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To suggest a conservation and management strategy for wild Lima bean (Phaseolus lunatus L.) in the Central Valley of Costa 
Rica, we examined the spatial distribution of genetic variation in 96 populations, using ten enzyme loci to analyse F-statistics 
and Moranʼs I. These loci displayed 20 alleles, of which 5 with relatively high frequencies were exclusively localised in the 
central part of the Valley. The estimates of F-statistics indicated a high level of genetic differentiation between populations 
(Mean FST=0.504±0.094). Such a value suggested that wild P. lunatus maintains about 50% of its genetic variation among 
populations. Moreover, the levels of inbreeding (FIT=0.882±0.026 and FIS=0.761±0.012) were high and signifi cantly different 
from zero. Hence the genotypic composition of wild Lima bean deviated from Hardy-Weinberg proportions as a result of 
genetic differentiation between populations and non-random mating within populations. Spatial autocorrelation analysis using 
four loci showed positive and signifi cant Moranʼs I at short distance in most cases. The resulting correlograms displayed 
up and down stochastic variations and indicated a patchy genetic structure. Combining the results obtained with those 
previously published on genetic structure, mating system, gene fl ow, and demography, we suggested probable causal factors 
and evolutionary mechanisms driving the genetic variability of the populations analysed. In addition, we indicated populations 
that should be preserved and proposed a reliable in situ management strategy.
Keywords. Phaseolus lunatus, Lima bean, autocorrelation, spatial genetic structure, in situ conservation.

Différenciation géographique des allozymes chez la forme sauvage de Phaseolus lunatus L. dans la Vallée Centrale 
du Costa Rica et ses implications pour la conservation et la gestion des populations. Afi n de proposer une stratégie de 
conservation et de gestion pour la forme sauvage du haricot de Lima (Phaseolus lunatus L.) dans la Vallée C   entrale du Costa 
Rica, nous avons examiné la distribution spatiale de la variabilité génétique de 96 populations. Dix loci enzymatiques ont été 
utilisés pour analyser les F-statistiques et lʼindice I de Moran. Ces loci ont exprimé 20 allèles dont 5 ayant des fréquences 
relativement élevées étaient exclusivement localisés dans la partie centrale de la vallée. Les valeurs estimées des F-statistiques 
indiquaient un haut niveau de différenciation génétique entre les populations (FST=0,504±0,094). Une telle valeur suggère que 
la forme sauvage de P. lunatus maintient environ 50 % de sa variabilité totale entre les populations. En outre, les niveaux de 
consanguinité (FIT=0,882±0,026 et FIS=0,761±0,012) étaient signifi cativement supérieurs à zéro. En conséquence, la compo-
sition génotypique du haricot de Lima sauvage dévie des proportions de Hardy-Weinberg suite à la différenciation génétique 
entre les populations et à lʼabsence de la panmixie dans les populations. L̓ analyse de lʼautocorrélation spatiale effectuée à 
partir des données de quatre loci a montré que lʼindice I de Moran était positif et signifi catif à courtes distances pour la plupart 
des loci. Les corrélogrammes qui en résultent ont montré une variation stochastique irrégulière ainsi que lʼexistence dʼune 
structuration spatiale de la diversité génétique en taches. En combinant les résultats des études précédentes concernant la 
structure génétique, le système de reproduction, le fl ux de gènes et la démographie, nous avons proposé des facteurs et méca-
nismes dʼévolution qui pourraient moduler la variabilité génétique des populations analysées. En plus, nous avons indiqué les 
populations qui pourraient être protégées et proposé une stratégie fi able de gestion in situ. 
Mots-clés. Phaseolus lunatus, haricot de Lima, autocorrélation, structure génétique spatiale, conservation in situ.
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1. INTRODUCTION

In research on appropriate way to address plant 
resources conservation and management strategies, 
knowledge of the amount of genetic diversity and the 
spatial distribution of this diversity is essential for a 
correct diagnosis of the status, threats, and viability 
of populations (Hamrick, Allard, 1972; He et al., 
2000; Escudero et al., 2003; Wilson, 2004). Genetic 
diversity may be spatially structured at different scales 
(geographic, population, subpopulation, etc.), due to 
environmental infl uence, life history, and demographic 
traits of the species (Loveless, Hamrick, 1984; Slatkin, 
1985; Oostermeijer et al., 2003). Consequently, spatial 
genetic structure provides a valuable tool for inferring 
causal factors and underlying operating evolutionary 
forces such as selection, gene fl ow, and drift (Nevo 
et al., 1982; Nevo et al., 1986; Barbujani, 1987; 
Epperson, 1990; Wilson, 2004).

Levin (1974), Loveless, Hamrick (1984), Wade, 
McCauley (1988), Oostermeijer et al. (1994) and 
Grassi et al. (2004) have highlighted the infl uence of 
environmental factors (including human activities and 
various interactions) and life history traits of plant 
species on population viability and genetic variability. 
An increasing number of studies have also integrated 
data from ecology, population biology, genetics, and 
reproductive biology in order to formulate reliable 
conservation and management strategies of populations 
(Schaal, Levin, 1976; Guerrant, 1992; Widén, 1993; 
Alvarez-Buylla et al., 1996; Oostermeijer et al., 
2003). In these investigations, spatial analysis methods 
are of a special interest (Sokal, Oden, 1978a; Sokal, 
Oden, 1978b; Legendre, Fortin, 1989; Escudero et al., 
2003). Indeed, this technique may be helpful, for 
example, for the improvement of sampling strategies in 
collecting seeds for ex situ conservation, the selection 
of populations that should be protected in situ, the 
determination of the area size necessary for the 
conservation of a particular population, the selection 
of a specifi c site for the establishment of a corridor 
population, etc.

