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Although Phaseolus species are still difficult to transform, progress in this field now opens the way to engineering beans with
a higher nutritional value. The opportunities for gene engineering in nutritional quality improvement, the strategies which can
be adopted and the constraints we are still facing are briefly outlined, using the enhancement of the seed methionine content
and the reduction in antinutritional factors as examples.
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Stratégies pour I’amélioration de la qualité nutritionnelle des haricots (Phaseolus) & I’aide de I’ingénierie génétique.
Bien qu’il soit encore difficile de transformer génétiquement les especes du genre Phaseolus, les progres effectués dans ce
domaine ouvrent des perspectives d’améliorer génétiqguement la valeur nutritionnelle des haricots. Les possibilités de
transformation génétique pour I’amélioration de la qualité nutritionnelle, les stratégies pouvant étre adoptées et les contraintes
actuelles sont brievement décrites et illustrées par des exemples sur la teneur en méthionine et la réduction de facteurs

antinutrionnels.

Mots-clés. Phaseolus, transformation génétique des plantes, qualité nutritionnelle des graines.

1. INTRODUCTION

Gene engineering can contribute significantly to
Phaseolus improvement, especially where classical
breeding cannot readily provide solutions. This is the
case when germplasm with the desired characteristics
is not available or when the trait is difficult to transfer
to other genotypes, e.g. because of complex inheritance,
close linkage to other undesirable traits, lack of
knowledge about the underlying physiology, etc.
Concerning nutritional quality, targets for a gene
engineering approach include enhancement of the
methionine content and reduction of phytate and
raffinose-family-oligosaccharides (RFOs). The sulphur-
containing amino acids methionine and cysteine are
the first limiting amino acids in most grain legumes,
including Phaseolus spp. (Nwokolo, Smartt, 1996),
and so far classical breeding efforts to increase the
concentration of these amino acids have not been
successful. RFOs (a-1,6-galactosyl -sucrose) cannot
be metabolised because of the absence of a-galactosidase
in the human digestive system and are therefore

considered as major determinants of flatulence, which
may accompany bean consumption. Phytate (inositol
hexaphosphate) forms complexes with minerals and
thereby lowers the bioavailability of these minerals.
An important contribution of genetic engineering
will be to elucidate the basis of nutritional deficiencies
and as such facilitate improvement of nutritional
quality by either conventional or biotechnological
means. Indeed, the causes of many deficiencies are not
fully established. For example, it is not clear to what
extent RFOs on the one hand and factors such as fiber
digestibility on the other hand, contribute to intestinal
discomfort. Furthermore, compounds with antinutritional
properties (phytate, RFOs, tannins, glucosinolates,
etc.) may at the same time have beneficial effects for
human health or constitute a defense of the plant
towards biotic or abiotic stresses. RFOs are for
instance implicated in cold and desiccation tolerance.
Many of these issues can be addressed using transgene
technology, which allows us to modify one single
property of the plant. Moreover, the variation in
transgene expression levels typically encountered
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among different transgenic lines could be exploited to
determine whether concentrations of antinutritional
compounds exist that strike a balance between
beneficial and adverse effects.

2. WHICH STRATEGIES CAN BE USED ?

In general the following strategies can be envisaged:
— overexpression of an endogenous (Phaseolus) gene,
— introduction of a modified endogenous gene,

— suppression of an endogenous gene by either
antisense or co-suppression technology, and

— introduction of a foreign gene.

From the point of view of public acceptance, genes
derived from Phaseolus or other food plants may be
preferred. These strategies will be illustrated using the
above mentioned traits as examples.

2.1. Enhancing methionine content

Several ways to enhance the seed methionine content
can be followed, one of which is transformation with
genes encoding methionine-rich seed proteins. Such
proteins have not been detected in Phaseolus and it is
therefore necessary to introduce foreign genes or to
modify endogenous genes. Methionine-rich seed
proteins and their corresponding genes have been
identified in Bertholletia excelsa, Helianthus annuus
and Zea mays. Transformation with these genes
resulted in enhanced seed methionine levels in several
grain legumes, including Glycine max, Vicia
narbonensis and Lupinus angustifolius (reviewed by
Tabe and Higgins, 1998). Alternatively, genes
encoding highly abundant but methionine-poor seed
storage proteins can be modified with extra
methionine codons. To have a significant impact on
the total methionine content, extensive modifications
are required, while synthesis, intracellular transport
and stability of the protein should not be affected. This
can most easily be achieved if the three-dimensional
structure of the protein is known. The crystal structure
of two abundant seed proteins of Phaseolus, arcelin
and phaseolin, are available (Lawrence et al., 1990;
Hamelryck et al., 1996), making these proteins good
candidates for this approach. One step further is to
design completely artificial methionine-rich proteins
(Keeleret al., 1997). Whatever methionine-rich protein
is chosen, high accumulation levels should be reached.
This requires the use of appropriate regulatory
sequences (see further) and can also be facilitated by
reducing the accumulation of endogenous protein
fractions. Antisense technology has for example been
used to repress expression of napin and cruciferin in
Brassica napus seeds (Kohno-Murase et al., 1994;
1995) and of 2S albumin in Arabidopsis thaliana
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seeds (Goossens et al., 1999) and to concomitantly
increase seed-specific expression of other endogenous
genes or transgenes.

