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In	animal	breeding,	prediction	of	genetic	effects	is	usually	obtained	through	the	use	of	mixed	models.	For	any	of	these	genetic	
effects,	mixed	models	require	the	inversion	of	the	covariance	matrix	associated	to	that	effect,	which	is	equal	to	the	associated	
relationship	matrix	times	the	associated	component	of	the	genetic	variance.	Given	the	size	of	many	genetic	evaluation	systems,	
computing	the	inverses	of	these	relationship	matrices	is	not	trivial.	In	this	review,	we	aim	to	cover	computational	techniques	
that	ease	inversion	of	relationship	matrices	used	in	animal	breeding	for	prediction	of	the	following	different	types	of	genetic	
effects:	additive	effect,	gametic	effect,	effect	due	to	presence	of	marked	quantitative	trait	loci,	dominance	effect	and	different	
epistasis	effects.	Construction	rules	and	inversion	algorithms	are	detailed	for	each	relationship	matrix.	In	the	final	discussion,	
we	draw	up	a	common	theoretical	frame	to	most	of	the	reviewed	techniques.	Two	computational	constraints	come	out	of	this	
theoretical	frame:	setting	up	the	matrix	of	dependencies	between	levels	of	the	effect	and	setting	up	some	parts	(diagonal	or	
block-diagonal	elements)	of	the	relationship	matrix	to	be	inverted.
Keywords.	Animal	breeding,	quantitative	genetics,	breeding	value.

Synthèse bibliographique des techniques d’inversion impliquées dans l’utilisation de matrices de parenté en amélioration 
animale. En	amélioration	animale,	les	effets	génétiques	sont	habituellement	prédits	par	l’utilisation	de	modèles	mixtes.	Pour	
n’importe	quel	effet	génétique,	les	modèles	mixtes	nécessitent	l’inversion	de	la	matrice	de	covariance	associée	à	cet	effet.	
Cette	matrice	est	égale	à	la	matrice	de	parenté	associée,	multipliée	par	le	composant	de	la	variance	génétique	également	associé	
à	cet	effet.	Étant	donné	la	taille	de	nombreux	systèmes	d’évaluations	génétiques,	établir	l’inverse	de	ces	matrices	de	parenté	
peut	s’avérer	couteux	d’un	point	de	vue	computationnel.	Dans	cette	synthèse	bibliographique,	notre	objectif	est	de	passer	
en	revue	les	techniques	qui	facilitent	l’inversion	de	matrices	de	parenté	utilisée	en	amélioration	animale	pour	la	prédiction	
des	 types	d’effets	génétiques	suivants	 :	effet	additif,	effet	gamétique,	effet	dû	à	 la	présence	de	 loci	marqués	de	caractères	
quantitatifs,	 effet	 de	 dominance	 et	 différent	 effet	 d’épistasie.	 Les	 règles	 de	 construction	 de	 la	matrice	 et	 les	 algorithmes	
d’inversion	 sont	 détaillés	 pour	 chaque	matrice	 de	 parenté.	Dans	 la	 discussion	 finale,	 nous	 esquissons	 un	 cadre	 théorique	
commun	à	la	plupart	des	techniques	d’inversion	passées	en	revue.	Deux	contraintes	computationnelles	ressortent	de	ce	cadre	
théorique	:	l’établissement	de	la	matrice	de	dépendances	entre	niveaux	de	l’effet	et	celui	de	certaines	parties	(diagonales	ou	
bloc-diagonales)	de	la	matrice	de	parenté	à	inverser.
Mots-clés. Amélioration	des	animaux,	génétique	quantitative,	valeur	d’élevage.

1. INTRODUCTION

A	 simple	model	 (equation	1;	 see	Kempthorne,	 1955)	
describes	 a	 given	 phenotype	 (P)	 as	 the	 sum	 of	 the	
genotype	(G)	and	the	environment	(E)	of	a	particular	
animal:

P	=	G	+	E.	 	 	 	 													Eq.	1

Based	on	equation	1,	variations	among	phenotypic	
observations	 are	 therefore	 explained	 by	 genetic	

and	 environmental	 variations	 and	 by	 a	 potential	
interaction	 between	 genotype	 and	 environment.	
Genetic	 improvement	 of	 animals	 requires	 accurate	
estimation	of	the	genetic	variance	component	in	order	
to	predict	the	genetic	values	of	animals.	The	structure	
of	 this	 variance	 component	 is	 based	 on	 knowledge	
of	 the	 biological	 processes	 involved	 in	 Mendelian	
inheritance.

In	 nearly	 all	 domestic	 species,	 animals	 have	 a	
diploid	 genome	 (with	 the	 exception	 of	 honey	 bees,	
where	males	are	haploid).	Then,	during	the	production	
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of	gametes,	a	haploid	copy	of	 the	diploid	genome	of	
the	 original	 animal	 (sire	 or	 dam)	 is	made.	However,	
haploid	copies	are	produced	from	potentially	different	
parts	of	the	homologous	chromosomes,	following	the	
process	of	 recombination	due	 to	crossing-over.	Thus,	
for	any	locus,	a	gamete	carries	a	single	copy	of	one	of	
the	 two	alleles	 carried	by	 the	parental	genome.	Both	
gametes	eventually	merge	to	create	a	new	animal.

By	the	process	described	before,	every	new	animal	
has	 a	 specific	 and	 unique	 genetic	 makeup.	 Genetic	
covariances	among	different	animals	arise	because	they	
have	inherited	similar	alleles	and	allele	combinations.	
Based	on	these	covariances,	associations	among	these	
animals	can	be	defined	as	ratios	between	covariances	
and	 variances	 associated	 to	 a	 given	 genetic	 effect.	
Whether	 the	 interactions	between	alleles	of	 the	same	
locus	(intra-locus	interaction)	and	between	loci	(inter-
loci	interaction)	are	null	or	not,	several	types	of	genetic	
effects	 can	 be	 distinguished.	 In	 our	 study,	 we	 will	
cover	and	detail	the	following	genetic	effects:	additive,	
gametic,	effect	due	to	marked	QTL,	dominance	and	the	
different	types	of	epistasis	effects.	