In 1992–2002, a wide research program describing 
population genetic structure, gene fl ow, genetic 
variability at geographical level, reproductive biology, 
and dynamics of wild Lima bean (Phaseolus lanatus 
L.) populations was conducted in the Central Valley of 
Costa Rica with the aim of developing a strategy for 
in situ conservation and management. This material 
represents a very important genetic reservoir for the 
improvement of the various Phaseolus bean cultigens, 
commonly found in many traditional cropping systems 
in Latin America and East Africa (Maquet, Baudoin, 
1997). In this project, P. lunatus is also considered 
as a plant model due to its alternatively outbreeder-
inbreeder behaviour. Indeed, Lima bean is a self-

compatible annual or short-living perennial species 
with a mixed-mating system, but predominantly self-
pollinating, since the average outcrossing rate is low: 
0.096±0.071 (Zoro Bi et al., 2004).

Wild individuals in the valley are characterized 
by an indeterminate, climbing and vigorous growth 
habit, showing a prolonged fl owering period (mid-
November to mid-February) and a heavy pod load. 
Around 400 wild P. lunatus populations have been 
recorded in collaboration with the University of San 
José (Costa Rica) in the target area, which covers 
2100 km2, in variants of premontane and lower 
montane humid forests, with altitudes ranging from 
500 to 1800 m.a.s.l. Reproductive individuals can 
bear several racemes (about 400) with 1-20 pods per 
raceme, each pod containing 1-5 seeds. A three-year 
soil seed bank study indicated the occurrence of 
3-5 seeds/m2 according to populations (Degreef et al., 
2002). The annual germination rate from this soil seed 
bank ranged from 70 to 86%. In order to investigate 
the population genetic aspects, 22 enzyme loci from 
15 enzymatic systems were resolved and their genetic 
basis established (Zoro Bi et al., 1999). Sampling 
strategies integrating criteria of effi ciency relevant 
to multilocus and many target populations have been 
investigated, in particular the number of plants and the 
number of seeds to be sampled (Zoro Bi et al., 1998). 
Using the 22 enzyme loci resolved and the determined 
seeds sampling strategy, we analysed the genetic 
structure of 29 populations (Zoro Bi et al., 2003). 
Thus, we quantifi ed the proportion of polymorphic 
loci (P=10.32%), the mean number of alleles per locus 
(A=1.10), and the mean effective number of alleles 
per locus (Ae=1.05). The genotypic composition of 
the analysed populations showed deviation from the 
expected Hardy-Weinberg proportions. The total 
heterozygosity (HT), the intrapopulation genetic 
diversity (HS) and the interpopulation genetic diversity 
(DST) were 0.193, 0.082, and 0.111 respectively. 
From the level of genetic differentiation between 
populations (FST=0.444) which suggest that wild Lima 
bean maintains most of its isozyme variation among 
populations, gene fl ow was estimated, calculating the 
number of migrants per generation and assuming an 
island model (Wright, 1951): Nm=0.398.

In order to refi ne the diagnosis of genetic status and 
threats on wild Lima bean from the Central Valley of 
Costa Rica, additional investigations concerning the 
spatial structure of the genetic variation have been 
suggested. Here we report the results of a study aimed at 
determining the geographical distribution of allozyme 
frequencies, based on 96 wild Lima bean populations 
from the Central Valley of Costa Rica. Specifi cally, our 
goals were:
– to assess the patterns of the spatial distribution of the
 genetic diversity;
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– to identify populations that were particularly
 interesting for conservation purposes;
– to suggest an in situ management strategy for the
 studied plant material.

2. MATERIAL AND METHODS

2.1. Plant material and sampling method

Ninety-six wild Lima bean populations distributed 
in the Central Valley of Costa Rica (Figure 1) were 
sampled between 1993 and 1998, from January to 
March, corresponding to the time of seed maturity. Each 
population was followed during a complete season so 
that all individuals bearing pods during this season 
were sampled. Geographical coordinates (Lambert 
projection) and associated vegetation of each sampled 
population were recorded (Table 1). The 29 populations 
analysed previously for the genetic structure study 
(Zoro Bi et al., 2003) were included in the 96 selected 
populations. A population is here defi ned as any set of 
individuals, regardless of size that lives in the same 
habitat patch and isolated at least 500 m from other 
plants of the same species. We adopted a sampling 
strategy integrating criteria of effi ciency relevant 
to a multilocus model and many target populations, 
designed for Lima bean (Zoro Bi et al., 1998). Thus, in 
each selected population, we sampled all pod-bearing 
plants, resulting in sample sizes of one to 60 plants per 
population, and four to six racemes per plant. One seed 
was randomly chosen per raceme for electrophoretic 
analysis, resulting in sample sizes ranging from four 
to 334 seeds per population, according to the number 
of pod-bearing plants. The selected populations were 
identifi ed by alpha-numeric codes. 

