	 plant	 has	 first	 to	
germinate,	to	start	vegetative	growth,	then	reproductive	
growth,	which	gives	some	heads.	These	will	emit	and	
receive	a	certain	amount	of	pollen,	and	then	produce	
seeds	that	will	finally	fall	back	down	to	the	soil.

2. VEGETATIVE DEVELOPMENT

Several	characteristics	are	involved	in	the	propagation	
process	of	one	plant.	Before	 the	pollen	emission	and	
the	 seed	 shedding	which	 are	 the	 point	 of	 this	 paper,	
the	plant	has	first	to	develop.	Therefore,	seeds	have	to	
be	present	in	the	field’s	seed	bank,	the	dormancy	has	
to	be	lifted,	and	then	the	tillage	and	the	drilling	have	
to	be	performed	so	as	to	allow	the	seeds	to	germinate	
in	 good	 conditions	 (Colbach	 et	 al.,	 2002;	 Colbach	
et	 al.,	 2003).	 Climatic	 conditions	 are	 very	 important	
during	the	whole	development	cycle	of	the	plant,	and	
especially	in	the	early	stages	with	the	soil	humidity	and	
temperature.	The	 intra	 and	 inter-specific	 competition	
(Chauvel	 et	 al.,	 2005)	with	 the	 crop	 is	 really	 crucial	
during	the	first	days.	Hereafter,	each	factor	conditioning	
the	good	vegetative	development	is	described.

2.1. Dormancy

Variation	 in	 primary	 dormancy	 among	 populations	
is	 a	 common	 feature	 in	 wild	 plant	 species	 and	 has	
been	 explained,	 for	 example,	 by	 differing	 weather	
conditions	during	seed	maturation,	 light	environment	
of	the	mother	plant	and	genetic	differences.	Duration	
of	 primary	 dormancy	 indicates	 to	 what	 extent	 fresh	
seeds	will	 germinate	 the	first	 autumn	 after	 dispersal.	
Appreciable	 variation	 in	 initial	 dormancy	 among	
different	 collections	 was	 shown	 for	 A. myosuroides,	
with	 germination	 percentage	 ranging	 from	 15%	
to	 68%	 in	 light	 at	 normal	 autumn	 temperature	
(16 ⁄ 6°C)	 (Andersson	 et	 al.,	 2009).	 Colbach	 et	 al.	
(2002)	 demonstrated	 a	 similar	 variation	 among	 seed	
collections,	 with	 germination	 of	 fresh	 black-grass	
seeds	ranging	from	38%	to	70%.	Swain	et	al.	 (2006)	
found	 large	 variations	 over	 years	 in	 A. myosuroides	

and	concluded	that	variations	could	be	related	
to	the	temperature	during	seed	maturation	on	
the	mother	plant.	The	humidity	levels	to	which	
plants	were	exposed	during	panicle	formation	
and	seed	maturation	affected	the	dormancy	of	
seeds	produced.	Lower	relative	humidity	was	
associated	 with	 a	 higher	 proportion	 of	 non-
dormant	seeds,	and	vice versa.	Nevertheless,	
temperature	 during	 seed	 maturation	 had	
generally	 a	 greater	 effect	 on	 seed	 dormancy	
than	soil	moisture	(Swain	et	al.,	2006).	There	
is	 less	 initial	 dormancy	 in	 seeds	 produced	
under	 warm	 and	 dry	 conditions,	 than	 under	
cool	and	wet	ones.	

Froud-Williams	et	al.	(1984a)	demonstrated	
that	 seeds	did	not	 enter	 in	 a	deep	 secondary	
dormancy	 during	 the	 summer.	 Indeed,	
germination	of	A. myosuroides	was	promoted	
by	 Red	 and	 Far-Red	 during	 the	 autumn	 of	
sowing,	 but	 germination	 only	 occurred	 in	

Figure 1. Review	structure:	organisation	of	dispersal	components	—	
Structure de l’article de revue : organisation des composantes de la 
dispersion.
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response	 to	high	 levels	of	Pfr	 (physiologically	active	
form	 of	 phytochrome)	 during	 the	 spring.	 However,	
in	the	subsequent	autumn	increased	sensitivity	to	low	
levels	of	Pfr	was	regained.	This	is	consistent	with	a	total	
loss	of	dormancy	during	periods	of	natural	emergence.	
Re-imposition	 of	 dormancy	 and	 light	 sensitivity	
confers	 a	 survival	 advantage	 to	 seeds	 by	 preventing	
germination	at	times	hazardous	for	establishment.

2.2. Germination

A. myosuroides	 populations	 commonly	 display	 two	
distinct	emerging	cohorts,	a	major	one	during	autumn,	
and	 a	minor	 one	during	 spring	 (Barralis,	 19701	 cited	
in	 Menchari	 et	 al.,	 2007).	 So,	 it	 can	 develop	 either	
in	winter	 crops,	 such	 as	winter	wheat	 or	 rape,	 or	 in	
spring	 crops,	 like	 sugar	 beet	 or	 maize.	 This	 ability,	
which	 limits	 the	 efficiency	 of	 control	 by	 rotation,	
occurs	 simultaneously	 with	 a	 change	 in	 the	 rate	 of	
leaf	 appearance	 due	 to	 sensitivity	 towards	 combined	
environmental	 factors	 (Chauvel	et	al.,	2000)	 in	order	
to	complete	its	life	cycle	in	a	shorter	period.	Even	in	
winter	crops,	a	second	range	of	germination	can	occur	
after	the	winter,	though	in	a	rather	limited	proportion.	
Therefore,	 it	 is	 really	 important	 to	 control	 the	 weed	
population	as	well	as	possible	to	avoid	an	overwhelming	
increase	of	black-grass	in	the	seed	bank.	Indeed,	with	
more	or	less	500	viable	seeds	produced	by	one	plant,	
the	expansion	can	be	really	fast	(Moss,	1985).	

