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Description of the subject. Understanding the current situation and evolution of forests is essential for a sustainable
management plan that maintains forests’ ecological and socio-economic functions. Remote sensing is a helpful tool in
developing this knowledge.

Objectives. This paper investigates the new opportunities offered by using Sentinel-2 (S2) imagery for forest mapping in
Belgian Ardenne ecoregion. The first classification objective was to create a forest map at the regional scale. The second
objective was the discrimination of 11 forest classes (Fagus sylvatica L., Betula sp., Quercus sp., other broad-leaved stands,
Pseudotsuga menziesii (Mirb.) Franco, Larix sp., Pinus sylvestris L., Picea abies (L.) H.Karst., young needle-leaved stands,
other needle-leaved stands, and recent clear-cuts).

Method. Two S2 scenes were used and a series of spectral indices were computed for each. We applied supervised pixel-based
classifications with a Random Forest classifier. The classification models were processed with a pure S2 dataset and with
additional 3D data to compare obtained precisions.

Results. 3D data slightly improved the precision of each objective, but the overall improvement in accuracy was only
significant for objective 1. The produced forest map had an overall accuracy of 93.3%. However, the model testing tree species
discrimination was also encouraging, with an overall accuracy of 88.9%.

Conclusions. Because of the simple analyses done in this study, results need to be interpreted with caution. However, this
paper confirms the great potential of S2 imagery, particularly SWIR and red-edge bands, which are the most important S2
bands in our study.

Keywords. Belgian Ardenne ecoregion, tree species, remote sensing, satellites, per-pixel classification, random forest.

Cartographie forestiére et composition spécifique par classification supervisée par pixel d’imagerie Sentinel-2
Description du sujet. Etudier 1’état et I’évolution des foréts est essentiel pour assurer une gestion durable maintenant leurs
fonctions écologiques et socio-économiques. La télédétection est un outil précieux pour le développement de ces connaissances.
Objectifs. Cette étude analyse 1’opportunité offerte par I’imagerie Sentinel-2 (S2) pour cartographier les foréts de I’écorégion
de I’ Ardenne belge. Le premier objectif de classification était la création d’une carte forestiere a I’échelle régionale. Le second
objectif était la discrimination de 11 classes forestieres (Fagus sylvatica L., Betula sp., Quercus sp., other broad-leaved stands,
Pseudotsuga menziesii (Mirb.) Franco, Larix sp., Pinus sylvestris L., Picea abies (L.) H.Karst., young needle-leaved stands,
other needle-leaved stands, and recent clear-cuts).

Méthode. Deux scenes S2 ont ét€ utilisées et une série d’indices spectraux ont été générés pour chacune d’entre elles. Nous
avons réalisé une classification supervisée par pixel avec 1’algorithme de classification Random Forest. Les modeles de
classification ont été générés avec un jeu de données S2 pur et avec des données 3D supplémentaires pour comparer les
précisions obtenues.

Résultats. Les données 3D ont 1égerement amélioré la précision de chaque objectif, mais I’amélioration globale de précision
fut uniquement significative pour I’objectif 1. La carte forestiere produite avait une précision globale de 93,3 %. Le modele
testant la discrimination des especes d’arbre fut encourageant également, avec une précision globale de 88,9 %.
Conclusions. Tenant compte des simples analyses réalisées dans cette étude, les résultats doivent étre interprétés avec prudence.
Cependant, ce travail confirme le grand potentiel de I’imagerie S2, particulierement les bandes SWIR et red-edge, qui jouerent
un role essentiel dans ce travail.

Mots-clés. Ecorégion de I’ Ardenne belge, especes d’arbre, télédétection, satellite, classification par pixel, forét aléatoire.
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1. INTRODUCTION

Forest ecosystems provide important services to
society, and sustainable management and adapted
policies are essential to maintain their ecological
and socio-economic functions. Forest managers and
policy makers must consider the relationships between
forest function and ecosystem characteristics and the
evolution of forests in order to manage forests and
make regional decisions (Fiihrer, 2000; Lindenmayer
et al., 2000). Given the globalization of today’s
society, this need has become even more important,
as understanding forests is important for international
agreements and reporting requirements (e.g. the Kyoto
Protocol).

For decades, field inventories have been used to
better characterize forest. National inventories exist
in countries around the world and have evolved over
time to adapt to users’ needs (Tomppo et al., 2010).
Field inventories provide timely and accurate estimates
of forest resources and their evolution at a large scale.
Nevertheless, this method is time-consuming and quite
expensive. Furthermore, an inventory of an entire area
is, for obvious reasons, impossible and sample-based
procedures are necessary. Therefore, technological
innovation is becoming crucial to improve the efficiency
of measurements and estimations while making the
production of inventory data simpler (McRoberts &
Tomppo, 2007).

Remote sensing is one of the technological
tools at our disposal: it decreases the cost of data
acquisition, increases the area it is possible to cover
without sampling, and enables the production of
high-resolution forest attribute maps. Remote sensing
enables the production of map layers that give precious
information about the distribution of forest resources.
These complement sample-based procedures in the
field and today are commonly used by researchers and
managers (McDermid et al., 2009).