2.2. Electrophoretic analysis

For electrophoretic variation, we analysed ten readable 
and reproducible enzyme loci resolved from eight 
enzymatic systems: alcohol dehydrogenase (ADH, 
E.C. 1.1.1.1), diaphorase (DIA, E.C. 1.8.1.4), esterases 
(fl uorimetric and colorimetric: fEST and cEST, E.C. 
3.1.1.-), glucose-6-phosphate isomerase (GPI, E.C. 
5.3.1.9), malate dehydrogenase (MDH, E.C. 1.1.1.37), 
phosphogluconate dehydrogenase (PGDH, E.C. 
1.1.1.44), phosphoglucomutase (PGM, E.C. 5.4.2.2), 
and shikimate dehydrogenase (SKDH, E.C. 1.1.1.25). 
Enzyme extraction was done by grinding 5-day-old 
cotyledon tissues in a potassium phosphate buffer, 
pH 7.0, containing 20% sucrose, 5% PVP-40, 
0.05% triton X-100, 14 mM 2-mercaptoethanol, and 
0.1 M KH2PO4. The pH value was adjusted to 7.0 
with a solution of 5 M NaOH. Electrophoresis was 
performed using a horizontal 10% starch-gel containing 
3% sucrose. Two buffer systems were employed: 
continuous histidine-citrate, pH 6.1 for ADH GPI, 
MDH, and PGDH, and discontinuous lithium-borate, 
pH 8.1/Tris-citrate, pH 8.4 for DIA, cEST, fEST, PGM, 
and SKDH. The techniques for gel electrophoresis and 
histochemical staining procedures are those reported 
elsewhere (Zoro Bi et al., 1999).

Loci were labelled sequentially, with those 
migrating closest to the anodal end designated as 
number 1. Accession G25221 from the collection of 
the Centro Internacional de Agricultura Tropical 
(CIAT, Cali, Colombia), a Mexican wild form, was 
used as the control for our analyses. The allozyme 
from this genotype was designated 100 and all other 
allozymes were assessed according to their relative 
migration distance. The genetic control and the 
quaternary structure of the analysed enzyme systems 
have been discussed previously (Zoro Bi et al., 1999).

2.3. Data analysis

The allozyme multilocus genotypes from polymorphic 
loci (99% criterion) were recorded and the obtained 
data were used to calculate allelic frequencies. We used 
G-tests (Sokal, Rohlf, 1995) to evaluate signifi cant 
heterogeneity in allele frequencies among populations. 
F-statistics (FIT, FIS, and FST) estimated from genetic 
markers provide information on the genetic structuring 
within and among populations (Weir, Cockerham, 
1984). Of these indices, the value of FST indicates how 
much of the genetic variation is partitioned among 
populations and then, can be used as a measure of 
the genetic differentiation that can be expected as 
a consequence of low level of gene fl ow among 
populations or steady differential selection (Slatkin, 
1985; 1987). To analyse the genetic differentiation 
among the studied wild Lima bean populations, 

Figure 1. Spatial distribution of the less widespread 
alleles from six enzyme loci analysed in 96 wild Lima 
bean populations located in the Central Valley of Costa 
Rica — Distribution spatiale des allèles rares de six loci 
enzymatiques analysés dans 96 populations sauvages du 
haricot de Lima localisées dans la Vallée Centrale du Costa 
Rica. 
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Table 1. Geographic coordinates (Lambert projection), habitats, and estimated allele frequencies at 10 enzyme loci in 
96 populations of wild Phaseolus lunatus from the Central Valley of Costa Rica — Coordonnées géographiques (projection 
Lambert), habitats, et fréquences alléliques estimées pour 10 loci enzymatiques chez 96 populations sauvages de Phaseolus 
lunatus provenant de la Vallée Centrale du Costa Rica. 

Pop. N Coordinates Habitat Frequency of allele controlling the fast migrating allozyme1

  Latitude Longitude  Adh-2100 Dia-1100 c.Est-2107 f.Est-2110 Gpi-1100 Mdh-2140 Pgdh-1100 Pgm-1100 Pgm-2100 Skdh110