In	case	of	autumn	germination,	plants	have	to	grow	
sufficiently	before	 the	first	 low	temperatures	 to	resist	
the	 rudeness	 of	 winter.	Moreover,	 they	 benefit	 from	
these	cold	temperatures	to	fill	the	need	of	vernalization.	
Emerging	roughly	at	the	same	time	as	the	crop,	black-
grass	 can	 synchronize	 with	 the	 crop	 cycle.	 Thus,	
weeds	can	grow	together	with	it	to	be	able	to	compete	
for	light.	As	with	other	annual	weeds,	A. myosuroides	
must	complete	its	life	cycle	earlier	than	the	crop.	

In	 case	 of	 spring	 germination,	 plants	 get	 a	 better	
climate	as	soon	as	their	emergence.	They	can	start	really	
fast	and	develop	in	good	conditions	and	catch	up	with	
the	 crop.	On	 the	 other	 hand,	 they	 are	 not	 vernalized	
enough,	but	the	sums	of	temperature	are	more	rapidly	
completed.	The	higher	appearance	rate	of	black-grass	
leaves	for	early	spring	germination	facilitates	a	faster	
development	and	an	earlier	seed	production	in	spring	
cereals	 (Chauvel	 et	 al.,	 2000).	 It	 has	 been	 suggested	
that	 the	autumn	and	spring	cohorts	could	 result	 from	
a	 selection	 of	 two	 different	 biotypes	 with	 different	
germination	 and	 flowering	 requirements	 (Wellington	
et	al.,	19662	cited	in	Chauvel	et	al.,	2002).	

The	 effect	 of	 burial	 on	 germination	 of	
A. myosuroides	 seeds	 has	 been	 shown	 by	 several	
authors	 (i.e.	 Froud-Williams	 et	 al.,	 1984b;	 Cussans	
et al.,	1996).	Froud-Williams	et	al.	(1984b)	showed	that	
A. myosuroides	emerged	only	from	relatively	shallow	
depth	(<	50	mm),	with	an	optimum	at	0-20	mm.	At	the	
soil	surface,	emergence	occurs	mainly	in	autumn,	and	
in	case	of	soil	cultivation	practices,	a	smaller	proportion	
can	also	germinate	during	the	following	spring.	When	
buried	at	5	cm	depth,	seeds	did	not	germinate	until	the	
following	year.

2.3. Vernalization

The	 vernalization	 is	 one	 of	 the	 main	 factors	 that	
reduced	 the	 vegetative	 period	 and	 enhanced	
flowering	 induction.	 Chauvel	 et	 al.	 (2002)	 showed	
that	 vernalized	 plant	 apices	were	 at	 the	 double-ridge	
stage	 after	 670	 day-degrees	 (base	 0°C),	 whereas	 at	
the	same	time,	all	unvernalized	plant	apices	were	still	
at	 the	vegetative	stage.	 If	 there	was	no	vernalization,	
the	 reproductive	process	was	 induced	 later,	 and	12%	
of	 the	 plants	 remained	 vegetative	 after	 1,200	 day-
degrees.	 In	 addition,	 vernalized	 plants	 appear	 to	 be	
morphologically	 different	 (taller,	 producing	 fewer	
tillers	but	with	more	panicles	 emerging	earlier)	 from	
unvernalized	ones.

2.4. Phyllochron

Figuring	 the	 thermal	 time	 between	 the	 initiation	 of	
two	successive	leaves	on	the	main	stem	(expressed	in	
day-degrees),	the	phyllochron	of	A. myosuroides	does	
not	seem	significantly	to	be	affected	by	vernalization.	
Mean	values	of	 the	phyllochron	were	90	day-degrees	
(base	0°C).	According	to	the	sowing	dates,	phyllochron	
values	vary	from	60	to	99	day-degrees	per	leaf,	whereas	
tiller	 developmental	 rates	 vary	 from	 66	 to	 95	day-
degrees.	The	combined	action	of	cumulative	radiation	
and	photoperiod	can	modify	phyllochron	values.	Day	
length	and	vernalization	appeared	to	have	cumulative	
effects	 on	final	 leaf	 number	 and	flowering	 time.	The	
rate	 of	 development	 of	 leaves	within	A. myosuroides	
appears	 to	 be	 faster	 than	 that	 observed	 for	wheat	 or	
barley.	This	allows	the	weed	to	complete	its	life	cycle	
before	the	harvest	(Chauvel	et	al.,	2002).	

There	is	a	variation	in	leaf	appearance	with	sowing	
date	 which	 cannot	 solely	 be	 related	 to	 temperature.	
Certainly,	 as	 for	 cultivated	 plants,	 the	 black-grass	
phyllochron	may	be	influenced	by	a	number	of	factors	
such	 as	 water,	 soil	 compaction	 or	 light.	 Kirby	 et	 al.	