Today advances in technology such as satellite
remote sensing and digital photogrammetry have
increased the possible applications of remote sensing
and image classification. Light detection and ranging
(LiDAR) data and photogrammetry technologies have
made it possible to use 3D data, such as Canopy Height
Models (CHM) when investigating forests. These
technologies improve the classification accuracy of
forest classes (Waser et al., 2011). However, 3D data is
still rare at the large scale and the technology remains
expensive.

This may be different for satellite imagery. On 28
February 2008, the European Union (EU) and European
Space Agency (ESA) signed an agreement over the
creation of the COPERNICUS program. The aim of this
program is to provide earth surface monitoring services
(European Commission, 2015) (Land, Atmosphere
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& Marine Monitoring, Climate Change, Security &
Emergency Management Services). The launch of
the two Sentinel-2 (S2) satellites is an opportunity to
enhance forest characterization on a large scale. The
satellites multispectral 13-band sensors produce high-
quality images at a 5-day equatorial temporal resolution
(Suhet & Hoersch, 2015). Such an availability of free
data is unprecedented and will substantially promote
research in this topic.

In preparation for the arrival of the new S2
imagery, Inglada et al. (2017) present a methodology
to automatize the production of a land cover map at the
country scale using high-resolution optical image time
series. Using this methodology, the study constructs
a map of metropolitan France with a coefficient of
kappa 0.86 describing 17 land cover classes, including
broad-leaved forest and coniferous forest. In the first
study to use pre-operational S2 data, Immitzer et al.
(2016) test both a pixel-and object-based classification
of tree species in Germany for 7 classes, getting an
overall accuracy (OA) of 0.64 and 0.66, respectively.
These studies demonstrate the powerful potential of
satellite imagery for forest mapping, and research is
necessary to exploit the potential of these new S2 data.
In their review of tree species classification studies,
Fassnacht et al. (2016) observe the increasing number
of works on this topic over the last 40 years. However,
they note that most investigations are oriented toward
optimizing classification accuracy over a relatively
small test site and it is therefore often difficult to draw
general conclusions from these studies. The authors
recommend using well-defined applications in future
research in order to avoid purely data-driven studies of
limited values and increase understanding of broader
factors affecting tree species classification.

In this context, we use S2 imagery to investigate
image classification in European temperate forests at
the regional scale. Our study has three goals:

— to create a highly accurate regional forest map using
S2 imagery;

— to evaluate the potential of S2 imagery in identifying
the main tree species encountered in the study area;
—to assess the benefits of incorporating 3D data into
our study of the previous two goals and therefore
determining how precise S2 data is in these

approaches.

For these purposes, we implemented supervised
classification per pixel using a random forest (RF)
algorithm. We used two S2 images acquired at different
dates to take account for species seasonality. Then, we
computed a range of spectral indices. After a step of
variables selection, we trained random forest classifiers
for two datasets: the first contains only S2 bands
and spectral indices, while the second also contains
3D data. The quality of the results was assessed and
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compared in terms of a confusion matrix with a strong
reference dataset.

2. MATERIALS

2.1. Study site

The study was conducted for the entire Belgian
Ardenne ecoregion. This region constitutes a plateau
whose altitude increases gradually from the South-
West to the North-East, culminating at nearly 700 m.
The annual mean temperature is smaller than 9 °C
and annual precipitations are nearly 1,200 mm. With
an afforestation rate of 58%, the Ardenne represents
333,850 ha of forest and is the largest forest area in
Wallonia. This forest is mainly coniferous (64%),
according to Wallonia’s Regional Forest Inventory
(RFI) (Alderweireld et al., 2015), and the most
frequently found tree species are (in order of quantity):
spruce (Picea abies [L.] H.Karst.), oak (Quercus sp.),
beech (Fagus sylvatica L.), Douglas fir (Pseudotsuga
mengziesii (Mirb.) Franco), pine (Pinus sp.), and larch
(Larix sp.). These six species represent 85.8 % of the
forest. Most of the time, coniferous stands are pure
species plantations. Deciduous stands are most of the
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time naturally regenerated and thus present an uneven-
aged structure and a composition dominated by beech
and oak, the level of mixture being driven mainly
by soil depth and topography. Figure 1 provides an
overview of the study site.

2.2. Remotely sensed data

Sentinel-2. The onboard S2 sensor is a passive multi-
spectral instrument (MSI). It provides 13 spectral
bands (Table 1). In order to simplify pre-processing,
the only two available S2 images with less than 10%
cloud cover over the entire Ardenne ecoregion were
selected. Their sensing times were 2 August 2015 and
8 May 2016 (further referred as D1 and D2). These
dates have a potential interest as they could help
to difference some broad-leaved species between
themselves or from resinous species. Indeed in this
region, in May, Fagus sylvatica and Betula sp. have
begun foliation period since more than a month while
Quercus sp. have just started (https://fichierecologique.
be). It is widely acknowledged that reflectance from
the Earth’s surface, called top-of-atmosphere (TOA), is
significantly modified by the atmosphere (Jensen,2005;
Lillesand et al., 2008; Richards, 2013). There are many
remote sensing studies that have investigated how to
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Figure 1. The study area, the Belgian Ardenne ecoregion, is shown in yellow. A more detailed view is presented in the top left
corner (orthophoto 2016, Public Service of Wallonia) — La zone d’étude, I’écorégion de I’Ardenne belge, est en jaune. Une
vue plus détaillée est présentée dans le coin supérieur gauche (orthophoto 2016, Service Public de Wallonie).
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Table 1. Sentinel-2 bands properties, band number, band name in this study, central wavelength (nm), bandwidth (nm), spatial resolution (m) and purpose. Only band