A1 12 207.400 545.000 Bushy thicket 1 1 0 0 1 0 1 1 0 0
E19 5 208.500 522.300 Coffee plantation 1 1 0 0 1 1 1 1 0 0
E25 144 207.800 522.900 Bushy thicket 0.98 1 0 0 1 0.35 1 1 0.08 0
E27 5 210.500 521.300 Track 1 1 0 0 1 0.80 1 1 0 0
E28 5 211.700 512.200 Coffee plantation 1 0.30 0 0 1 0 0.20 1 0 0
E29 5 207.900 511.800 Bushy thicket 1 1 0 0 1 0.70 0.70 1 0 0
E30 5 205.800 509.500 Lining road 1 1 0 0 1 0 1 1 0 0
E31 15 206.500 525.200 Fallow 0.67 1 0 0 1 0 1 1 0.33 0
E34 5 206.300 525.100 Track 1 1 0 0 1 0 1 1 1 0
E35 16 205.200 525.600 Garden 1 1 - 0 1 1 1 1 0 0
E37 5 206.300 511.600 Bushy thicket 1 1 0 0 1 0 1 1 0 0
E50 86 205.100 524.700 Bushy thicket 0.82 1 0 0 1 0.30 1 1 0.23 0
E54 82 205.800 529.600 Garden 1 1 0 0 1 0.26 1 1 0.26 0
E56 5 204.900 530.300 Garden 1 1 0 0 1 1 1 1 0 0
E59 16 209.500 522.200 Garden 1 1 - 0 1 0 1 1 0 0
E65 5 218.200 521.200 Coffee plantation 0 1 0.10 0 1 0.10 1 1 0 0
E68 5 218.850 519.330 -2 0.60 1 0.40 0 1 0 1 1 0.40 0
E76 58 219.200 520.300 Coffee plantation 0.89 0.73 0 0 1 0.10 1 1 0.78 0
E83 20 219.700 519.200 Coffee plantation 0.87 1 0 0 1 0.20 1 1 0 0
E84 109 218.500 519.100 Coffee plantation 0.43 0.93 0 0 1 0.78 1 1 0.21 0
E88 151 218.400 520.500 Track 0.43 1 0 0.01 1 0.50 1 1 0.60 0
E100 333 218.300 530.300 Coffee plantation 0.84 0.99 0 0 1 0.45 1 1 0.19 0
E104 5 202.000 528.900 Fallow 1 1 0 0 1 0 1 1 1 0
E110 16 204.800 550.900 Bushy thicket 0.19 1 0 0 1 0 1 1 0 0
E111 4 203.300 548.700 Lining road 1 1 0 0 1 0 1 1 0 0
E114 8 204.700 550.600 Bushy thicket 1 1 0 0 0 0 1 1 0 0
E115 5 218.400 494.700 Garden 1 1 0 0 1 0 1 1 0 0
G1 137 202.300 537.300 Coffee plantation 0.88 1 0 0 1 0.40 1 1 1 0
G7 5 202.500 537.600 Garden 1 1 0 0 1 0 1 1 0 0
G14 5 202.800 548.800 Track 1 1 0 0 1 0 1 1 0 0
G19 12 205.900 549.500 Lining road 1 1 0 0 1 1 1 1 0 0
G20 5 206.000 550.100 Track 0.80 1 0.20 0 0 0 1 1 0 0
G22 5 205.200 549.100 Bushy thicket 1 1 0 0 0 0 1 1 0 0
HER3 8 223.300 522.700 Coffee plantation 0.50 1 0.50 0 1 0.50 1 1 0 0
HER9 5 223.700 522.400 Coffee plantation 0 1 1 0 1 1 1 1 0 0
HER16 5 224.500 522.100 Lining road 0.50 1 0.40 0 1 0.40 1 1 0 0
HER30 5 224.700 524.400 -1 0.70 1 0.20 0 1 0.80 1 0.60 0.60 0
HER45 5 223.800 521.100 Garden 0 1 0.60 0 1 0 1 1 0 0
J5 5 208.100 523.600 Garden 1 1 0 0 1 0.90 1 1 1 0
J6 10 208.400 522.800 Coffee plantation 0.90 1 0 0 1 0.70 1 1 0.55 0
J11 16 208.500 523.400 Garden 1 1 0 0 1 1 1 1 0.31 0
J29  218.400 529.900 - 0.10 1 0 0 1 0.90 1 1 0 0
J48 202 217.100 529.100 Coffee plantation 0.98 1 0 0 1 0.27 1 1 0.99 0.01
J58 5 230.100 483.900 Coffee plantation 1 1 0 0 1 0 1 1 1 0
J59 27 231.700 481.400 Coffee plantation 1 1 1 0 1 0 1 1 1 0
J67 5 226.700 509.400 Garden 0 1 0 0 1 0.90 1 1 0.20 0
J72 11 202.400 525.700 Garden 1 1 0.14 0 1 0.04 1 1 0 0
J87 102 199.500 530.000 Bushy thicket 1 1 0 0 1 0.20 1 1 0.01 0
KM12 12 199.100 517.900 Lining river 0.96 1 0.17 0 1 0.96 0.25 1 0 0
KM23 5 229.000 512.900 - 1 1 0 0 1 1 1 1 0 0
KM28 5 231.400 515.300 Bushy thicket 1 1 0 0 1 0 1 1 0 0
KM30 109 210.600 536.300 Bushy thicket 1 1 0 0 1 0.77 1 1 0.03 0.01
KM32 23 217.300 532.700 Coffee plantation 0 1 0 0 1 1 1 1 0 0
KM40 5 219.900 527.900 Coffee plantation 0.20 1 0 0 1 0.20 1 1 0.60 0
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F-statistics were estimated for all polymorphic loci 
according to Weir and Cockerham (1984) and FST 
was tested for signifi cant difference from zero using a 
Student t-test (Sokal, Rohlf, 1995). Allele frequencies 
and F-statistics were computed using the GENEPOP 
software (Raymond, Rousset, 1995).

We tested whether geographical-scale spatial 
arrangement of allele frequencies was random using 

spatial autocorrelation analysis (Cliff, Ord, 1973; 
Sokal, Oden, 1978a); results were presented as 
correlograms, i.e. graphics in which values of the 
autocorrelation coeffi cients are plotted against distance 
classes. Spatial autocorrelation analysis tests whether 
observations of a variable at one geographical site are 
independent of observations at neighbouring sites. The 
spatial autocorrelation was quantifi ed using Moranʼs I 

Table 1. Geographic coordinates (Lambert projection), habitats, and estimated allele frequencies at 10 enzyme loci in 
96 populations of wild Phaseolus lunatus from the Central Valley of Costa Rica — Coordonnées géographiques (projection 
Lambert), habitats, et fréquences alléliques estimées pour 10 loci enzymatiques chez 96 populations sauvages de Phaseolus 
lunatus provenant de la Vallée Centrale du Costa Rica. 

Pop. N Coordinates Habitat Frequency of allele controlling the fast migrating allozyme1

  Latitude Longitude  Adh-2100 Dia-1100 c.Est-2107 f.Est-2110 Gpi-1100 Mdh-2140 Pgdh-1100 Pgm-1100 Pgm-2100 Skdh110