1	Barralis	G.,	1970.	La	biologie	du	vulpin	des	champs	(Alopecurus 
agrestis	L.).	I.	Dormance	primaire	et	faculté	germinative.	Rev. 
Gén. Bot.,	77,	429-433.

2	Wellington	P.S.	&	Hitchings	S.,	1966.	Seed	dormancy	and	
the	winter	annual	habit	in	blackgrass	(Alopecurus myosuroides 
Huds.).	J. Nat. Inst. Agric. Bot.,	10,	628-643.
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(1985)	 demonstrated	 that	 leaf	 appearance	 rate	 varies	
with	 sowing	 date,	 and	 that	 leaves	 of	 late	 sown	 crop	
plants	generally	appear	more	rapidly.	Leaf	emergence	
rate	seems	to	be	determined	early	in	the	plant	life	cycle,	
and	is	dependent	on	environmental	conditions	during	
the	emergence	stage.	Influence	of	day	length	has	also	
been	demonstrated	for	wheat,	and	other	authors	have	
suggested	that	use	of	a	photothermal	scale	can	improve	
leaf	 number	 prediction	 (Masle	 et	 al.,	 19893	 cited	 in	
Chauvel	 et	 al.,	 2000).	 Global	 solar	 radiation	 seems	
to	be	one	of	 the	main	factors	explaining	phyllochron	
variation	(Chauvel	et	al.,	2000).

2.5. Intra-specific competition

Density	 effects	 due	 to	 intra-specific	 competition	 are	
very	strong	on	the	growth	and	vegetative	development	
of	 blackgrass.	 Chauvel	 et	 al.	 (2005)	 worked	 on	
blackgrass	 plots,	 sowed	 in	 two	 densities	 (D1-D2)	
and	with	 two	nitrogen	 supply	 (N1-N2),	 to	 assess	 the	
plants’	 development	 when	 exposed	 to	 intra-specific	
competition.	The	high	density	(D2)	of	A. myosuroides 
affected	plant	morphology;	plants	in	D2	density	were	
higher	 than	 those	 in	 D1	 density.	 The	 high	 density	
(D2)	 affected	 negatively	 the	 shoot	 weight	 and	 the	
total	 number	 of	 tillers:	 this	 tendency	 tends	 to	 be	
more	 important	 with	 the	 higher	 nitrogen	 supply	
(N2).	Without	 light	 competition,	 nitrogen	 influenced	
positively	 A. myosuroides	 growth.	 Early	 nitrogen	
deficiencies	 reduced	 early	 growth	 and	 components	
such	as	tillering	(Chauvel	et	al.,	19964	cited	in	Chauvel	
et	 al.,	 2005).	 A. myosuroides	 suppression	 by	 the	
crop	was	bigger	 at	high	nitrogen	 level.	These	 results	
indicated	 that	 this	 weed’s	 development	 and	 growth	
were	strongly	influenced	by	intra-species	competition.	
Unlike	Lolium rigidum,	A. myosuroides	did	not	appear	
as	a	strong	competitive	weed	(Chauvel	et	al.,	2005).

3. FLOWERING STAGE

The	 number	 of	 heads	 per	 plant	 is	 conditioned	 by	
the	 number	 of	 tillers.	 Sometimes,	 in	 greenhouse	
conditions,	 the	number	of	 tillers	 can	 rise	up	 to	more	
than	100	per	plant	(Chauvel	et	al.,	2005).	Their	height	
is	crucial	to	guarantee	good	pollen	propagation	at	first,	
but	also	for	the	seed	shedding.	Indeed,	if	 the	apex	of	
the	ear	is	fairly	high	and	above	the	crop	cover,	there	is	

no	physical	barrier	for	the	wind	to	carry	the	pollen,	and	
for	the	seed	to	fall	to	the	ground	at	a	longer	distance.

The	dispersal	unit	of	A. myosuroides	 is	 the	whole	
spikelet	 which	 is	 single-flowered.	 The	 head	 length	
(HL)	 is	 known	 to	 be	 correlated	 to	 the	 total	 number	
of	 spikelets	 (SNH,	 Spikelets	 Number	 per	 Head):	
SNH	=	1.74	HL	-	35.97	(R²	=	0.86)	 (Dalbiès-Dulout	
et	 al.,	 2001).	 Chauvel’s	 results	 (2005)	 indicated	 that	
inflorescence	 length	 is	 more	 likely	 influenced	 by	
nitrogen	availability,	while	the	number	of	spikelets	by	
inflorescence	is	not	modified.	As	low	differences	were	
observed	 on	 inflorescence	 length,	 seed	 production	
differences	were	especially	linked	to	the	tiller	number.	
A. myosuroides	 plant	 under	 reduced	 light	 produced	
less	 mature	 inflorescence.	 Roché	 et	 al.	 (1994)	 have	
shown	 for	 another	 weed,	 Centaurea solstitialis L.,	
that	 reduction	 of	 light	 could	 decrease	 significantly	
the	 reproductive	 capacity,	 for	 example	 the	 number	
of	 flowers.	 This	 could	 be	 explained	 by	 the	 fact	 that	
light	 reduction	 during	 meiosis	 phenomenon	 altered	
outcrossing	 fertilisation.	 The	 anthesis	 date	 appears	
not	 to	 be	 modified	 by	 neither	 light	 nor	 nitrogen	
availabilities	(Chauvel	et	al.,	2005).