When	fitting	a	linear	model	with	generalized	least	
squares,	use	of	the	inverted	covariance	structure	among	
observations	 allows	 obtaining	 Best	 Linear	 Unbiased	
Estimators.	 Prediction	 of	 genetic	 effects	 is	 usually	
obtained	through	the	use	of	mixed	models	(Henderson,	
1953;	Henderson,	1973).	These	models	are	equivalent	
to	models	 fitted	 using	 generalized	 least	 squares	 and,	
for	every	random	effect,	the	inverse	of	the	associated	
covariance	structure	is	also	needed.

Due	to	huge	size	of	regular	genetic	evaluations,	there	
is	 a	 substantial	 interest	 in	 computational	 techniques	
that	 make	 efficient	 use	 of	 covariance	 matrices	 in	
terms	 of	 computing	 time	 and	memory	 requirements.	
Thus,	 our	 main	 objective	 is	 to	 review	 and	 explain	
in	 detail	 algorithms	 for	 inversion	 of	 relationships	
matrices	useful	in	animal	breeding.	Completion	of	this	
objective	 involved	 the	 definition	 of	 the	 relationships	
between	levels	of	the	concerned	genetic	effect	and	the	
computation	 of	 the	 related	matrices	 for	 each	 type	 of	
genetic	effect	listed	above	(additive,	gametic,	marked	
QTL	 effects,	 dominance	 and	 epistasis).	 Finally,	 we	
outline	a	general	framework	of	inversion	of	relationship	
matrices	in	the	final	discussion.

It	must	be	noted	that	the	case	of	genomic	relationship	
matrices	 has	 been	 willingly	 discarded	 in	 this	 study	
because	no	algorithm	that	directly	sets	up	their	inverses	
has	been	developed	so	far.	The	genomic	relationships	
are	made	available	by	 the	use	of	dense	marker	chips	
(over	 than	 tens	 of	 thousands	 of	 markers)	 and	 give	
an	 accurate	 estimation	 of	 the	 observed	 relationship	
between	 two	 animals.	 For	 their	 computation,	 please	
refer	 to	 the	 work	 of	 VanRaden	 (2008),	 for	 additive	
genomic	relationship	matrix,	and	Su	et	al.	 (2012)	for	
non-additive	genomic	relationship	matrix.

2. ADDITIVE RELATIONSHIP MATRIX

2.1. Definition of the additive relationship

If	 interactions	 between	 alleles	 are	 considered	 null,	
the	 genetic	 (co)variance	 is	 said	 to	 be	 “additive”.	
Based	on	previous	work	by	Pearl	(Pearl,	1917a;	Pearl,	
1917b),	Wright	(1922)	defined	an	additive	relationship	
coefficient	 as	 the	 additive	 correlation	 between	 two	
animals	i and	j	(equation	2):

	
rij =

Cov i , j[ ]
Var i[ ] ⋅Var j[ ]

=
aij
aii ⋅ajj

.	 													Eq.	2

The	rij	coefficient	is	a	correlation	coefficient;	it	ranges	
from	 0	 to	 1.	 The	 non-scaled	 coefficient	 of	 Wright,	
noted	aij,	is	the	additive	genetic	relationship	coefficient	
and,	from	equation	2,	is	defined	as	equal	to	rij	√aii

.ajj.	
This	 coefficient	 is	 also	 often	 referred	 as	 the	

“numerator	relationship”	coefficient	(due	to	its	position	
in	 equation	2).	 We	 will	 denote	 it	 as	 the	 “additive	
relationship	 coefficient”	 and	 the	 kind	 of	 relationship	
that	it	refers	to	as	an	“additive	relationship”	in	our	study.	
The	matrix	 containing	 all	 these	 additive	 relationship	
coefficients	will	be	denoted	by	A	and	called	“additive	
relationship	matrix”.

2.2. Computation of the additive relationship 
matrix

Complete computation of the additive relationship 
matrix.	 The	 path	 coefficient	 method	 (Wright,	 1922)	
enables	 the	 computation	 of	 the	 additive	 relationship	
between	 two	 animals.	 The	 process	 requires	
identification	of	 all	 nearest	 ancestors	 shared	between	
those	 two	 animals	 and	 counting	 of	 the	 number	 of	
generation	 steps	 between	 them.	 The	 path	 coefficient	
method	can	be	automated	and	extended	to	computation	
of	relationship	coefficients	in	the	whole	population.	The	
tabular	method	(Emik	et	al.,	1949;	Henderson,	1976)	
performs	 the	 computation	 of	 additive	 relationship	
coefficients	in	a	recursive	manner.	For	a	given	animal,	
the	relationship	coefficients	of	this	animal	with	all	older	
animals	are	computed	in	a	row	by	adding	one	half	of	
the	relationship	coefficients	in	the	rows	of	its	parents.	
A	 prior	 step	 is	 required:	 organization	 of	 pedigree	
records	in	a	sorted	by	generation	list	of	triplets	animal-
sire-dam	(Emik	et	al.,	1949;	Mugnier	et	al.,	1966).	On	
a	population	of	n	animals,	a	square	matrix	of	order	n	
is	created.

This	algorithm	has	a	complexity	that	is	proportional	
to	 n2,	 because,	 at	 each	 of	 the	 n	 loops	 it	 achieves,	 a	
linear	combination	of	a	vector	of	maximum	length	n	
is	 performed.	 Storage	 requirements	 follow	 the	 same	
trend	and	may	quickly	become	prohibitive.
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Partial computation of the additive relationship 
matrix.	 For	 this	 reason,	 and	 also	 because	 only	 a	
section	of	 the	additive	 relationship	matrix	may	be	of	
interest	 in	large	populations,	algorithms	that	permit	a	
partial	computation	of	the	additive	relationship	matrix	
have	been	developed.

Algorithms	corresponding	to	 two	specific	parts	of	
the	A	matrix	should	be	mentioned.	The	first	one	is	an	
algorithm	that	computes	the	relationship	coefficients	of	
a	particular	animal	with	the	rest	of	the	population	(e.g.	
Colleau,	 2002).	The	 second	 one	 is	 an	 algorithm	 that	
computes	 the	 diagonal	 elements	 of	A,	 which	 reveals	
inbreeding	 coefficients	 (e.g.	 algorithms	 of	 Quaas,	
1976;	Meuwissen	et	al.,	1992;	Sargolzaei	et	al.,	2005).	
The	interest	of	these	coefficients	will	be	highlighted	in	
the	next	sections.