KM41 5 218.600 525.800 - 0 1 0 0 1 0 1 1 1 0
KM51 5 232.200 493.200 Coffee plantation 1 1 0 0 1 0 1 1 0 0
KM52 5 230.000 491.800 Coffee plantation 0.40 1 0.40 0 1 0 1 1 1 0
KM53 5 230.200 492.300 Coffee plantation 1 1 0.80 0 1 1 1 1 1 0
KM55 5 224.600 488.100 Lining road 1 1 1 0 1 0.60 1 1 0 0
KM56 5 224.200 488.100 Bushy thicket 0 1 0 0 1 0 1 1 1 0
KM57 5 228.400 487.300 - 1 1 1 0 1 0 1 1 0 0
KM60 5 223.600 500.300 - 0.20 1 0.20 0 1 1 1 1 1 0
KM62 5 223.800 500.200 Coffee plantation 1 1 0 0 1 0 1 1 1 0
KM63 31 232.700 493.500 Coffee plantation 1 1 0 0 1 1 1 1 0.02 0
KM67 5 221.200 509.200 Garden 1 1 0.20 0 1 1 1 1 1 0
P1 5 212.500 517.600 Lining road 1 1 0 0 1 1 1 1 0 0
P17 5 222.500 521.500 - 0 1 0 0 1 1 1 1 1 0
S10 5 223.400 507.300 Coffee plantation 0.90 0.80 0 0 1 0.10 1 1 0.30 0
S13 5 225.200 509.300 Lining river 1 0.20 0 0 1 0 1 1 0 0
S15 16 227.500 509.600 Garden 1 1 0.50 0 1 0 1 1 0 0
S17 5 230.200 508.000 - 1 1 1 0 1 0 1 1 0 0
S18 5 229.800 507.700 Garden 1 1 0.80 0 1 0 1 1 0 0
S21 5 221.900 519.500 Coffee plantation 0 1 0.75 0 1 0 1 1 1 0
S22 5 221.700 519.100 Coffee plantation 0 1 0.20 0 1 0 1 1 1 0.10
S23 10 221.800 518.500 - 0.90 0.60 0 0 1 0.90 1 1 0.50 0
S25 5 217.200 510.000 Lining road 1 1 0 0 1 1 1 1 1 0
S26 5 217.200 509.800 Lining road 1 1 0 0 1 1 1 1 1 0
S27 5 215.500 507.000 Lining road 1 0.40 0 0 1 1 1 1 0.40 0
S32 5 214.800 495.800 Lining road 1 0 0 0 1 1 1 1 0 0
SP19 5 209.300 531.500 Lining road 1 1 0 0 1 1 1 1 1 0
SP20 5 209.100 531.800 Lining road 1 1 0 0 1 1 1 1 0 0
SP21 5 209.200 533.800 Bushy thicket 1 1 1 0 1 1 1 1 1 0
SR8 5 233.800 486.000 Lining road 0 1 0 0 1 0 1 1 1 0
SR10 5 233.600 488.000 - 1 1 1 0 1 1 1 1 0 0
SR14 5 233.400 487.200 Garden 0 1 0 0 1 0 1 1 0 0
SR16 5 232.400 486.300 Lining road 1 1 0 0 1 0 1 1 1 0
SR20 5 232.600 491.000 Coffee plantation 0 1 0.20 0 1 0 1 1 0 0
ST5 5 228.900 519.400 Coffee plantation 0.60 0.20 1 0 1 0.20 1 1 0.40 0
ST7 5 227.700 520.200 Coffee plantation 1 1 0 0 1 0 1 1 0 0
ST11 5 225.000 520.100 Coffee plantation 1 1 0.50 0 1 0 1 1 0 0
ST14 5 224.100 518.300 Bushy thicket 0 1 0 0 1 1 1 1 0 0
ST44 12 224.200 518.700 Coffee plantation 0.71 1 0.33 0 1 0.96 1 1 0.33 0
TR23 5 209.400 537.100 Coffee plantation 1 1 0.25 0 1 1 1 1 0.80 0
TR36 5 211.800 536.200 Garden 1 1 0 0 1 0 1 1 1 0
TR54 137 208.700 543.600 Track 0.44 1 0 0 1 0.32 1 1 0.30 0
TR57 5 208.200 542.800 - 1 1 1 0 1 0.70 1 1 1 0

1 Since all analysed loci were diallelic, only the frequency of the most anodally migrating allele is presented
2 missing data
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(1950) calculated from allele frequencies on individual 
populations. To perform the test, populations were 
connected according to Gabriel-connected scheme 
(Gabriel, Sokal, 1969). A total of 4560 connexions 
were then drawn. The performed Gabriel-connected 
graph was subdivided into 19 distance classes, each 
class corresponding to about 3 km. The distance classes 
number was chosen to ensure that at least 30 pairs 
of points were included for each class (Legendre, 
Fortin, 1989). Tests of signifi cance (against the null 
hypothesis that allele frequencies were randomly 
distributed in space) were performed for each distance 
class by a randomisation process, whereas the 
overall signifi cance of correlograms was tested using 
Bonferroni approximation. Calculation of Moranʼs 
I and the tests of signifi cance were performed using 
the SAAP software (Wartenberg, 1989). Four enzyme 
loci (Adh-2, c.Est-2, Mdh-2, and Pgm-2) with two 
widespread alleles (both alleles observed in at least 
15 populations) were selected to perform the spatial 
autocorrelation tests. For the other loci, expressing 
polymorphism in less than 15 populations (Dia-1, 
f.Est-2, Gpi-1, Pgdh-1, Pgm-1, and Skdh), we plotted 
the less common alleles locations on the sampling map 
to evaluate visually their spatial distribution.

3. RESULTS

3.1. Populations  ̓genetic differentiation

Each of the ten polymorphic loci analysed displayed 
two alleles, resulting in a total of 20 alleles observed. 
The most anodally migrating allozyme frequencies, 
calculated for each population and each locus are 
presented in table 1. The loci f.Est-2 and Pgm-1 
expressed polymorphisms in only one population 
(E88 for f.Est-2 and HER30 for Pgm-1), inducing 
skewed estimates for G-tests and infl ated F-statistics 

values. Consequently, these two loci were discarded in 
performing G-tests and F-statistics calculation.