4. PROPAGATION ABILITIES

4.1. Pollen

More	 than	 70%	 of	 A. myosuroides	 pollen	 dispersal	
was	found	to	occur	within	1	m,	although	fecundation	
can	occur	at	a	distance	of	at	least	60	m	from	the	pollen	
donor	plant	in	the	absence	of	physical	barriers	to	pollen	
propagation	 (Chauvel,	 1991).	 So,	 one	 field	 could	
include	several	subpopulations.	Considering	the	mean	
heterozygosity	 calculated	 for	 seven	 loci,	 black-grass	
populations	 fit	 with	 panmixia equilibrium:	 it	 seems	
that	 genes	 are	mostly	 exchanged	 at	 random	within	 a	
field	(Chauvel	et	al.,	1994).	

Menchari	 et	 al.	 (2007)	 observed	 a	 total	 expected	
heterozygosity	 of	 0.21	 and	 a	 mean	 FST	 value	 of	
0.023.	 The	 low	 differentiation	 among	 populations	
and	 the	absence	of	a	significant	 relationship	between	
genetic	and	geographical	distances	 suggest	 that	 there	
may	 be	 extensive	 gene	 flow	 connecting	 black-grass	
populations.	 However,	 the	 self-dispersal	 capacity	 of	
A. myosuroides	 seeds	 and	 pollen	 were	 shown	 to	 be	
limited.

Studies	of	genetic	variation	of	weeds	(and	invaders	
generally)	after	their	introduction	(Warwick	et al.,19875	
cited	 in	Chauvel	 et	 al.,	 1994)	 in	 a	 new	geographical	3	Masle	J.,	Doussinault	G.,	Farquhar	G.D.	&	Sun	B.,	1989.	Foliar	

stage	in	wheat	correlates	better	to	photothermal	time	than	to	
thermal	time.	Plant Cell Environ.,	12,	235-247.
4	Chauvel	B.,	Angonin	C.	&	Colbah	N.,	1996.	In:	Proceedings of 
the Fourth ESA-Congress.	Black-Grass (Alopecurus myosuroides 
Hudson) development and seed production in wheat. Book of 
abstracts.	Veldhoven,	The	Netherlands:	ESA,	528-529.

5	Warwick	S.I.,	Thompson	B.K.	&	Black	L.D.,	1987.	Genetic	
variation	in	Canadian	and	European	populations	of	the	colonizing	
weed	species	Apera spica-venti.	New Phytol.,	105,	301-313.
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area	have	shown	that	an	out	crossing	mating	
system	reduces	the	effect	of	genetic	drift	in	
comparison	with	a	strong	inbreeding	mating	
system	 (Warwick,	 1991a6	 and	 Bosbach	
et al.,	19817	cited	in	Chauvel	et	al.,	1994).

Richter	et	al.	 (2004)	presented	a	model	
to	 describe	 the	 spatial	 spread	 of	 pollen	
over	 a	 closed	 canopy	 with	 a	 Neumann	
boundary	 condition	 at	 the	 surface	 of	 the	
canopy.	The	wind	profile	above	the	canopy	
causes	 long-range	 transport	 in	 the	 upper	
layers,	whereas	particles	near	the	boundary	
layer	 are	 transported	 only	 a	 short	 range	
because	 of	 gravitational	 settling	 and	 low	
velocities	within	 the	 boundary	 layer.	Then	
they	 linked	 these	data	 to	model	 the	spatial	
spread	of	pesticide	resistant	pest	(or	weed)	
populations.	 They	 used	 the	 modeling	
framework	 above	 to	 study	 the	 spread	 of	
pesticide	 resistance	 using	 an	 artificial	
simulation	experiment.	

The	hypothetical	study	area	consisted	of	
three	plots	“B”,	“C”,	and	“D”	(Figure 2).	A	
pesticide	 (or	 herbicide)	 is	 applied	 to	 plots	
“B”	and	“C”.	Plot	“D”	remained	untreated.	
Starting	 from	an	 infested	spot	“A”	on	plot	
“B”	a	 resistant	biotype	begins	 to	 spread	 in	 the	 study	
area.	 The	 resultant	 spatial	 distributions	 of	 resistant	
(AA	 and	 aA)	 and	 sensitive	 (aa)	 biotypes	 are	 shown	
in	figure 3	 for	 two	 time	steps.	The	 resistant	biotypes	
invade	the	treated	plots,	whereas	the	sensitive	biotype	
retreats	 to	 the	 untreated	 plot,	 which	 may	 serve	 as	 a	
refuge	(Richter	et	al.,	2004).