numbers marked with asterisks were used in this study. Data compilation and purpose from the European Space Agency (2015) — Propriétés des bandes S2, numéro de
la bande, nom de la bande dans cette étude, longueur d’onde centrale (nm), largeur de la bande (nm), résolution spatiale (m) et objectif. Seuls les numéros de bandes

annotés avec une astérisque ont été utilisés dans cette étude. Données et objectifs provenant de European Space Agency (2015).

Purpose
Blue

Spatial resolution (m)

10
10
10
10
20
20
20
20
20

Central wavelength (nm) Bandwidth (nm)

Band number Band name

65

490
560
665
842
705

Blue

Green
Red

35
30
115

Green
Red

3 %

4 *

Sensitive to chlorophyll, biomass and protein

NIRwide

8 *

Vegetation classification

15
15
20
20
90
180

Rededge 1

5 *

Vegetation classification

740
786
865
1,610

Rededge 2
Rededge 3

6 *

Vegetation classification

7 =

Vegetation classification

NIRnarrow
SWIR 1

*k

8a
11 *

Sensitive to lignin, starch and forest above ground biomass

Distinction of live biomass, dead biomass and soil

20
60
60
60

SWIR 2 2,190

12 *

Aerosol scattering

20
20
20

443
945
1375

Water vapor absorption

Detection of thin cirrus

10
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reduce the effects of the atmosphere on the signal
(Kaufman et al., 1997; Song et al., 2001; Guanter
et al., 2008). This is even more important in case
of multi-temporal date analyses (Agapiou et al.,
2011; Hagolle et al., 2015), therefore we used the
atmospheric correction proposed by the Sen2Cor
processor (version 2.2.) (Miiller-Wilm, 2016).
Hence, Level-1C data were processed into Level-
2A (bottom-of-atmosphere corrected reflectance
images). S2 bands at 20 m of spatial resolution
were resampled at 10 m during this step (nearest
neighbor method). Then we compiled a layer
stack of 20 spectral bands with D1 and D2.

3D data. Three Canopy Height Models (CHM)
and one slope layer, based on LiDAR and
photogrammetric point clouds, were used
covering the entire study area at a resolution of
I m.

A CHM was made using LiDAR (LiDAR
DSM - LiDAR DTM) and referred to as CHM3
in this paper. The average point density of
small footprint discrete airborne Lidar data was
0.8 points-m™'. Survey flights were realized by the
Public Service of Wallonia from 12 December
2012 to 21 April 2013 and from 20 December
2013 to 9 March 2014. The survey covered
Wallonia with a regional digital terrain model
(1 m ground sampling distance [GSD]). A digital
surface model (DSM) at the same resolution was
also computed and a slope layer was generated
based on the Lidar digital terrain model (DTM).

For two other CHMs, raw images from
two regional orthophoto datasets (acquired by
the Public Service of Wallonia) were used to
generate two high-density photogrammetric point
clouds. Both survey flights took place between
April and September, the first in 2006 and 2007
(0.50 m GSD), the second in 2009 and 2010
(025 m GSD). Considering that the regional
topography did not change significantly, hybrid
CHMs were computed using photogrammetric
DSM and LiDAR DTM, as described above,
following the approach of Michez et al. (2017)
(photogrammetric DSM-LiDAR DTM). Their
spatial resolution is 1 m. The precision of this
approach has been evaluated in Michez et al.
(2017) using field tree height measurements
(root mean square error smaller than 3 m). These
hybrids CHM are called CHM1 and CHM2 in this
paper. They were used in this study to improve the
detection of recent clear cuts and young stands,
adding height information in the past.

These four layers (CHM1, CHM2, CHM3,
and SLOPE) were aggregated at 10 m of spatial
resolution using median value.
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3. METHODS

3.1. Image classification models

To accomplish our first two goals, we defined two
models of classification. The model called Objective 1
created a forest map, and was trained to identify four
classes: broad-leaved stands, coniferous stands, recent
clear-cuts, and non-forest areas. The non-forest class
dataset contained an equal proportion of observations
for agricultural lands, urban landscapes, and water
bodies. In order to create our forest map, we applied
the obtained classifier to the entire study area. We then
generated a forest land use map by merging the three
forest classes into one. By first growing a model with
four classes, clear cuts are integrated into the produced
forest map, as it forms an integral part of the forest
estate covered by management plans.

Second model called Objective2 aims at
classifying the tree species present in the study site to
evaluate the discrimination potential of S2 data using
a pixel-based approach. Based on the RFI, we defined
11 classes that corresponds to the main species or
types of stands: beech, birch (Betula sp.), oak, other
broad-leaved stands (OB), Douglas fir, larch, Scots
pine (Pinus sylvestris L..), spruce, young needle-leaved
stands (YN), other needle-leaved stands (ON), and
recent clear-cuts (RCC). Young stands correspond to
plantations between 4 and 12 years old, and recent
clear-cuts are stands that have been harvested in the
last four years. For each class, pixels contain at least
80% of the species or group of species.