Another way of enhancing methionine levels is
through manipulating its biosynthesis. One of the key
enzymes in the methionine biosynthetic pathway is
aspartate kinase (AK). This enzyme is regulated by
feedback inhibition. Transformation with an AK gene
from E. coli that is insensitive to feedback inhibition
resulted in enhanced free methionine levels in tobacco
seeds (Karchi et al., 1993). Other biosynthetic steps
could similarly be manipulated. As free methionine is
a minor fraction in comparison with protein-bound
methionine, this approach is not expected to increase
total seed methionine levels dramatically and it may
be useful to introduce simultaneously a methionine-
rich protein that can act as a strong sink for deposition
of the extra methionine

2.2. Reduction of phytate and raffinose-family-
oligosaccharides

RFO levels could be reduced through antisense or co-
suppression constructs targeted at the genes encoding
the a-galactosyl transferases that catalyze RFO
synthesis. Alternatively, specific a-galactosidases could
be expressed in a seed-specific manner. Similarly,
reduction of phytate levels could be achieved by seed-
specific expression of a phytase gene, for example the
phytase cDNA recently cloned from maize seedlings
(Maugenest et al., 1997).

3. WHICH TOOLS ARE NEEDED ?
3.1. An efficient transformation system

So far, two systems for the production of transgenic
plants in the genus Phaseolus have been described.
One is a regeneration independent approach which
resulted in transgenic Phaseolus vulgaris (common
bean) plants and is based on particle bombardment of
seedling apical meristems (Russell et al., 1993;
Aragdo et al., 1996). This procedure is comparatively
inefficient and apparently not suitable for the
production of a sufficiently large number of transgenic
plants. In our group, transgenic Phaseolus acutifolius
(tepary bean) plants have been generated with a
procedure based on regeneration from callus and
Agrobacterium-mediated gene transfer (Dillen et al.,
1997a). This procedure has been optimised (Dillen et
al., 1997b and unpublished results) and has become
routine in our hands. So far, transgenic plants have
been obtained in seven independent experiments.
Within the grain legumes, P. acutifolius is now one of
the few species for which the number of transformed
plants that can be generated is large enough to permit
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transgenic approaches for applied or fundamental
research. Moreover, P. acutifolius can be hybridised
with the economically more important species
P.vulgaris. P. acutifolius is actually used in breeding
programs as a source of useful traits for common bean
improvement. Introducing transgenes in P.vulgaris
through interspecific crosses with transgenic
P. acutifolius is therefore feasible and would fit into
existing breeding strategies. Because of progress made
in regeneration of P. vulgaris genotypes (Zambreet al.,
1998), it may be possible to extend this transformation
procedure to P. vulgaris.

3.2. Cloned coding sequences

For several traits, coding sequences are available at
present (see some examples above). For other traits
this is not yet the case. However, it can be expected
that large scale sequencing projects for model plants
and for the major crop species will provide most of the
relevant genes in the near future. It will probably be
necessary to clone the Phaseolus homologues of these
genes when using antisense and co-suppression
approaches, which rely on sequence homology.

3.3. Regulatory sequences

Preferentially, genes of interest should be expressed in
a developmentally correct and tissue specific manner,
i.e. in seeds and/or pods only. This is not a major
constraint as most processes relevant to nutritional
quality occur during the organ expansion and
maturation phase of seed development. Several
promoters which are active during this phase have
been cloned, notably promoters of seed storage protein
genes, and some of these direct very high seed specific
expression. The available promoter sequences include
those of the Phaseolus genes encoding phaseolin,
phytohemagglutinin and arcelin (Slightom et al.,
1983; Voelker etal., 1987; Anthony etal., 1991;
Goossens etal., 1995). For some applications,
however, promoters may be needed which are not
readily available, e.g. seed coat specific promoters.

4. CONCLUSIONS

For several nutritional deficiencies of Phaseolus, the
biochemical, physiological or molecular basis is not
completely understood. Moreover, modifications
meant to improve nutritional quality may create
undesired side-effects. Transgenic approaches will
undoubtedly be instrumental to resolve these
uncertainties. P. acutifolius, for which an efficient
transformation system is available, can serve as a very
good model system in this regard. For some traits, e.g.

methionine content, strategies for improvement are at
hand and the available transformation procedures (for
P. vulgaris and for P. acutifolius) can already be used
to implement them. Nevertheless, more efficient
transformation methodology for P.vulgaris would
considerably reduce the efforts needed to introduce
transgenes in commercial lines.
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