Amalgamation	 of	 all	 the	 processes	 (dispersal,	
growth	 and	 genetics)	 into	 the	 same	 mathematical	
structure	 (i.e.	 partial	 differential	 equations)	 allows	
a	 broad	 spectrum	 of	 applications	 that	 encompass	
developments	of	 anti-resistance	 strategies,	 as	well	 as	
risk	 assessment	 of	 spread	 of	 transgenic	 properties.	
However,	 for	 a	 detailed	 mapping	 of	 the	 life	 cycle	
of	 plants,	 it	 is	more	 appropriate	 to	 use	 time	 discrete	
models	 that	 are	 embedded	 into	 cellular	 automaton	
models	 (Seppelt,	 2003,	 chapter	 38	 cited	 in	 Richter	
et al.,	2004).	A	major	drawback	of	cellular	automaton	
models	is	that	the	range	of	dispersal	in	one	time	step	
is	 limited	by	 the	order	of	 the	Moore radius.	Cellular	

automata	models	are	therefore	not	capable	of	modeling	
pollen	dispersal	on	a	large	(landscape)	scale.	In	order	
to	 achieve	 both	 a	 realistic	 description	 of	 plant	 (or	
insect)	development	in	terms	of	a	time	discrete	scheme	
and	a	realistic	simulation	of	long-range	dispersal,	both	
systems	 have	 to	 be	 integrated	 into	 a	 hybrid	 model	
(Richter	et	al.,	2004).

Busi	 et	 al.	 (2008)	 conducted	 a	 landscape	 level	
field	 experiment	 to	 try	 to	 assess	 the	 pollen-mediated		
gene	flow	at	long	distance.	They	used	Lolium rigidum	
herbicide-susceptible	 individuals	placed	at	 increasing	
distance	 of	 a	 large	 field	 infested	 with	 herbicide-
resistant	L. rigidum.	Herbicide	resistance	was	used	as	
a	marker	to	quantify	the	distance	and	the	rate	of	pollen-
mediated	 gene	 flow.	Resistance	 genes	were	 found	 at	
the	 maximum	 tested	 distance	 of	 3,000	m.	 This	 was	
the	first	 reported	case	of	 long-distance	gene	flow	 for	
L. rigidum,	 and	 these	data	 are	 fairly	outstanding.	We	
now	have	to	know	if	this	distance	can	be	transposed	to	
A. myosuroides.

4.2. Seeds

Seed	 production	 differences	 were	 especially	 linked	
to	 the	 tiller	 number.	 The	 effect	 of	 nitrogen	 fertilizer	
did	 not	 always	 increase	 weed	 seed	 production.	
Furthermore,	 the	 germination	 rate	 was	 reduced	 for	
seeds	produced	under	high	level	of	nitrogen	(Colbach	
et	 al.,	 2003),	while	 it	 is	 increased	with	 seed	weight.	
Caryopsis	weight	decreases	with	higher	density	 (D2)	

6	Warwick	S.I.,	1991a.	The	influence	of	intraspecific	variation	on	
the	biology	of	agricultural	weeds.	In:	Proceedings of Brighton 
Crop Protection Conference: Weeds, November 18-21, 1991,	
Brighton, United Kingdom.	Farnham,UK:	British	Crop	Protection	
Council,	997-1006.
7	Bosbah	K.	&	Hurka	H.,	1981.	Biosystematic	studies	on	Capsella 
bursa-pastoris	(Brassicaceae):	enzyme	polymorphism	in	natural	
populations.	Plant Syst. Evol.,	137,	73-94.
8	Seppelt,	2003.	Computer-based environmental management.	
Weinheim,	Germany:	Wiley-VCH,	304.

Figure 2.	 Finite-element	 mesh	 for	 the	 numerical	 simulation	 of	 the	
dispersal	of	resistance	for	a	test	geometry	—	Maillage à éléments-finis 
pour la simulation numérique de la dispersion de la résistance pour un 
test de géométrie	(Richter	et	al.,	2004).

Plots	B	and	C	are	treated	with	a	pesticide.	On	Plot	B	a	resistant	biotype	is	
located	in	spot	A	—	les parcelles B et C sont traitées avec un pesticide. Sur la 
parcelle B, un biotype résistant est situé au point A.
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and	 the	 quality	 of	 the	 seed	 produced	 in	 competition	
was	partly	altered	(Chauvel	et	al.,	2005).

Chauvel	 et	 al.	 (2005)	 observed	 that	 black-grass	
behaves	 as	 typical	 allogamous	 species	 showing	 high	
seed	 viability	 in	 high	 plant	 density	 conditions.	They	
explained	 this	 by	 the	 number	 of	 flowering	 plants	 in	
each	greenhouse	that	produced	such	a	pollen	quantity	
that	 out	 crossing	 fertilization	 values	 were	 strongly	
higher	in	comparison	with	field	data.

The	dispersal	unit	of	A. myosuroides	 is	 the	whole	
spikelet	which	is	single-flowered.	The	mean	dispersal	

distance	of	black-grass	seeds	is	51	cm	(Colbach	et	al.,	
2001).	 Wind	 speed	 (significant	 at	 0.0001,	 whatever	
the	 analyzed	 parameter)	 increases	 both	 the	 number	
of	 dispersed	 seed	 and	 the	 dispersal	 distance	 with	
the	 highest	 seed	 density.	 The	 region	 (Figure 4)	 also	
influences	these	two	parameters,	and	it	appears	that	both	
the	number	of	collected	seeds	and	the	distance	at	which	
seeds	 were	 dispersed	 were	 higher	 in	 the	 downwind	
region	 (II).	 Region	 strongly	 interacts	 with	 another	
significant	 input	variable,	 i.e.	 the	number	of	 ears	per	
plant.	This	variable	increases	the	number	of	dispersed	