2.3. Computation of the inverse of the additive 
relationship matrix

Matrix	A	 is	 non-singular	 except	 in	 the	 presence	 of	
genetically	 identical	 animals	 (GIA;	 full-twins	 or	
clones).	 In	 such	 situations,	 contributions	of	Kennedy	
et	al.	(1989)	and	Oikawa	et	al.	(2009)	are	relevant.

In	situations	without	GIAs,	Henderson	(1976)	has	
proposed	rules	that	allow	computing	the	inverse	of	A	
without	 having	 to	 compute	A	 explicitly.	 These	 rules	
are	 based	 on	 the	 simplicity	 of	 structure	 of	 matrices	
involved	in	the	factorization	of	A: A = TDT'.	According	
to	 Henderson	 (1976),	 matrix	T	 can	 be	 computed	
recursively	 (equation	3):	 the	 vector	 corresponding	 to	
the	 i-th	row	of	T,	 from	column	1	to	(i-1),	 is	equal	 to	
one	half	of	corresponding	parental	vectors	(say	s	and	
d).	Diagonal	value	is	1	and	upper	triangular	part	is	0.

	 T(i) =
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													Eq.	3

Inverting	 the	 factorization	 of	 A	 and	 using	 it	 to	
compute	 the	 inverse	 of	 A	 (as	 (T-1)'D-1T-1)	 does	 not	
require	T,	but	the	inverse	of	T.	This	latter	has	a	very	
simple	structure	that	comes	by	inversion	of	a	triangular	
matrix	(equation	4):

	
T(i)

−1 =

T(i−1)
−1 0 0
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	.									 													Eq.	4

The	matrix	D	is	diagonal:	element	Dii	is	equal	to

1−.25 ⋅ App
∀p∈Πi

∑ ,

where	∏i	denotes	the	set	of	known	parents	(either	0,	1	
or	2	parents	known)	of	animal	i.	A	correct	computation	
of	D	 requires	 to	 know	 the	 diagonal	 elements	 of	 A.	
Algorithms	for	computation	of	inbreeding	coefficients	
mentioned	in	section	2.2.2.	are	here	of	great	 interest.	
Among	 those,	 the	 algorithm	 by	 Quaas	 (1976)	 is	
noteworthy	 as	 it	 is	 the	 first	 one	 to	 compute	 these	
elements	for	the	particular	purpose	of	the	computation	
of	the	inverse	of	A.	

Once	 matrix	D	 has	 been	 computed,	 Henderson	
(1976)	 proposed	 a	 simple	 algorithm	 to	 set	 up	 the	
inverse	(Algorithm 1).	The	algorithm	summarizes	the	
product	 (T-1)´D-1T-1)	 to	n	 updates	 of	 a	n-by-n	matrix	
that	was	initially	set	 to	zero.	Each	update	is	a	square	
block	 matrix	 of	 order	 1	 plus	 the	 number	 of	 known	
parents.	This	principle	was	demonstrated	in	Tier	et	al.	
(1993)	and	van	Arendonk	et	al.	(1994).	The	advantages	
of	 this	 algorithm	 are	 its	 low	 complexity	 (O(n))	 and	
the	low	amount	of	memory	required	to	store	the	very	
sparse	output	(A-1	).

3. GAMETIC RELATIONSHIP MATRIX

3.1. Definition and uses of gametic relationships

In	 some	 situations,	 it	 may	 be	 interesting	 to	 express	
the	 additive	 genetic	 value	 of	 an	 individual	 in	 terms	
of	the	separate	gametic	contributions	of	each	of	their	
two	 parents	 (Kennedy	 et	 al.,	 1988;	 Schaeffer	 et	 al.,	
1989).	 Prediction	 of	 additive	 gametic	 values	 instead	
of	additive	genetic	values	allows	reducing	the	size	of	
the	 system	 to	 solve:	 the	number	of	genetic	 effects	 is	
equal	to	the	number	of	parents,	necessarily	lower	than	
the	 total	 number	 of	 animals	 in	 the	 population.	 The	
covariance	matrix	used	for	 random	genetic	 (gametic)	
effects	 is	 called	 the	 “gametic	 relationship	 matrix”	
and	denoted	hereafter	as	Ga.	Quaas	et	al.	(1980)	have	
developed	 such	 a	 model,	 known	 as	 reduced	 animal	
model.	 This	 model	 also	 shows	 how	 each	 ancestor	
affects	 the	 genetic	 value	 of	 the	 individual.	 Gibson	

Algorithm 1.	 Direct	 computation	 of	 the	 inverse	 of	 the	
additive	relationship	matrix	(A).
initialize	B	=	D-1	and	A-1	=	B,	two	matrices	of	order	n	
for	i	=	1	to	n,	do
–	 if	 any	 parent,	 say	 p,	 of	 the	 i-th	 animal	 is	 known,	 then
	 add	 –.5Bii	 to	 elements	 Api

−1 	 and	 Aip
−1 	 and

	 .25Bii to	element	 App
−1

–	 if	 both	 parents,	 say	 p	 and	 q,	 of	 the	 i-th	 animal	 are
	 known,	then	add	.25Bii	to	elements	 Apq

−1 	and	 Aqp
−1
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et	al.	(1988)	have	proposed	a	gametic	model	in	which	
only	one	parental	gamete	expresses	the	genetic	effect	
(autosomally	 inherited)	 of	 an	 individual.	 Other	 uses	
are:	 analysis	 of	 haploid-diploids	 species	 such	 as	 the	
honey	bee	(Smith	et	al.,	1985)	and	analysis	of	gametic	
imprinting	 effects	 (Gibson	 et	 al.,	 1988;	 Schaeffer	
et	al.,	1989).	Eventually,	the	usefulness	of	the	gametic	
relationship	matrix	 in	 computation	of	 the	 dominance	
relationship	 matrix	 has	 been	 shown	 by	 Schaeffer	
et	 al.	 (1989).	 The	 derivation	 of	A	 from	 the	 gametic	
relationship	matrix	has	been	described	by	Smith	et	al.	
(1985)	and	showed	by	Jamrozik	et	al.	(1991).	Matrix	A	
is	 obtained	 by	½	KGK´,	where	K	 = IU[	 1	 1	 ]	 (Tier	
et	al.,	1993;	van	Arendonk	et	al.,	1994).