The global workflow of the study is synthesized in
figure 2.

3.2. Dataset preparation

In order to determine the most pertinent classification
variables in each model, we added a large selection of
spectral indices to the original S2 dataset. Each indice
was generated for D1 and D2. The list is presented in
table 2.

We then created another dataset that include 3D
data and compared results of the two datasets for
each classification objective. In other words, for each
objective we tested the following datasets: the S2
bottom-of-atmosphere data D1 and D2 with spectral
indices (S2) and the S2 bottom-of-atmosphere data D1
and D2 with spectral indices and 3D data (S2-3D).

All together, there were 10 S2 Bands, 34 indices
by sensing time, 3 CHM dates, and 1 slope layer. So,
depending on whether we included 3D data, we had 89
or 93 variables by dataset.

Reference pixels were produced from delineated
management forest units (DFU) extracted from
the regional forest administration geodatabase and
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from four bands (RGB and IR) 0.25 m resolution
orthophotos covering the entire region. These image
layers are available for the years 2006, 2009,2012, and
2015 (http://geoportail.wallonie.be).

DFU were used for both Objectives 1 and 2
to extract reference data for forest classes. Before
that, DFU polygons were visually interpreted to
verify eventual errors or modifications since the last
update. For each class, the chosen forest stands were
supposed to be “pure stands” according to the DFU
database (percentage > 80%). Table 3 shows by class
the number of polygons and the number of extracted
pixels. Reference polygons were delineated for non-
forest classes by visual interpretation of orthophotos.

3.3. Variable selection and classification

The following steps were executed in the same way

for Objectives 1 and 2 using Dataset 1 or 2 (Figure 2).

Before building classification models, we rationally

reduced the number of variables by selecting the

most important using VSurf (Genuer et al., 2016) in

R software (R Core Team, 2016). The VSurf package

allows variable selection based on the estimation of

RF’s variable importance (Genuer et al., 2015). As

a result, the process provides two variables subsets.

The first, called “variable interpretation”, is intended

to show variables highly related to the response

variable. It does not matter if there is some, or even
much, redundancy in this subset. The second, called

“prediction”, is a smaller subset with low redundancy

intended to assure a good prediction of the response

variable.

The following parameters were set to allow the
maximum performance in a reasonable time with the
used computer:

—each RF was built using ntree = 1,000 trees, the
number of variables randomly sampled as candidates
at each split (mtry) was set by default (sqrt[p], where
p is the number of variables);

— the number of random forests grown was 20 for the
three main steps of the Visurf process: “thresholding
step”, “interpretation step”, and “prediction step”
(nfor.thres = 20, nfor.interp = 20 and nfor.pred = 20);

— the mean jump is the threshold of decreasing mean
OOB error used in the Vsurf’s prediction step to add
variables to the model in a stepwise manner. It was
multiplied 4 times (nmj = 4) in order to make this
step more selective, considering the large number of
variables.

For the two objectives, we realized supervised
classifications per pixel with a RF classifier (Breiman,
2001), using the randomForest package (Liaw &
Wiener, 2002) in R software (R Core Team, 2016).
Only the variables selected during the prediction step
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Sentinel 2 layer
stack 10 m,
D1 and D2

Reference
data

Y

. 3D data inclusion
Indices 1 _,f. 1 |idar CHM
production - 2 photogrammetric CHM’s

Y Yy

Dataset Dataset
S2 S2-3D
Y

Pixels ./ 10% for

extraction Zvalidation data

Reference
polygons

100% for 90% for

VSurf VSurf
variable selection ariable selection
RF RF
Pixel based Pixel based
classification classification

| |

Independent validation Independent validation
for each dataset for each dataset

Application of the best model
and post-treatment

Visual interpretation
of a systematic
grid

Forest cover
map

Independent
validation

Figure 2. Global workflow of the study divided in two goals of classification. The first classification model called Objective 1
created a forest map, and was trained to identify four classes: broad-leaved stands, coniferous stands, recent clear-cuts, and
non-forest areas. Second model called Objective 2 aimed at classifying the tree species present in the study site to evaluate the
discrimination potential of S2 data using a pixel-based approach. After a step of variables selection, random forest classifiers
were trained for two datasets: the first contained only S2 bands and spectral indices (Dataset S2), while the second also
contained 3D data (Dataset S2-3D) — Workflow global de I’ étude divisé en deux objectifs de classification. Le premier modele
de classification nommé Objectif 1 a généré une carte forestiere et a été entrainé a identifier quatre classes : les peuplements
feuillus, les peuplements résineux, les coupes rases récentes et les surfaces non forestieres. Le second modéle nommé Objectif 2
visait a classifier les espéces d’arbre présentes sur le site d’étude afin d’évaluer le potentiel discriminant des données S2 via
une approche par pixel. Apres une étape de sélection de variables, des foréts aléatoires ont été entrainées pour deux jeux de
données : le premier contenant uniquement les bandes S2 et des indices spectraux (Dataset S2), le second incluant aussi des
données 3D (Dataset S2-3D).
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Table 3. The number of DFU polygons and extracted pixels by forest class: recent clear cuts (RCC), beech, birch, oak, other
broad-leaved stands (OB), Douglas fir, larch, other needle-leaved stands (ON), Scots pine, spruce, young needle-leaved
stands (YN) — Nombre de polygones DFU et nombre de pixels extraits par classe forestiére : coupes récentes (RCC),
hétre (beech), bouleau (birch), chéne (oak), autres peuplements feuillus (OB), Douglas (Douglas fir), méleze (larch), autres
peuplements résineux (ON), pin sylvestre (Scots pine), épicéa (spruce), jeunes peuplements résineux (YN).