Figure 3.	Spatial	spread	of	three	biotypes	(sensitive:	upper,	resistant:	 lower	and	middle)	for	two	time	steps	—	Dispersion 
spatiale des trois biotypes (sensible : au-dessus, résistant : en bas et au centre) pour deux échelles de temps	(Richter	et	al.,	
2004).
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seeds,	 independently	 of	 the	 regions.	 However,	 the	
number	of	 ears	 per	 plant	 effect	 on	dispersal	 distance	
depended	on	the	regions:	it	was	nil	in	the	upwind	region	
(which	was	the	region	with	little	dispersal)	and	highly	
significant	 in	 the	 downwind	 region	 (which	 was	 the	
region	with	most	dispersal);	in	the	latter	case,	dispersal	
distances	were	lowest	for	plants	with	large	number	of	
ears	(Colbach	et	al.,	2001).	

Plant	 height	 only	 influenced	 the	 distance	 at	
which	 the	 largest	 number	 of	 seeds	 was	 found;	 the	
higher	the	plants,	the	further	away	from	the	plant	the	
seeds	 fell.	 Lighter	 seeds	 are	 carried	 farther	 because	
gravity	 interacts	 less	with	 their	horizontal	movement	
(Colbach	 et	 al.,	 2001).	 As	 expected,	 the	 density	 of	
collected	seeds	formed	a	leptokurtic	distribution	with	
a	peak	near	the	seed-producing	plant	and	a	monotonic	
decrease	with	 distance	 (Schupp	 et	 al.,	 19959	 cited	 in	
Colbach	et	al.,	2001).	Of	course,	dispersal	by	harvest	
tools	carries	seeds	over	larger	distances	than	“naturalˮ	
seed	dispersal	(Colbach	et	al.,	2001).

Seeds	 of	 black-grass	 have	 been	 efficiently	
eliminated	 from	 cereal	 seeds	 for	 at	 least	 70	years	 in	
France,	so	that	dispersal	via	cereal	seed	lots	used	for	
sowing	 is	 very	 unlikely	 at	 present.	 However,	 seeds	
may	 occasionally	 be	 transported	 by	 farm	machinery,	
especially	 combine-harvesters	 and	 tractors,	 over	 a	
few	kilometers,	as	shown	for	other	grass	weed	species	
(Légère	 et	 al.,	 2000).	 Since	 contemporary	 gene	 flow	
among	 agricultural	 fields	 seems	 rather	 restricted,	 the	
low	 genetic	 differentiation	 at	 AFLP	 markers	 may	
result	 from	 important	 gene	 flow	 that	 occurred	 in	 the	
past.	 The	 historical	 distribution	 and	 demography	 of	
A. myosuroides	 are	 not	well	 known	 (Menchari	 et al.,	
2007).	 In	 France,	 its	 presence	 has	 regularly	 been	
recorded	in	botanical	reports	from	the	end	of	the	19th	

century	 to	 the	 mid-20th	 century,	 although	 it	 was	 not	
considered	as	a	harmful	weed	at	that	time.	At	the	end	
of	the	19th	century,	black-grass	was	sown	in	meadows	
as	 a	 minor	 species	 bulked	 with	 other	 grasses,	 and	
appeared	in	commercial	seed	lots	(Heuze,	191110	cited	
in	Menchari	et	al.,	2007).	This	could	have	resulted	in	
long-distance	transportation	of	seeds.	

After	 the	 shedding,	 seeds	 can	 be	 transported	 at	 a	
further	 distance	 by	 small	 animals	 such	 as	 mice	 and	
voles.	This	dispersion	mechanism	called	epizoochory,	
whose	 widely	 studied	 cases	 are	 those	 mediated	 by	
herbivores,	concerns	adhesion	to	animal	fur	(Sorensen,	
1986;	 Davidson,	 199311	 cited	 in	 Benvenuti,	 2007).	
The	 plant	 height	 contributes	 to	 the	 effectiveness	 of	
epizoochory	as	the	degree	of	dispersal	is	greatest	when	
the	height	of	the	plant	is	approximately	similar	to	that	
of	 the	 animal	 with	 which	 the	 plant	 most	 frequently	
comes	into	contact.	

Dactylis glomerata	L.	and	Bromus erectus	Huds.	are	
likewise	highly	successful	in	achieving	lasting	adhesion	
to	 ovine	 fur	 and	 can	 be	 transported	 for	 prolonged	
distances.	 Other	 examples	 of	 epizoochory	 are	 found	
in	 Knautia arvensis	 (L.)	 Coulter	 (Dipsaceae),	 some	
species	of	the	genus	Medicago	(Fabaceae),	and	almost	
all	species	of	the	genus	Setaria	(Poaceae).	In	the	latter	
case,	the	modifications	of	the	spikelet	allow	adhesion.	
The	 botanical	 family	 of	 Graminaceae	 has	 numerous	
species	 that	 undergo	 epizoochorous	 dispersal,	 even	
though	 they	 have	 no	 particular	 specialization.	 The	
elongated	and	frequently	pointed	shape	of	their	seeds,	
as	in	the	case	of	Bromus sterilis L.,	Lolium	multiflorum	
Lam.,	 and	Alopecurus myosuroides	Huds.,	 facilitates	
adhesion	(Benvenuti,	2007).	