3.2. Computation of the gametic relationship 
matrix

Smith	 (1984)	 proposed	 an	 algorithm	 to	 compute	Ga	
that	 is	 inspired	 by	 the	 tabular	 method	 (see	 section	
2.2.1.).	 For	 diploids	 species,	 the	 size	 of	 the	 matrix	
will	be	N	=	2n,	where	n	 is	 the	number	of	animals	 in	
population.	 Each	 animal	 has	 thus	 two	 rows/columns	
that	correspond	to	both	parental	gametes.	Construction	
rules	 are	 simply	 deduced	 from	 the	 tabular	 method:	
if	 the	 parent	 p	 is	 known,	 then	 the	 row	 elements	
below	 diagonal	 are	 equal	 to	 the	 half	 of	 the	 sum	 of	
corresponding	elements	in	both	lines	of	parent	p;	else	
if	the	parent	p	is	unknown,	these	elements	are	null.	The	
corresponding	column	is	obtained	by	transposition.

3.3. Inversion of the gametic relationship matrix

Matrix	Ga	is	non-singular	within	the	same	restriction	as	
for	matrix	A	(no	clones).	

The	 following	 algorithm	 (Algorithm 2)	 was	
developed	by	Schaeffer	 et	 al.	 (1989)	based	on	direct	
computation	of	the	inverse	of	A.	Animals	are	supposed	
to	be	ordered	chronologically.	For	each	animal,	the	first	
and	second	gametes	are	respectively	due	to	the	sire	and	
dam.	Computation	of	the	diagonal	elements	is	similar	
to	that	of	Quaas	(1976).

4. COVARIANCE MATRICES FOR MARKED 
QTL EFFECTS

4.1. Definition of marked QTL covariance

Development	of	genetic	engineering	techniques	leads	
to	identify	loci	involved	in	determinism	of	quantitative	
traits	(QTL)	and	to	assist	selection	by	use	of	markers	
linked	 to	 these	 QTL	 (Marked	 QTL,	 MQTL;	 Soller	
et	al.,	1983;	Smith	et	al.,	1986).	The	following	model	
(Fernando	et	al.,	1989)	integrates	effects	of	a	causative	
QTL	into	BLUP.

yi = xiʹ′β+ vi
p + vi

m +ui + ei .	 	 													Eq.	5

In	equation	5,	a	phenotypic	value	yi	is	decomposed	
in	 environmental	 contributions	xi´ß,	 random	 additive	
genetic	contributions:	a	contribution	of	the	paternally	
inherited	allele	of	a	marked	QTL	 (vi

p ) ,	a	contribution	
of	the	maternally	inherited	allele	of	the	same	marked	
QTL	 (vi

m ) 	 and	 a	 residual	 additive	 contribution	 due	
to	 QTLs	 unlinked	 to	 the	 marker	 (ui),	 and	 a	 random	
error	 contribution	 (ei).	 Solving	 this	 mixed	 model	
requires	the	covariance	matrix	of	the	vi values	(called	
“MQTL	matrix”	 and	 denoted	 as	G	 hereafter),	which	
is	 computed	 using	 both	 pedigree	 relationships	 and	
marker	information.

4.2. Computation of the MQTL matrix

Fernando	 and	 Grossman	 (1989)	 have	 developed	
the	 “MQTL	 relationship”	 in	 a	 similar	manner	 as	 the	
additive	relationship.	While	this	latter	is	based	on	the	
probability	that	alleles	at	a	same	locus	for	each	animal	
are	IBD,	MQTL	relationship	is	based	on	the	conditional	
probability	of	 the	same	event	given	information	on	a	
marker	closely	linked	to	the	MQTL.	This	conditional	
probability	 is	 affected	 by	 the	 recombination	 rate	 r	
between	the	marker	locus	and	the	marked	QTL	(outlined	
and	developed	similarly	in	Chevalet	et	al.,	1984):	given	
that	an	animal	inherited	the	paternal	marker	allele	of	its	
sire,	the	probability	that	he	also	inherited	the	paternal	
QTL	allele	of	 its	sire	 is	(1-r)	whereas	 the	probability	
that	he	inherited	the	maternal	QTL	allele	of	its	sire	is	
r.	The	MQTL	relationship	between	two	animals	i	and	

Algorithm 2. Direct	 computation	 of	 the	 inverse	 of	 the	
gametic	 relationship	 matrix	 (Ga)	 due	 to	 Schaeffer	 et	 al.	
(1989).

initialize	a	matrix	Ga
−1 	of	order	N	and	three	vectors	u,	v	and	

d	of	length	N
for	k	=	1	to	N,	do
–	 set	d(k)	=	v(k)	=	√1-u(k)	
–	 for	i	=	k	+	1	to	N,	do	

–	 if	 the	 k-th	 gamete	 precedes	 any	 parental	 gamete,	
	 	 say	p,	of	the	i-th	gamete,	

–	 then	add	.5v(p)	to	v(i)
–	 else	set	v(i)	equal	to	0
–	 add	the	square	of	v(i)	to	u(i)

–		 set	c	equal	to	the	square	of	the	inverse	of	d(k)	and	Ga
−1(k,k) 	

	 equal	to	c
–	 if	parental	gametes,	say	p	and	m,	of	the	k-th	gamete	are
	 known,	then
	 –	 add	-.5c	to	Ga