RCC Beech Birch Oak OB Douglas Larch ON Scots Spruce YN
fir pine
Number of polygons 51 64 57 37 34 46 44 45 33 31 47
Number of pixels 7068 6327 2589 4572 3,623 5929 5,799 3251 4,180 4,028 3,858

of VSurf were considered for this classification. The
process was executed with 2,000 trees to grow and mitry
set by default. A series of parameters combinations
were tested to find the most relevant parameters for
this study. Before training the models, the number of
observations by class was randomly downsampled to
balance classes.

3.4. Accuracy assessment

All the reference data extracted from DFU polygons
were used to train Objective 1. The accuracy assessment
was carried out with a set of points systematically
distributed over the study area (1kmx1km, n=
5,744 points) and photo-interpreted on the orthophotos.
Confusion matrices were built comparing attributed
classes for these points.

Concerning Objective 2, 10% of the reference
data extracted from DFU polygons was randomly
selected to create a validation dataset. The number of
observations by class was randomly downsampled to
balance classes for the validation. Confusion matrices
were built using these validation data. For Objectives 1
and 2, we computed the OA (overall accuracy) as well
as producer (PA) and user accuracy (UA) for each class.

4. RESULTS

4.1. Objective 1: forest map

Comparing the performance of both datasets.
Table 4 shows the accuracy of the forest maps
generated using the S2 and S2-3D datasets. These
results were computed before post treatments and
are presented to compare dataset performances. The
presentation of the final forest map is described in
Section 4.1.3. S2-3D gave the best results, with an
overall accuracy difference of 0.9% between the two
approaches. This difference is significant (p-value =
0.002421, McNemar’s chi-squared test realized on the
contingency table of correctly classified and incorrectly
classified points). The PA of the non-forest class had the
highest difference in accuracy (1.7%) between S2 and

Table 4. Accuracy comparison of the RF classifiers
built with the S2 and S2-3D datasets for classification
Objective 1. A visual interpretation of a systematic
point grid (1 kmx 1km, n= 5,744 points) was used
to compute accuracy indices: overall accuracy (OA),
production accuracy (PA) and user accuracy (UA) by
class — Comparaison des précisions atteintes résultant
de lutilisation des jeux de données S2 et S2-3D pour
la classification Objectif 1. Une photointerprétation
d’une grille de points systématique (1 km X I km, n =
5744 points) a été utilisée pour calculer les indices de

précision : overall accuracy (OA), production accuracy
(PA) and user accuracy (UA) par classe.
S2 S2-3D

OA (%) 91,7 92,6
PA forest (%) 91,9 92,3
UA forest (%) 945 955
PA non-forest (%) 91,3 93,0
UA non-forest (%) 87,5 88,2

S2-3D. The lowest difference in accuracy (0.4%) was
for the PA of the forest class.

Selected variables. The results presented in this section
are based on the classifier trained with the S2-3D
dataset, which obtained the best precisions. Figure 3
illustrates which S2 bands were mostly identified as
relevant regarding our classification goals. A band was
counted if it was selected at the VSurf interpretation
step and each time it was used in a variable selected
during the interpretation step. For Model 1, the three
bands used the most were B8A, B11 and B12, all of
which have a 20 m GSD.

In table S, variables were sorted according to their
sensing date and native spatial resolution. The term
“mixed” means that S2 bands of both spatial resolutions
were used to generate the index.

Fourteen variables were selected during the VSurf
prediction step. The list is presented in descending order
of occurrence: CHM?2,CHM3,B11-D2,CHM1,B7-D2,
B12-D1, SLOPE, STI-D1, NDTI-D1, RTVIcore-D2,
B5-D2, MSI-D2, NDrededgeSWIR-D1, and B5-D1.
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Figure 3. Frequency of selection for each S2 band (Table 1) by the VSurf selection process (Genuer et al., 2016) during the
interpretation step. A band is counted if selected itself or inside a spectral indice variable — Fréquence de sélection de chaque
bande S2 (Tableau 1) par le processus de sélection VSurf (Genuer et al., 2016) durant la phase d’interprétation. Une bande
est comptabilisée si elle est sélectionnée elle-méme ou au sein d’une variable d’indice spectral.

Table 5. Percentage of selected S2 variables by spatial
resolution and acquisition date of S2 image. The class
“mixed” lists the variables computed with 10m S2
bands and 20 m S2 bands — Pourcentage des variables
S2 sélectionnées par résolution spatiale et par date
d’acquisition de I’image S2. La classe « mixed » concerne
les variables générées avec des bandes S2 a 10 m et des
bandes S2 a 20 m.