In	 the	 case	 of	 black-grass	 growing	 in	 a	 crop,	
especially	wheat,	shedding	occurs	when	the	vegetation	
is	very	dense	and	few	animals	go	through	it,	enough	to	
be	in	contact	with	the	heads.	Nevertheless,	when	seeds	
fall	to	the	ground,	small	mammals	surrounding	on	the	
soil,	or	birds	like	pheasant	or	partridge,	nesting	under	
the	cover,	might	get	these	on	their	feathers	or	fur	and	
then	make	them	travel	away.

5. MODELS

5.1. Life cycle 

S.R.	Moss	 developed	 in	 1990	 a	 life	 cycle	 model	 of	
A. myosuroides	 presented	 in	 figure 5	 (Cavan	 et	 al.,	
2000),	 which	 relates	 the	 number	 of	 inflorescences	
produced	per	square	meter,	h,	to	the	number	of	plants	

Figure 4. Definition	of	seed	collection	areas	relative	to	a	single	
seed-producing	 plant	 (black	 dot)	 —	 Définition des zones 
de collection des semences, par rapport à une seule plante  
produisant des semences (point noir) (Colbach	et	al.,	2001).

Region	I:	upwind	—	région I	:dans le sens opposé au vent;	
region	II:	downwind	—	région II : dans le sens du vent;	
region	III:	cross-wind	(relative	to	local	dominant	wind	
direction)	—	région III : perpendiculaire au vent (en rapport à la 
direction des vents dominants sur place).

9	Schupp	E.W.	&	Fuentes	M.,	1995.	Spatial	patterns	of	seed	
dispersal	and	the	unification	of	plant	population	ecology.	
EcoScience,	2,	267-275.

10	Heuze	G.,	1911.	Les pâturages, les prairies naturelles et les 
herbages.	Paris	:	Librairie	agricole.
11	Davidson	W.D.,	1993.	The	effects	of	herbivory	and	granivory	on	
terrestrial	plant	succession.	Oikos,	68,	25-35.
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per	square	meter	surviving	herbicide	treatment,	p,	by	
the	density-dependent	relation:

	 h	=	3,88p	/	(1,0	+	0,0018	p).

The	 model	 assumes	 that	 55	viable	 seeds	 are	
produced	on	each	head	and	shed	on	to	the	soil	surface,	
where	55%	of	seeds	are	 lost	by	predation,	decay	and	
germination	before	cultivation.	The	soil	 seed	bank	 is	
divided	 into	 two	 levels:	 the	 top	 5	cm	 “surface	 seed	
bankˮ	 from	 which	 seedlings	 can	 emerge	 and	 the	
lower	“deep	seed	bank”	from	which	they	cannot.	Seed	
predation	 and	 decay	 remove	 70%	 of	 the	 seed	 bank	
annually	 at	 both	 levels.	The	plough	 (mould	 board	 to	
25	cm	deep)	moves	95%	of	seeds	from	the	surface	seed	
bank	 to	 the	 deep	 seed	 bank	 and	 35%	 from	 the	 deep	
to	 the	 surface	 seed	 bank.	 Tine	 cultivation	 to	 10	cm	
deep	moves	20%	of	seeds	from	the	surface	seed	bank	
to	 the	deep	 seed	bank	but	 does	not	move	 any	of	 the	
deep	 seed	 bank	 upwards.	 Annually	 15%	 of	 newly	
shed	 seeds	 and	30%	of	 seeds	 that	 are	 at	 least	 1	year	
old	produce	seedlings	which	emerge	(from	the	shallow	
seed	 bank).	 A	 proportion	 of	 susceptible	 seedlings	

(set	at	either	80%,	90%	or	95%	“herbicide	kill	rate”)	
are	 killed	 by	 herbicide	 before	 maturing	 to	 produce	
heads.	The	initial	seed	bank	contains	100	newly	shed	
seeds	per	m²,	distributed	evenly	 to	a	depth	of	25	cm.	
Single-gene	resistance	was	incorporated	into	the	model	
with	a	mutation	rate	of	10-6	per	generation,	conferring	
total	 resistance	 to	 ACCase	 inhibitors	 herbicides	 in	
both	 homozygous	 and	 heterozygous	 states	 but	 not	
affecting	 the	 kill	 rate	 of	 other	 herbicide	 groups.	
Randomly,	 spatially	 homogeneous	 pollination	 was	
assumed.	Infestations	of	A. myosuroides	do	not	start	to	
impact	significantly	on	cereal	yields	until	they	exceed	
10	plants.m-²	(Ingle	et	al.,	199712	cited	in	Cavan	et	al.,	
2000)	but	populations	can	increase	extremely	rapidly	
unless	 checked	 by	 herbicide.	 Consequently,	 this	
population	level	(10	plants.m-²)	was	used	as	a	threshold	
to	define	field	resistance	(Cavan	et	al.,	2000).

Figure 5.	Lifecycle	model	of	Alopecurus myosuroides (Moss,	1990	cited	in	Cavan	et	al.,	2000)	—	Modèle du cycle de vie 
d’Alopecurus	myosuroides (Moss, 1990 cité dans Cavan et al., 2000).