−1(p,k) ,	Ga
−1(m,k) 	,	Ga

−1(k, p) 	and
	 				Ga

−1(k,m)
	 –	 add	.25c	to	Ga

−1(p, p) ,	Ga
−1(p,m) ,	Ga

−1(m, p) 	and		
	 	 Ga

−1(m,m)
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j,	for	both	paternal	and	maternal	alleles	( gi, j
p 	and	 gi, j

m ),	
can	thereby	be	computed	recursively	from	the	MQTL	
relationships	between	s,	sire	of	i,	and	j	(gs, j

p 	and	gs, j
m )	and	d,	

dam	of	i,	and	j ( gd, j
p and	gd, j

m ),	given	marker	inheritance:

–	if	i	inherits	from	its	sire	its	paternal	marker	allele:	
gi, j
p 	=	(1-r). gs, j

p 	+	r. gs, j
m

–	if	i	inherits	from	its	sire	its	maternal	marker	allele:	
gi, j
p 	=	(1-r). gs, j

m +	r. gs, j
p

–	if	i	inherits	from	its	dam	its	paternal	marker	allele:	
gi, j
m 	=	(1-r). gd, j

p 	+	r. gd, j
m

–	if	i	inherits	from	its	dam	its	maternal	marker	allele:	
gi, j
m 	=	(1-r). gd, j

m 	+ r. gd, j
p .

If	no	information	on	marker	inheritance	is	available,	
then	 both	 paternal	 and	 maternal	 alleles	 have	 equal	
probability	of	being	inherited	and	r	is	equal	to	0.5.	In	
such	a	case,	the	MQTL	relationship	is	the	corresponding	
gametic	relationship.	Matrix	G	has	thus	the	same	size	
as	matrix	Ga	and,	for	computation	purposes,	is	ordered	
in	the	same	manner	(parents	before	offspring;	paternal	
allele	 before	maternal	 allele).	 The	 computation	 goes	
through	 use	 of	 the	 recursive	 rules	 here	 above	 in	 a	
tabular	method.	van	Arendonk	et	al.	(1994)	showed	the	
recursion	rule	in	matrix	notation:

	
G(i) =

G(i−1) G(i−1)qi

qiʹ′G(i−1) 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,	 	 													Eq.	6

where	G(i-1)	 is	 the	MQTL	matrix	for	gametes	1	 to	 i-1	
and	qi is	a	vector	that	has	two	non-zeros	entries:	(1-r)	
to	the	position	of	the	parental	gamete	whose	allele	was	
inherited	 and	 r	 to	 the	 position	 of	 the	 other	 parental	
gamete.	An	algorithm	by	Wang	et	al.	(1995)	also	follows	
an	 identical	 tabular	method	 but	 processes	 animal	 by	
animal	(thus,	2	lines/rows	at	a	time)	instead	of	gamete	
by	gamete.	The	 tabular	method	 for	constructing	G	 is	
therefore:

						G(i) =
G(i−1) G(i−1)Qi

Qi
ʹ′G(i−1) Ci

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

where	Ci	 is	 a	 2-by-2	matrix	with	 1	 on	 the	 diagonal	
and	 the	 inbreeding	coefficient	of	animal	 i	 elsewhere	
and	Qi	 is	 a	 2-by-(i-1)	matrix	with	maximum	8	non-
zeros	 elements,	 in	 all	 4	columns	 corresponding	 to	
the	 2	parental	 gametes.	 These	 elements	 are	 filled	
with	 the	 probability	 of	 descent	 for	 each	 offspring	
QTL	allele	from	any	parental	QTL	allele.	It	is	worth	
noting	 that	 this	 algorithm	 accommodates	 situations	

where	paternal	or	maternal	origin	of	alleles	cannot	be	
determined.

A	very	similar	algorithm	was	developed	by	Goddard	
(1992)	 for	 the	 covariance	 matrix	 between	 effects	
of	 potential	QTL	 surrounded	 by	 two	marker	 loci.	 In	
this	 algorithm,	 the	 relative	 position	p	 of	 the	QTL	 to	
the	marker	 loci	 is	 used	 instead	 of	 the	 recombination	
rate	of	Fernando	et	al.	 (1989).	Tracing	inheritance	of	
chromosome	segments	instead	of	marker	loci	enhances	
accuracy	of	the	model.	For	genetic	evaluation	systems	
including	many	ancestors	without	marker	information,	
Hoeschele	 (1993)	 showed	 that	 QTL	 effects	 were	
needed	 only	 for	 genotyped	 animals	 and	 common	
ancestors	 of	 these	 animals.	 Elimination	 of	 these	
equations	led	to	a	substantial	reduction	of	the	order	of	
the	covariance	matrix.	Such	an	algorithm	that	accounts	
for	non-genotyped	parents	 is	 also	presented	 in	Wang	
et	al.	(1995).

4.3. Direct computation of the inverse of the 
MQTL matrix

The	 algorithm	 of	 Fernando	 et	 al.	 (1989)	 follows	 the	
same	 approach	 as	 Henderson	 (1976)	 and	 Quaas	
(1976).	 Using	 a	 definition	 similar	 to	 that	 of	 their	
tabular	method,	they	relate	both	effects	of	paternal	and	
maternal	MQTL	( vi

p 	and	 vi
m )	to	their	parental	MQTL	

( vs
p ,	 vs

m ,	 vd
p 	and	 vd

m )	effects	in	a	simple	linear	model	
(equation	7).	 In	 this	model,	 coefficients	 ρ 	 allocate	 r	
or	(1-r)	accordingly	with	the	inheritance	turned	up	by	
marker	 information	 and	 εi

p 	 and	 εi
m 	 residual	 effects,	

whose	covariance	matrix	G
e
	is	shown	to	be	diagonal.

vi
p =ρi,s

p ⋅ vs
p +ρi,s

m ⋅ vs
m +εi

p

vi
m =ρi,d

p ⋅ vd
p +ρi,d

m ⋅ vd
m +εi

m

⎧
⎨
⎪

⎩⎪
.	 	 Eq.	7

Assuming	that	inbreeding	coefficients	are	available,	
the	algorithm	proceeds	through	the	pedigree	and	fills	in	
the	 inverse	of	 the	MQTL	matrix	(initialized	 to	a	null	
matrix	of	order	N)	in	three	steps:
–	 compute	 the	 diagonal	 element	 d	 of	 G

e
	

	 as	 2ρi,s
pρi,s

m (1−Fs ) 	 for	 a	 paternal	 gamete	 or	 as
	 2ρi,d

p ρi,d
m (1−Fd ) 	for	a	maternal	gamete;

–	 set	up	a	vector	q	equal	to	 −ρi,s
p −ρi,s

m 1⎡
⎣⎢

⎤
⎦⎥
ʹ′
	for	a	paternal

	 gamete	or	equal	to	 −ρi,d
p −ρi,d

m 1⎡
⎣⎢

⎤
⎦⎥
ʹ′ 		for	a	maternal	

	 gamete;
–	 add	 the	 product	 dqʹq	 to	 the	 inverse	 matrix	 to
	 positions	 corresponding	 to	 each	 of	 its	 parental	
	 gamete	and	the	current	gamete	itself.