Six out of eight loci tested showed signifi cant 
allele frequencies heterogeneity among populations 
(Table 2). Non-signifi cant G values were obtained 
with c.Est-2 (G=52.92, df=40, P=0.065) and Pgdh-1 
(G=8.69, df=4, P=0.101). As expected on the basis 
of the previous studies (Zoro Bi et al., 2003; 2004), 
the estimated F-statistics indicated a high level of 
genetic differentiation between populations (Mean 
FST=0.504±0.094), suggesting that wild Lima bean 
maintains about 50% of its isozyme variation among 
populations. Such tendency was confi rmed by the fact 
that for all loci analysed except Skdh, the estimates of 
FST were signifi cantly different from zero (Table 2), 
resulting in a high and signifi cant mean value. 
Concomitantly, FIT (the correlation between uniting 
gametes relative to all populations sampled) and FIS (the 
correlation between uniting gametes within individual 
populations) were high and signifi cant for the majority 
of the loci analysed and hence, for the mean values. 
Indeed, low values of FIT and FIS were observed only 
for Skdh, with negative sign for FIS, suggesting an 
excess of heterozygotes at this locus. Contrary to Skdh, 
we obtained the highest estimates of F-statistics with 
Gpi-1 (FIT=FIS=FST=1), due to the fact that the two 
alleles observed at this locus were completely fi xed 
in the sampled populations (i.e. in any population, 
p=1 and q=0 or p=0 and q=1). This suggested that the 
studied populations were completely differentiated at 
locus Gpi-1.

3.2. Spatial distribution of allele frequencies

The less common alleles at six out of the ten loci 
analysed presented restricted geographic distribution. 
Indeed, besides the case of f.Est-2 and Pgm-1 explained 
before, the spatial distribution of the second allele from 

Table 2. Tests of allele frequencies heterogeneity and F-statistics estimated for 96 populations of wild Lima bean — Tests 
dʼhétérogénéité des fréquences alléliques et F-statistiques chez 96 populations sauvages du haricot de Lima.

Locus G-test (df) F-statistics ± SD

  FIT FIS FST

Adh-2 529.24 (52)*** 0.873±0.026 0.778±0.079 0.433±0.079***
Dia-1 145.00 (16)*** 0.921±0.061 0.874±0.111 0.376±0.136*
c.Est-2 052.91 (40) 0.931±0.040 0.744±0.134 0.739±0.098***
Gpi-1 026.61 (10)** 1.000±0.000 1.000±0.000 1.000±0.007***
Mdh-2 402.16 (62)*** 0.823±0.0 35 0.747±0.038 0.299±0.077***
Pgdh-1 008.69 (4) 0.997±0.194 0.815±0.565 0.741±0.075**
Pgm-2 874.11 (48)*** 0.917±0.035 0.777±0.065 0.625±0.122***
Skdh 012.73 (4)* 0.001±0.002 -0.013±0.040 0.014±0.042
Mean1  0.882±0.026 0.761±0.012 0.504±0.094***
1 Standard deviations (SD) of locus data. The grand mean as well as the meanʼs SD were calculated using numerical resampling 
(jackknife) over populations (locus data) or over loci (mean and its SD). * P < 0.05. ** P < 0.01. and *** P < 0.001. The comparison is 
based on G-tests for allelic frequencies among populations and Student t-tests for FST.
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the four other loci (Dia-1, Gpi-1, Pgdh-1, and Skdh) 
showed an interesting particularity for conservation 
purpose (Figure 1): Dia-198, Pgdh-186, and Skdh110 
were exclusively located in the central part, and
Gpi-196 in the western part of the target site. Dry season 
in the western part is not as severe as in the central 
part.

Spatial autocorrelation analysis was performed 
for alleles from four enzyme loci: Adh-2, c.Est-2, 
Mdh-2, and Pgm-2. The resulting correlograms are 
presented in fi gure 2. Positive autocorrelation was 
found at shorter distance for the main loci analysed 
and this was signifi cant for Adh-2 (3-9 km) and 
c.Est-2 (3-6 km). Then, the autocorrelation decreased 
to become negative at distance of 9-39 km, with 
signifi cant values for Adh-2 (12-30 km). At large 
distances (50-60 km), positive autocorrelation was 
observed again for alleles from Mdh-2 and Pgm-2; for 
the later, signifi cant value was obtained at 54 km. For 
Adh-2 and c.Est-2, autocorrelation remained negative 
at the same lag classes, the trend being signifi cant with 
c.Est-2 (51-54 km). Overall, the correlograms for 
the four individual loci showed an irregular shape, 
displaying up and down stochastic variations. Two 
correlograms, namely those of Adh-2 and c.Est-2, were 
signifi cant (Figure 2). The pattern of correlograms 
indicated a patchy structure of allozyme variants in 
wild P. lunatus from the Central Valley of Costa Rica. 

The results show that isolation by distance occurs in 
these populations.

4. DISCUSSION

Of the 20 alleles recorded, six were sporadic and 
localised, with two private alleles (as defi ned by 
Slatkin, 1985): f.Est-2110 and Pgm-195. Two aspects 
of the results concerning these alleles appeared 
particularly interesting for conservation. First, data 
given in table 1 showed that except f.Est-2110 and 
Skdh110 (frequencies=0.01 and 0.01-0.10, respectively), 
all the alleles with a restricted distribution presented 
relatively high frequencies in most populations in 
which they were observed: 0.01-0.80 for Dia-198, 1 for 
Gpi-196, 0.30-0.80 for Pgdh-186, and 0.40 for Pgm-195. 
The second aspect of these results was the grouping of 
fi ve of these alleles (Dia-198, f.Est-2110, Pgdh-186, Pgm-
195, and Skdh110) in the central part of the Valley, Gpi-
196 being localised in the western part, characterized 
by a less severe dry season compared to the central 
part (Figure 1). These results could be related with the 
breeding system of the wild Lima bean populations. 
Indeed such pattern of genetic variation is expected in 
general for any predominantly self-pollinating species 
(because alleles often tend to be fi xed within population) 
displaying isolation by distance (because rare alleles 
will usually be restricted to a reduced geographical 