By date By spatial resolution

(%) (%)

8/2/2015 5/8/2016 10 m mixed 20 m
Objective 1 32.1 67.9 71 214 714

Objective 2 47.4 52.6 53 342 60.5

Production of a forest map. The RF classifier
generated with previous variables was used to compute
a final forest map. This map was then filtered using the
Majority Filter tool of ArcMap® (Number of neighbors
to use: 8, Replacement threshold: MAJORITY).
Figure 4 presents the result. A validation was carried
out for the produced map. The OA value of the
confusion matrix was 93.3%. PA and UA were 93.2%
and 95.8% for the forest class while it was 93.3% and
89.5% for the non-forest class.

4.2. Objective 2: tree species classification

Comparing the performance of both datasets. In
order to compare the accuracies of achieved results for
both the S2 and S2-3D dataset, user accuracies of all
classes have been summarized by mean to make the
comparison easier. For dataset S2, OA and the user
accuracy mean (UA mean) were 88.5% and 88.6%
while for dataset S2-3D, it was 88.9% and 89%. As
with Model 1, the 3D dataset gave the best results
but the differences in precision can be considered as
negligible: in all cases the value was less than 0.5%.

Selected variables. The results presented in this
section concern the classifier trained with the S2-3D
dataset that obtained the best precision values. They
are summarized in figure 3 and table 5. The three
most-selected bands at the VSurf interpretation step
were B8A (NIR narrow), BS (Red Edge 1), and B11
(SWIR 1), all of which have a 20 m GSD.

Eighteen variables were selected during VSurf
prediction step. The list is presented in descending
number of appearances: SLOPE, CHMI1, CHM2,
CHM3, RedSWIR1-D2, B8A-D2, B7-D2, B11-D2,
NDrededgeSWIR-D1, B5D2, MSI-D2, NDWI1-D2,
B12-D2, B6-D2, BI11-D1, STI-D1, B5-D1, and
LChloC-D1.
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Figure 4. On the top in RGB colour composition, one of the two S2 images (05/08/2015) used in this study. On the bottom,
the forest map of the Belgian Ardenne ecoregion generated by merging the three forest classes of the classification result
“Objective 1”7 into one. Both maps present a more detailed view in their top left corner — En haut en composition colorée
RGB, l'une des deux images S2 (08/05/2015) utilisée dans cette étude. En bas, la carte forestiere de I’écorégion de I’ Ardenne
belge, générée en fusionnant les trois classes forestieres du résultat de la classification « Objectif 1 » en une seule. Les deux
cartes présentent une vue plus détaillée dans leur coin supérieur gauche.
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Accuracy of the best classifier. Achieved accuracies
with the S2-3D dataset are presented in detail by a
confusion matrix (Table 6). The OA was 88.9%. The
worse PA concerned the larch (79.9%) and recent
clear cut (83.2%) classes. The worst UA were for
beech (83.8%) and larch (86.3%).

5. DISCUSSION

5.1. Variable selection

It is interesting to observe the difference between
Objectives 1 and 2 in figure 3. In Objective 1, the
most selected bands were found, in order of number
of appearances, B11,B8a,and B12. In Objective 2 the
most selected bands were B8a, B5, and B11. These
results are in line with the goals of classification
models and band properties. Indeed, Objective 1 aimed
at distinguishing forest classes (coniferous stands,
broad-leaved stands, and recent clear-cuts) from non-
forest areas. The second classification objective was
separating tree species classes present on the study
site. B11 is sensitive to forest above ground biomass
and B12 facilitates distinction of live biomass, dead
biomass, and soil (Table 2), thus B11 and B12 have
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more importance in Objective I where there are
non-forest classes. BS and B8a are more related to
Objective 2; indeed, vegetation classification is the
only goal in this case. Figure 3 shows the importance
of shortwave infrared (SWIR) (B11 and B12) and the
red-edge band B5 for both models, as mentioned in
other studies (Schuster et al., 2012; Fassnacht et al.,
2016; Immitzer et al., 2016; Radoux et al., 2016).

Looking at table 5, we can see that the most
selected variables have a GSD of 20m. As a
consequence, the resolution of the resulting maps was
not really 10 m; even more without the use of 3D data.
This confirms the relevance of spectral bands sensed
by S2 but reminds us that spectral resolution can be
more important than spatial resolution for vegetation
discrimination at a regional scale.