The	 algorithm	 by	 van	Arendonk	 et	 al.	 (1994)	 is	
equivalent	 to	 the	 previous	 one	 and	 is	 outlined	 under	
the	form	of	the	successive	blockwise	inversion	of	Tier	
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et	 al.	 (1993).	 It	 requires	 thus	 the	 computation	 of	 all	
MQTL	 relationships	 of	 the	 population.	 Equivalently,	
the	 algorithm	 of	 Wang	 et	 al.	 (1995)	 for	 direct	
computation	of	the	inverse	of	the	MQTL	relationship	
matrix	 processes	 the	 two	 gametes	 of	 an	 animal	 at	 a	
time,	as	shown	in	equation	8	where	Di = Ci-QiʹG(i-1)Qi	
is	the	Schur	complement	of	G(i-1):

G(i)
−1 =

G(i−1)
−1 0
0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

−Qi

I2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Di

−1 −Qi
ʹ′ I2

⎡

⎣
⎢

⎤

⎦
⎥

	 	 	 	 												
										.	

	
Eq.	8

Efforts	 in	 reducing	 computational	 costs	 of	 this	
algorithm	 have	 been	 outlined	 (Abdel-Azim	 et	 al.,	
2001;	Matsuda	et	al.,	2002;	Tuchscherer	et	al.,	2004).	
The	computing	cost	reduction	performed	by	Sargolzaei	
et	al.	(2006),	applying	the	indirect	method	of	Colleau	
(2002)	to	the	MQTL	matrix,	is	also	of	great	interest.

4.4. Computation and inversion of a covariance 
matrix for an animal model accounting for MQTL 
relationships

The	closeness	between	gametic	and	MQTL	relationship	
matrices	 has	 already	 been	 mentioned.	 Also,	 it	 has	
been	mentioned	 that	 the	additive	genetic	 relationship	
matrix	A	could	be	retrieved	from	the	gametic	relationship	
matrix	using	an	incidence	matrix	K	(see	section	3.1.).	
Similarly,	 it	 is	worth	noting	that	a	modified	A	 (noted	
hereafter	AM)	could	be	obtained	from	the	MQTL	matrix	
(van	Arendonk	et	al.,	1994)	as	1/2	KGKʹ.	Computation	
of	the	inverse	is	made	successively	in	a	similar	manner	
as	 for	G	 (see	 previous	 section).	However,	 vectors	qi	
have	non-trivial	values.	Their	computation	is	therefore	
made	using	a	construction	of	AM	similar	to	equation	6	
for	G.	An	analogous	equation	would	express	 the	 i-th	
above	 diagonal	 column	 vector	 of	AM	 (AM,i)	 as	AM,i	 =	
AM,(i-1)qi.	 Therefore,	 vectors	 qi	 are	 obtained	 by	 the	
product:	 qi = AM ,(i−1)

−1 AM ,i .	

This	 product	 can	 be	 interpreted	
as	 a	 linear	 regression	 of	 the	
relationships	between	 the	 (i-1)	first	
animals	 on	 their	 relationships	 with	
the	i-th	animal.

5. DOMINANCE RELATIONSHIP MATRIX

5.1. Definition of dominance

Dominance	is	defined	by	Fisher	(1918)	as	the	portion	
of	the	partitioned	phenotypic	variance	that	results	from	
allelic	 interactions	 at	 the	 same	 locus.	 A	 dominance	
effect	is	the	genetic	effect	carried	on	by	a	given	allelic	

combination.	 When	 two	 animals	 share	 common	
ancestors,	 it	 becomes	 therefore	 likely	 that	 they	
carry	 an	 identical	 allelic	 combination.	A	 dominance	
relationship	coefficient	 scales	 this	 likelihood.	Among	
others	(epistasis	effects),	dominance	is	the	non-additive	
genetic	 effect	 that	 is	 the	 more	 relevant	 in	 domestic	
species	evaluation	(Gengler	et	al.,	1998).

Dominance	 relationship	 coefficient	 dij	 between	
animals	 i	 (having	 parents	 s	 and	 d)	 and	 j	 (having	
parents	 p	 and	m)	 can	 be	 obtained	 from	 the	 additive	
relationship	 coefficients	 by	 the	 formula	 (Henderson,	
1985):	dij = .25(asp adm + asm adp).	The	matrix	containing	
all	dominance	relationship	coefficients	is	denoted	by	D	
and	is	called	the	dominance	relationship	matrix.

5.2. Computation of the dominance relationship 
matrix

Using	 formula	 above,	D	 is	 computed	 using	A.	Also,	
a	 general	 recursion	 formula	 to	 compute	D	 has	 been	
outlined	in	Smith	et	al.	 (1990).	Note	 that	both	A	and	
D	can	easily	be	derived	from	the	gametic	relationship	
matrix	(see	section	3).