Figure 2. Correlograms of Moranʼs I for four enzyme loci analysed in 96 wild Lima bean populations from the Central 
Valley of Costa Rica. Filled circles represent Moranʼs I that are signifi cantly different from zero (∝ = 0.05). P is the overall 
signifi cance of the correlogram — Corrélogrammes de I de Moran pour quatre loci enzymatiques analysés dans 96 popula-
tions sauvages du haricot de Lima de la Vallée Centrale de Costa Rica. Les cercles remplis représentent les I de Moran qui 
sont signifi cativement différents de zéro (∝ = 0.05). P est la signifi cation globale du corrélogramme.
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range due to limited dispersal). Another hypothesis to 
explain the two aspects of our results is the impact of 
selection. Genotypes with localised alleles could have 
relatively high viability or reproductive success, leading 
to high frequencies of these alleles in the populations 
involved. It has been established from studies of natural 
selection using various predominantly self-pollinated 
plant species that homozygote genotypes at a marker 
locus may differ substantially in fi tness according to 
life cycle stages, seasons, and environment (Allard, 
Workman, 1963; Imam, Allard, 1965; Hamrick, Allard, 
1972; Nevo et al., 1982; Nevo et al., 1986; Ennos, 1990). 
Simulation studies (Epperson, 1990) have also shown 
that selection can greatly contribute to the development 
of the spatial genetic structuring in plant populations. For 
wild Lima bean, the restricted geographic distribution 
of the sporadic alleles could indicate the occurrence of 
microhabitat-level alleles selection in the populations 
studied: as a result, genotypes carrying locally advantaged 
alleles might have high survival value, due to natural 
selection tending to increase the homozygosity. This 
hypothesis could be supported by data on Gpi-196 which, 
although rare (observed in only three populations), 
was completely fi xed (frequency=1). As will be 
discussed more thoroughly later, random genetic drift 
in small bottlenecked populations and founder effects 
resulting from extinction/recolonisation episodes that 
characterised the populations studied could enhance 
the fi xation process of the advantaged alleles. Indeed, 
these populations are usually found in open and 
disturbed areas with grasses and scattered trees or 
bushy thickets; they also colonise coffee plantations 
from the long-living fences (usually Erythrina and 
euphorbs) bordering the plots. Each year, some wild 
Lima bean populations are eliminated due to land 
management, such as growing urbanisation, severe 
grazing, seasonal fi res in pasture lands and sugar 
cane plantations, and the replacement of traditional 
small-scale coffee plantations by modern high input 
demanding plantations (Rocha et al., 1997). 
Recolonisation of the cleared sites could be due to 
nearby plants or to new individuals emerging from the 
soil seed bank.

Since the correlation between uniting gametes 
relative to all populations as expressed by FIT was high 
and signifi cant (FIT=0.882±0.026), we deduced that 
the genotypic composition of wild Lima bean showed 
a deviation from the Hardy-Weinberg proportions. 
This disequilibrium was attributable to both genetic 
differentiation between populations (FST=0.504±0.094) 
and non-random mating within populations 
(FIS=0.761±0.012). The review of Hamrick and Godt 
(1990) based on eight life histories and ecological traits 
of plants, and presenting a compilation of statistics on 
populations  ̓ genetic structure indicates that in short-
lived perennial and predominantly selfi ng species, gene 

differentiation among populations is high. Lima bean is 
a mixed-mating and predominantly autogamous species 
(Zoro Bi et al., 2004) that is expected to express a high 
level of genetic divergence among populations, coupled 
with an important heterozygotes defi ciency. The estimates 
of the populations  ̓genetic structure indices analysed in 
our study were in accordance with the designated trend. 
It should also be noted that the estimated F-statistics 
were close to those obtained from previous study using 
29 populations and nine polymorphic loci (Zoro Bi 
et al., 2003): FIT=0.932±0.066, FIS=0.866±0.128, 
and FST=0.497±0.358. Factors explaining the genetic 
structuring in wild Lima bean populations and 
hypotheses on the evolutionary processes likely to 
affect them have been thoroughly discussed in the 
indicated paper. Briefl y, it has been argued that the 
most likely phenomena explaining the low allelic 
richness, the frequent and steady heterozygotes 
defi ciency, and the high genetic divergence of wild 
Lima bean populations are founder effects, genetic 
drift, high selfi ng rate, Wahlund effects, and limited 
gene fl ow between populations.

Study of Rocha et al. (1997) has highlighted 
genetic drift and founder effects in the studied 
populations. Indeed, the authors established after a 
7-year survey that of the 400 populations inventoried 
in the target site, about 60 (only 16%) contained more 
than fi ve pod-bearing plants, so that genetic drift 
must be high. The presence of the founder effects is 
supported by the fact that during the period between 1992 
and 1998, the number of plants reaching reproductive 
age differs markedly among years, varying from one to 
50 plants in one population (data not shown). 

In the Central Valley of Costa Rica, the outcrossing 
rate of wild Lima bean is low, ranging from 0.027 to 
0.268, with a mean of 0.096±0.071 (Zoro Bi et al., 
2004). Such estimates suggested that this plant had a 
high level of autogamy.

The Wahlund effects, i.e. the existence of 
genetic structure in a population, were mentioned as 
another factor explaining the frequent defi ciency of 
heterozygotes observed. The actual genetic structure of 
wild Lima bean was assessed in a previous work using 
isozyme electrophoresis and three populations (Zoro Bi 
et al., 1997). Seeds were sampled according to a grid of 
4×4 m for bidimensional populations or 4 m apart for 
linear populations and the genotypes of mother plants 
at each node were so determined. The genetic structure 
in the populations was obvious: alternative alleles 
at each locus were clustered in opposite parts of the 
populations, creating a patch structure mainly composed 
of homozygote individuals (Wahlund effects). 