Selected variables were well distributed between
the two S2 images taken on different dates, especially
for Objective 2. It appears that image interaction was
useful. Choosing the time of image acquisition in
relation to species’ phenological cycle is a possible
way to improve discrimination. Immitzer et al. (2016)
test a classification of tree species in Germany for
seven classes on a single date. Their results show an
OA of 0.64, an accuracy lower than what we found
in this study, even for Dataset S2. This was probably

Table 6. Confusion matrix of classification Objective 2 for Dataset S2-3D. The validation of Objective 2 was realized with
10% of the reference data. Classification Objective 2 concerned 11 classes: recent clear cuts (RCC), beech, birch, oak, other
broad-leaved stands (OB), Douglas fir, larch, other needle-leaved stands (ON), Scots pine, spruce, young needle-leaved
stands (YN). Producer accuracy (PA) and user accuracy (UA) are presented for each class — Matrice de confusion de la
classification Objectif 2 pour le jeu de données S2-3D. La validation de la classification Objectif 2 a été réalisée en utilisant
10% des données de référence. La classification Objectif 2 concernait 11 classes : coupes récentes (RCC), hétre (Beech),
bouleau (Birch), chéne (Oak), autres peuplements feuillus (OB), douglas (Douglas fir), méléze (Larch), autres peuplements
résineux (ON), pin sylvestre (Scots pine), épicéa (Spruce), jeunes peuplements résineux (YN). La précision du producteur
(PA) et la précision de I’ utilisateur (UA) sont présentées pour chaque classe.

Prediction Reference
RCC Beech Birch Oak OB Douglas Larch ON Scots Spruce YN UA (%)
fir pine

RCC 223 2 3 1 2 1 3 1 1 0 4 92.5
Beech 5 238 1 1 8 3 6 11 3 4 4 83.8
Birch 8 5 259 4 2 3 3 3 0 3 1 89.0
Oak 1 1 1 229 2 5 8 0 2 1 1 91.2
OB 6 0 1 5 242 3 4 2 3 2 1 90.0
Douglas fir 2 2 0 3 4 232 16 3 1 1 2 87.2
Larch 8 6 0 1 2 4 214 8 4 0 1 86.3
ON 2 7 0 2 1 7 5 236 0 1 1 90.1
Scots pine 3 2 2 4 2 0 0 0 249 4 2 929
Spruce 6 2 0 9 2 7 4 1 4 251 3 86.9
YN 4 3 1 9 1 3 5 3 1 1 248 88.9
PA (%) 832 888 966 854 903 86.6 799 88.1 929 937 92.5
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partially because of our use of images taken on two
dates. It would be interesting to test the use of images
taken on several dates during the vegetation period
in order to benefit from tree species phenology.
Particularly for broad-leaved species, a series of dates
from March to May should help to detect differences
in foliation period. This is a task for future study; the
growing availability of free data from S2 satellites
makes this research a possibility.

During the final VSurf prediction step, all 3D
data were taken into account and were among the
best variables for both objectives. The slope was
the best for Ojective 2, showing that the presence of
certain species in the study site is strongly related
to the topography. Fourteen variables were selected
for Objective 1 and 18 for Objective 2. Except NDTI
and RTVIcore, all the variables in Objective 1 were
included in Objective 2. In addition, Objective 2
included additional indices and S2 bands, which
helped to discriminate vegetation species. As
expected, this suggests that more information is
needed to solve a complex problem like separating
tree species. Just as the SWIR and red-edge bands
were the most selected S2 variable during the VSurf
interpretation step, almost all the variables selected
during the VSurf prediction step were a SWIR or red-
edge band or a spectral index computed with at least
one of these bands.

5.2. Precision of the results

The produced forest map (Objective 1) had a very
good precision rate, with an OA of 93.3%. In our
reference dataset, used for classifier construction,
the non-forest class was composed of different land
cover and was less homogeneous than other classes.
The non-forest class UA was worse than for the forest
class, probably for this reason. In this study, we did
not control the behavior of the classifier with small
woodland areas like isolated trees or bands of trees.
The precision of the map could be negatively impacted
by fragmented landscape elements because the spatial
resolution of S2 is probably too low for this purpose,
and edge pixels represent a large proportion of the
total, increasing the bias due to sub-pixel variations
(not evaluated here) (Stratoulias et al.,2015; Immitzer
et al., 2016; Radoux et al., 2016). Hence, a possible
improvement for users of this map could be to choose
an appropriate definition for the forest that would
remove these problematic elements. According to the
Walloon Forest Inventory (Alderweireld et al., 2015),
the Belgian Ardenne ecoregion includes 333,850 ha
of forest area. Based on the forest map classification
and the confusion matrix, an area estimator of forest
was computed (Olofsson et al., 2013) at 354,761.3 ha
(£ 3,695.57 ha) of forest in the Belgian Ardenne
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ecoregion. The RFI only considers forest elements
bigger than 0.1 ha and wider than 20 m. This limit
could partly explain the over-estimation; pixel groups
smaller than 10 pixels, correctly classified or not, are
common on the forest map.

The results of second objective, concerning tree
species discrimination, were encouraging (Table 6).
The obtained precisions were better than those in
previous studies using S2 data (Immitzer et al., 2016)
and similar or better than those in studies using data
from other sensors with various spatial and spectral
resolution (Immitzer et al., 2012). For this number
of classes and this study area size, these results
are encouraging. This approach demonstrates the
possibility of efficiently mapping regional tree species
with S2 imagery in the future. Nevertheless, the study
did have some limitations, due to its workflow and the
reference data used.