5.3. Computation of the inverse of the dominance 
relationship matrix

Because	 dominance	 is	 inherited	 through	 pairs	 of	
parents,	two	full-sibs	have	the	same	rows	and	columns	
in	D	and	therefore	D	is	not	of	full	rank.	To	overcome	
this	singularity,	Hoeschele	et	al.	(1991)	partitioned	the	
dominance	 effects	 into	 sire	 X	 dam	 subclass	 effects	
(and	 a	 within-subclass	 deviation	 due	 to	 Mendelian	
sampling).	They	developed	an	inversion	algorithm	that	
sets	up	the	inverse	of	the	covariance	matrix	(noted	F)	of	
sire	X	dam	subclass	effects.	The	individual	dominance	
effects	 are	 then	 related	 to	 these	 subclass	 effects.	 A	
recursive	rule	exists	to	compute	the	subclass	effects	(f).	
If	S	and	D	denote	the	sire	and	dam	of	an	animal,	SS	and	
DS,	the	parents	of	its	sire,	SD	and	DD,	the	parents	of	its	
dam,	the	S-D	subclass	effect	(fS,D)	is	obtained	by:

where	e	is	a	segregation	residual.	Their	method	includes	
in	three	steps:
–	 identification	 of	 all	 filled	 sire	 X	 dam	 subclasses	
	 (among	 8	 potential	 subclasses	 in	 equation	9)	 that	
	 provide	relationship	ties;
–	 direct	 computation	 of	 the	 inverse	 of	 F	 (see
	 Algorithm 3);
–	 computation	of	the	inverse	of	D	using	an	incidence
	 matrix	 that	 relates	 dominance	 effects	 to	 subclass		
	 effects.

fS,D = .5 fS,SD + fS,DD + fD,SS + fD,DS( )−.25 fSS,SD + fSS,DD + fDS,SD + fDS,DD( )+ e,
			Eq.	9
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6. EPISTASIS MATRICES

6.1. Definition of epistasis

Epistasis	 is	a	 term	that	refers	 to	 interactions	between	
loci	 (Bateson,	 1909;	 Sinnot	 et	 al.,	 1950).	 Epistasis	
interactions	used	in	animal	breeding	are	(Cockerham,	
1952;	Cockerham,	1954):
-	 the	 effect	 of	 a	 particular	 allele	 of	 a	 first	 locus	 on	
	 a	particular	 allele	of	 the	 second	 locus,	 additive	by	
	 additive	interaction	(AXA);
–	 the	 effect	 of	 a	 particular	 allele	 of	 a	 first	 locus	 on	
	 a	particular	allelic	combination	at	the	second	locus	
	 (additive	by	dominance	interaction,	AXD),	or;
–	 the	effect	of	a	particular	allelic	combination	at	a	first	
	 locus	 on	 a	 particular	 allelic	 combination	 at	 the	
	 second	locus	(dominance	by	dominance	interaction,	
	 DXD).

Other	 epistasis	matrix	 can	 also	 be	 cited	 (additive	
by	 additive	 by	 additive,	 additive	 by	 additive	 by	
dominance,	and	so	on;	see	Henderson,	1985).

6.2. Computation and inversion of the additive by 
additive relationship matrix

The	AXA	relationship	matrix,	denoted	by	AA	hereafter,	
can	be	formed	rapidly	by	forming	A	using	the	tabular	
method	and	squaring	each	element	(Cockerham,	1954;	
Kempthorne,	1955;	Henderson,	1985;	VanRaden	et	al.,	
1991).

Chang	 et	 al.	 (1989)	 have	 developed	 a	 direct	
computation	 of	 the	 inverse	 of	 AA	 constructed	 using	
only	 sire	 and	 maternal	 grand-sire	 information.	 Their	
algorithm	 fills	 in	 the	 inverse	matrix	 through	 a	 quick	
reading	of	 the	pedigree.	However,	 the	 subclass	 effect	
sire	X	dam	is	included	in	the	Mendelian	sampling	effect.	
VanRaden	et	al.	(1991)	have	solved	this	drawback	by	
setting	up	 an	 algorithm	 that	 accounts	 for	 all	 subclass	
effects	 as	 for	 dominance	 (see	 equation	9).	 The	
relationships	between	AXA	effects	(u)	are	modelled	by	

the	linear	relation	u	=	Pu	+	Pbub +	m,	in	which	P	and	
Pb	are	incidence	matrices,	ub	is	the	vector	AXA	effects	
of	unknown	ancestors	and	ancestors	combinations	and	
m,	 the	 vector	 of	 AXA	 Mendelian	 sampling	 effects.	
After	 manipulations,	 the	 inverse	 of	 U,	 covariance	
matrix	of	u	divided	by	the	AXA	variance	component,	
can	 be	 expressed	 as	 (I-P´)R-1(I-P),	 where	 R	 is	 the	
covariance	 matrix	 of	 Pbub +	m	 divided	 by	 the	AXA	
variance	component.	An	algorithm	–	similar	to	that	for	
dominance,	see	Algorithm 3	–	is	proposed	to	compute	
the	inverse	of	U.	This	algorithm	proceeds	as	follows:
1.	Identification	of	all	AXA	subclass	effects,	written	in	
	 an	 expanded	 list.	 These	 subclasses	 include	 all	
	 animals	 and	 parental	 combinations	 that	 provide	
	 relationship	 ties.	 Therefore,	 the	 size	 of	 the	 AXA	
	 effects	 covariance	 matrix	 (U)	 may	 be	 several
	 times	 the	 number	 of	 animal;	 this	 increased	 size	 is	
	 nonetheless	offset	by	the	resulting	sparseness	of	its	
	 inverse.
2.	Forward	 reading	 of	 the	 expanded	 list	 created	 at		
	 step	(1).	For	each	individual	in	this	list,	coefficients		
	 pertaining	 to	 the	 individual	 and	 its	 sire,	 dam	 and		
	 sire-dam	subclass	effect	are	added	 to	U-1;	 for	each	
	 sire-dam	 subclass,	 coefficients	 pertaining	 to	 that		
	 subclass	and	its	ancestor	subclasses	are	added	to	U-1.	
	 For	 both	 individual	 and	 sire-dam	 subclass,	 values		
	 and	 number	 of	 coefficients	 vary	 depending	 on	 the		
	 number	of	known	sources.

In	 an	 inbred	 population,	 the	 effects	 of	 sire,	 dam	
and	sire-dam	subclass	are	correlated	and	the	values	of	
coefficients	are	affected	by	inbreeding.

6.3. Computation and inversion of other epistasis 
matrices

Others	fore-mentioned	epistasis	matrices	are	computed	
similarly	as	the	AXA	matrix,	by	a	Hadamard	product	
of	dominance	and/or	additive	genetic	matrices.