From the estimates of FST (=0.504) and on the basis 
of Wrightʼs (1951) equation, as modifi ed by Crow and 
Aoki (1984), the number of migrants per generation 
was Nm=0.243. This value must however be taken with 
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caution because Wrightʼs equation is established for an 
island model at equilibrium and our populations are 
unlikely to be at equilibrium.

Since most of the genetic variation in wild Lima 
bean proved to reside among populations, the question 
of how it is spatially organised appeared relevant. 
F-statistics provide information on the genetic 
structuring within and among populations. Tests 
of hypotheses on the evolutionary processes that 
account for the observed gene frequencies distribution, 
however, require more complex approaches such as 
spatial autocorrelation (Sokal, Oden, 1978a; Barbujani, 
1987; Epperson, 1990; Heywood, 1991). The 
signifi cant spatial autocorrelation of allele frequencies 
at shorter distance classes observed for most of the
loci analysed indicated clearly that these variables 
were not spatially random in wild Lima bean from 
the Central Valley of Costa Rica. Recent reviews on 
genetic structure studies in plant populations (Sokal, 
Oden, 1978a; Barbujani, 1987; Heywood, 1991; 
Escudero et al., 2003; Vekemans, Hardy, 2004) have 
addressed differences in spatial distribution of genetic 
variation at various life stages or age classes and in 
different microenvironments of a particular population 
or zone. For wild Lima bean, the single-locus genetic 
structure due to isolation by distance is highly
stochastic and may well explain alone variation 
among loci. Other mechanisms infl uencing the 
genetic structuring of the studied populations cannot 
be discarded, such as isolation-by-distance due to 
limited pollen and seed fl ow between populations, 
founder effects, genetic drift, and microhabitat 
selection of alleles. In our case, the dissimilar course 
of correlograms curves could result from combined 
effects of the factors suggested, creating various patch 
structures in wild Lima bean.

5. IMPLICATIONS FOR CONSERVATION AND 
MANAGEMENT

Knowledge of the genetic variability within a taxon 
is crucial for conservation purposes, when interpreted 
within a broader ecological and organismal context. For 
wild P. lunatus populations, isozyme electrophoresis 
data indicated high genetic heterogeneity among 
populations, localised alleles, and patchy structures 
of allele frequencies throughout the sampled zone. 
The occurrence of patchy genetic structure show the 
relevance of in situ conservation actions for these 
populations. The results also suggest that many 
populations distributed throughout the range of the 
species should be protected, since the conservation of 
few populations would not guarantee the preservation 
of a representative sample of the existing genetic 
diversity, as alleles distribution greatly varied between 
patches. Thus, protecting the following populations 

should preserve the less common and localised alleles 
identifi ed: E28, E29, E76, E84, E88, E114, G22, 
HER30, J48, KM12, S10, S13, S23, S27 and ST5. 
Moreover, if populations E35, G1, G19, J59 and KM32 
are included, the preserved allelic variation would be 
increased to 100%. 

Once populations have been selected for in situ 
conservation, their sound management is necessary to 
preserve a high level of genetic variability. For wild 
Lima bean populations, an appropriate management 
method was indicated from demographic and soil 
seed banks studies (Degreef et al., 1997; Degreef 
et al., 2002). These authors reported that most wild 
P. lunatus populations from the target zone produced 
adult individuals every year and were characterised by 
abundant seeds production. However, rainfall during the 
post-ripening period or adult plants destruction by man 
or cattle could markedly reduce seeds production and 
then, the number of individuals in such populations the 
next year. Seed dormancy and soil seed banks in these 
populations ensured the recolonisation of the sites. 
Based on information gained from these studies, it was 
suggested to pay particular attention to the timing of 
clearing and weeding which are regularly carried out in 
the sites. Indeed, weeding coffee plantations in which 
wild Lima bean populations are localised just after the 
seed dispersal (at the end of the dry season) favours the 
breakdown of seed dormancy and reduces germination 
delays, because these practices expose the seeds to 
high temperatures and humidity at the moment of the 
fi rst rains. Clearing was proposed at the beginning of 
the rain season, since fi eld observations showed that 
populations cut or disturbed during the dry season 
were less likely to regrow and accordingly, less likely 
to produce seeds in the next fruiting period.

The most reliable way for the preservation of wild 
P. lunatus genetic variability in the Central Valley of 
Costa Rica is the design of synthetic populations with 
all the allelic diversity identifi ed, given that natural 
populations are threatened, due to several human 
activities in this zone. In 1998, synthetic populations 
have been established in protected sites throughout 
the Valley. These synthetic populations should 
contain genotypes carrying all the alleles identifi ed.
Preliminary demographic study on the synthetic 
populations confi rmed that a careful management 
is required to break seed dormancy. Weeding during 
rainy season could speed up the colonisation process 
and ensure the stability of these populations (Meurrens 
et al., 2001).

It must be recognised that allozymes often 
underestimate levels of intra- and interpopulations 
genetic variation for adaptive traits crucial to the 
survival and reproduction of plants (Hamrick et al., 
1991; Francisco-Ortega et al., 2000). Consequently, 
further investigations using more variable genetic 
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markers such as microsatellities, AFLPs, RADPs 
or ISSRs (Schaal et al., 1991; Amos, Hoelzel, 1992, 
Ouédraogo et al., 2005) are required to refi ne the 
present results and suggestions for the conservation 
and management of wild P. lunatus and other plant 
species with similar biological and ecological traits.
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