First, because of the availability of data the
number of different forest stands for some species
used to extract pixels was limited (from 31 to 64,
Table 3). This means that the within-species variance
of training data sets was probably too reduced for a
large area like the Belgian Ardenne. Furthermore, the
DFU cover only public forests that represent 57% of
the study area. It will be important for future studies to
represent as best as possible the variability of species.
Further research could also eventually consider
ecological gradients in analyses (e.g. water proximity,
elevation, sunlight exposure). For instance, the benefit
of using ancillary geodata in a classification process
has been studied in Forster & Kleinschmit (2014).

Second, we did not manage to account for species
mixing at the pixel level. Indeed, the probability
to have a single tree or stand exactly covered by a
single pixel matching its extent is low (Fassnacht et
al., 2016). The simplification done when extracting
pixels from supposedly pure stands resulted in
interesting conclusions regarding the separate nature
of species. But it is not yet sufficient to create a map
of species distribution, since the study area includes
many mixed pixels. Furthermore, for this study,
the most important S2 bands were sensed at 20 m
GSD, increasing these effects. As a consequence of
these two simplifications, the precision evaluated by
independent validation was probably over-estimated
for the application of the classifier over the whole
study site.

Choosing an object-based approach and processing
segmentation with very high resolution images like
orthophotos would allow researchers to work at
the scale of one stand or tree group (Kumar, 2006).
It could partly solve these issues and would give
researchers the interesting opportunity to combine
advantages from a time series of S2 images and very
high-resolution images.
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5.3. Contribution of 3D data

In the creation of the forest map, the use of 3D data
significantly improved the precision. However,
it appears that at a large scale and at this spatial
resolution it is possible to get sufficient predictions
using only S2 imagery. The best improvements using
3D data were seen in the UA of the forest class and
in consequence for the PA of the non-forest class.
Information about tree height should, most of the time,
limit confusion between other vegetation and forest;
the observed trend confirmed this idea. Furthermore,
including old clear cuts in the forest map is a
complicate task without using anterior CHM’s. Taking
into account the fact that most of the variables used in
the classification have a 20 m GSD, the 10 m spatial
resolution of the 3 CHM is probably an advantage
for the classification of edges. It could improve the
precision at those locations where 20 m pixels have
more chance to overlap the edge between forest and
non-forest classes. So the quality of geometric limits
is probably better for the forest map realized with the
S2-3D dataset.

In Objective 2, the global improvement brought
by 3D data was less important than in Objective 1.
In average, precision did not increase by more than
0.5%. The only interesting exception is the PA of
the RCC class, which increased by 5%. As expected,
the 3 CHM improved the detection of recent clear
cuts. Surprisingly, the detection of YN class did
not improve. It appears that their S2 information is
already distinguishable from that of other classes
without information about height. The use of CHM
is not very relevant for the discrimination of tree
species at this spatial resolution. In contrast, a derived
variable of environment, like the slope (selected as
first variable at VSurf prediction step), seems to bring
more interesting information and improving such an
approach could be pertinent.

6. CONCLUSIONS

This paper investigates the new opportunity offered
by Sentinel-2 imagery to classify forest and forest
species at large scale. Two cloud-free S2 scenes
(02/08/2015 and 08/05/2016) were used and a series
of spectral indices were computed for each. After
variable selection, we applied supervised pixel-based
classifications with a random forest classifier. A first
model of classification aimed at creating a forest
map of the Belgian Ardenne ecoregion. A second
tested tree species discrimination for species present
on the study site. These two models of classification
were processed with both a pure S2 dataset and with
additional 3D data and the obtained precisions were
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compared. The precision of produced forest maps was
evaluated with a visually interpreted systematic point
grid at intervals of 1,000 m. For the second model,
the models were validated with 10% of the reference
data.

The evidence from this study suggests that this
approach enables accurate classification without 3D
data. For Objective 1, classification realized with 3D
data was significantly better, with an OA difference of
0.9%. For Objective 2, the improvement in OA was
negligible (0.4%). The produced forest map had an
OA of 93.3%. The test of tree species discrimination
was conclusive and encouraging with an OA of 88.9%.
Concerning Objective 2, it is important to remember
that the present study has investigated a simplified
per-pixel classification with pixels extracted from
a limited number of pure stands. As a consequence
of these simplifications, the precision evaluated
was probably over-estimated for the application of
the classifier on the whole study site. Despite these
limitations, the results confirmed the great potential
of S2 imagery for tree species discrimination. More
specifically, the SWIR and red-edge S2 bands are
essential, as they were by far the most important in
our variable selection process. Their spatial resolution
of 20 m can lead to restrictions for detailed analyses.
That is why we recommend that further research
combines S2 imagery with another data source at
very high spatial resolution in order to exploit the
undeniable discrimination power of S2 and a better
spatial precision. Along the same lines, we achieved
similar results both using a 3D dataset and without,
but precisions of edges and the detection of small
elements seemed to be improved using 3D data. That
improvement has not been evaluated in this study. The
main gain of using 3D data was the improvement of
the forest map and the clear cuts detection. In further
research, it would be interesting to generate a forest
map including clear cuts, starting from 3D data only
at a higher spatial resolution.

The choice of an object-based approach and the
use of better acquisition dates are possible methods
to improve our classification results. To further our
research, we plan to work on the quality of reference
data and to develop adequate methods to surpass the
test step and create tree species classifiers operational
for the production of tree species maps at large scale
with an assessment of their precision in the best way.
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