12	Ingle	S.,	Blair	A.M.	&	Cussans	J.W.,	1997.	The	use	of	weed	
density	to	predict	winter	wheat	yield. Aspects Appl. Biol.,	50,	393-
400.
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5.2. ALOMYSYS

ALOMYSYS	is	another	model	developed	by	Colbach	
et	 al.	 (2006)	 that	 can	 also	 be	 really	 useful	 in	 the	
understanding	 and	 prediction	 of	 black-grass	 dispersal	
within	 a	 field	 (Figure 6).	 This	 model	 gathers	 and	
integrates	 information	 from	 11	sub-models	 (roman	
numerals	 in	figure 6),	 predicting	 (a)	 soil	 environment	
(climate,	structure)	resulting	from	the	cropping	system	
and	external	climate,	(b)	vertical	soil	seed	distribution	
after	 tillage,	 and	 (c)	 seed	 survival,	 dormancy,	
germination	and	pre-emergent	growth	depending	on	soil	
environment,	seed	depth,	characteristics	and	past	history.	
Consequently,	 the	model	 can	 be	 used	 to	 simulate	 the	
effects	of	cropping	systems	on	black-grass	emergence.	

6. CONCLUSION

Since	early	1980’s	and	even	before,	research	on	black-
grass	ecology	has	really	went	up,	especially	because	of	
the	development	of	herbicide	resistance.	The	first	case	
was	reported	in	1983.	The	aim	of	this	research	was	to	
get	 as	much	 information	 as	 possible	 on	 this	 plant	 to	
try	to	get	rapidly	rid	of	it	in	our	crops.	Unfortunately,	
for	farmers,	thirty	years	after,	black-grass	still	remains	
a	major	concern.	During	the	last	fifty	years,	we	could	

assist	to	a	wide	spread	of	resistant	populations,	first	in	
the	UK,	and	now	in	the	whole	Northern	part	of	Europe.	
Although	herbicide	resistant	genes	can	explain	in	great	
part	 its	 recent	 spread,	 combined	 effects	 of	 different	
practices	due	to	intensive	agriculture	seem	also	to	be	
involved.	To	try	to	avoid	or	limit	a	wider	extension	of	
theses	resistant	biotypes	it	is	essential	to	develop	and	
implement	integrated	cropping	systems.	

As	these	new	systems	introduce	changes	in	cultural	
practices,	such	as	modifications	in	crop	sowing	dates	
or	 the	 introduction	 of	 new	 crops	 in	 the	 rotation,	
knowledge	 about	 the	 effects	 of	 these	 practices	 on	
weed	 demography	 are	 important	 to	 improve	 weed	
management	 and	prevent	weed	 spread.	Demographic	
models	 for	 A. myosuroides,	 such	 as	 ALOMYSYS,	
take	 into	 account	 the	 number	 of	 days	 to	 flowering	
to	 predict	 the	 possibility	 of	 seed	 production	 in	 new	
cropping	systems.	For	example,	reduced	row	spacing	
or	selecting	for	more	competitive	wheat	varieties	could	
help	to	reduce	weed	seed	production	and	could	manage	
weed	 infestation.	Every	 topic	presented	 in	 this	paper	
can	be	aimed	at,	in	a	way	to	limit	as	much	as	possible	
the	development	and	the	extension	of	this	weed,	even	
before	using	herbicides.

Unfortunately,	 when	 some	 individuals	manage	 to	
slip	through	the	net,	and	get	to	flowering	stage,	black-
grass,	 especially	 resistant	 ones,	 are	 able	 to	 scatter	 in	

Figure 6. Cropping	 system	 (bold)	 and	 environmental	 (italic)	 input	 variables,	 intermediate	 variables	 (standard),	 output	
variables	(framed)	and	sub-models	(roman	numerals)	of	the	ALOMYSYS	model	—	Système cultural (en gras) et variables 
environnementales d’entrée (en italique), variables intermédiaires (normal), variables de sortie (encadrées) et sous-modèles 
(chiffres romains) du modèle ALOMYSYS (Colbach	et	al.,	2006).
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the	environment,	either	by	pollen	flow,	or	by	the	seed.	
Wind	direction	and	speed	are	most	important	for	daily	
seed	 dispersal.	 The	 total	 number	 of	 seeds	 increases	
with	 wind	 speed	 as	 more	 seeds	 are	 detached	 from	
the	ear;	 they	are	carried	 farther	away	from	the	plant,	
in	 the	windward	 direction,	 by	 the	 force	 of	 the	wind.	
Nevertheless,	most	seeds	are	dispersed	no	further	than	
the	immediate	neighborhood	of	their	mother	plant	(50-
60	cm)	(Colbach	et	al.,	2001).	However,	Busi	showed	
in	 2008	 that	Lolium rigidum	 pollen	 can	 cover	 up	 to	
3	km.	Some	research	has	to	be	conducted	to	verify	if	
these	 data	 can	 be	 transposed	 to	 A. myosuroides,	 but	
it	 is	clear	 that	 such	a	distance	 is	 really	 important	 for	
resistance	gene	dispersion,	even	at	a	landscape	level.

To	sum	up	 the	article,	figure 7	presents	 the	“seed	
production”	 sub-models	of	ALOMYSYS,	 taking	 into	
account	the	whole	of	the	major	steps	depicted	through	
this	article.
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