Their	 inversion	 may	 be	 performed	 by	 classical	
inversion	algorithms	(Henderson,	1985;	Palucci	et	al.,	
2007).	 A	 general	 methodological	 frame	 to	 solve	 a	
model	including	any	epistasis	effect	(also,	dominance	
effect)	without	inversion	of	the	relationship	matrix	of	
this	effect	has	been	presented	by	Schaeffer	(2003).	This	
method	computes	solutions	of	the	desired	effects	as	a	
selection	index	from	the	additive	genetic	solutions	and	
iteratively	corrects	 the	observations	 for	 these	desired	
effects	 and	 computes	 additive	 genetic	 solutions	 until	
convergence	is	reached.

7. DISCUSSION AND CONCLUSIONS

A	 general	 framework	 for	 inversion	 of	 variance-
covariance	matrices	of	genetic	effects	may	be	drafted	

Algorithm 3. Computation	of	inverse	of	F,	matrix	of	n	filled	
subclasses.

for	i	=	1	to	n,	do	
–	 set	 up	 bi,	 a	 row	 vector	 of	 length	 k,	 containing	 the	
	 coefficient	f	as	in	equation	9,	that	corresponds	to	each	of	
	 the	k	parental	subclasses	identified	for	subclass	i
–	 set	up	the	relationship	matrix	Fi	of	order	k,	containing	the	
	 relationship	coefficients	between	the	k	parental	subclasses	
–	 compute rii	 (variance	 coefficient	 for	 subclass	 i)	 as	
	 (1-bi'Fibi)

-1	
–	 compute	the	contribution	of	subclass	i	to	the	inverse	of	F
	 as	rii

−1 1 bi⎡
⎣

⎤
⎦
ʹ′ 1 bi⎡
⎣

⎤
⎦
	and	add	it	to	F-1	at	the	proper

	
positions
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through	the	different	kinds	of	genetic	effects	described	
and	their	associated	relationship	matrices.

The	variance-covariance	matrix	of	a	genetic	effect	
vector	v	is	usually	defined	as	the	product	(equation	10)	
of	a	relationship	matrix,	say	W,	and	the	genetic	variance	
component	associated	to	this	effect,	say	σ v

2 .

Var[v]	=	W.σ v
2 .		 	 												Eq.	10

The	 vector	 v	 is	 modelled	 by	 a	 linear	 model:	
v	 =	 Bv	 +	 e,	 where	 B	 is	 an	 incidence	 matrix	
that	 gathers	 dependencies	 between	 elements	
of	 v	 and	 e	 is	 a	 term	 accounting	 for	 a	 residue	
due	 to	 the	 particular	 element	 itself	 (or,	 undue	
to	 dependencies	 between	 elements	 of	 v).	 It	
has	 to	 be	 noted	 that	 elements	 of	 v must	 be	 ordered	
such	 that	 any	 element	 only	 depends	 of	 elements	
preceding	 him;	 that	 is	 matrix	 B	 must	 be	 lower	
triangular.	Removing	 recursion	 of	 this	model	 returns	
v	=	(I-B)-1·e.	Variance	of	v	can	thereby	be	expressed	in	
terms	of	variance	of	the	residual	term	(e;	equation	11):

Var[v]	=	(I-B)-1.Var[e].(I-B´)-1.		 												Eq.	11

The	covariance	among	residual	terms	is	usually	null,	
because	these	terms	refer	to	the	own	specificity	of	the	
effect	(individual,	gamete	or	subclass).	Consequently,	
the	variance-covariance	matrix	of	e	 is	 the	product	of	
a	 diagonal	matrix,	 say	D,	 by	 σ v

2 .	 Thereby,	 equating	
equations	10	and	11,	it	comes	out	that	the	relationship	
matrix	 associated	 to	 any	 of	 these	 described	 genetic	
effects	can	be	expressed	as	W	=	(I-B)-1·D·(I-B´)-1,	and	
a	general	expression	of	its	inverse	is:

W-1	=	(I-B´)·D-1·(I-B).	 	 											Eq.	12

It	worth	noting	that	this	expression	is	the	inverse	of	
the	 root-free	Cholesky	 factorization	 of	W,	 for	which	
the	lower	triangular	factor	is	(I-B)-1.

It	has	been	proposed	(Henderson,	1976)	and	shown	
(Tier	 et	 al.,	 1993)	 that	 setting	 up	 the	 inverse	 of	 W	
using	 formula	 in	 equation	12	 sums	 up	 to	 adding	 the	
contributions	 of	 a	 list	 of	 numbered	 levels	 of	 effect	
(individuals,	gametes,	subclass	effects)	to	a	null	matrix.	
This	successive	addition	can	be	achieved	for	x	levels	at	
a	time.	Usually,	x	is	equal	to	1	but	may	be	greater	than	
1	in	some	situations	(Smith	et	al.,	1990;	Wang	et	al.,	
1995;	Sargolzaei	et	al.,	2006).

If	 we	 assume	 the	 following	 partitions	 for	 the	
relationship	matrix	W	after	i	additions	of	x	levels	(W(i))	
and	the	corresponding	matrix	B:	

	
W(i) =

W11 ʹ′W21

W21 W22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ 	
and

	
B(i) =

B11 0
B21 B22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,

then	the	i-th	addition	of	x	levels	to	the	inverse	returns	
the	matrix	W(i)

−1 	:

The	 computational	 step	 in	 equation	13	 requires	 to	
know	sub-matrices	W22,	W21	and	B21.

Therefore,	 we	 conclude	 by	 defining	 a	
computationally	efficient	algorithm	for	inversion	of	a	
genetic	relationship	matrix,	on	the	basis	of	equation	13,	
as	an	algorithm	that	provides	means	to	set	up	these	sub-
matrices	(W22,	W21	and	B21)	at	a	reduced	computational	
cost.

Setting	 up	 B21	 often	 requires	 no	 computation	
because	the	dependency	coefficients	between	levels	of	
effects	in	v	are	a priori	known	(e.g.	additive	and	gametic	
relationships).	In	some	cases,	e.g.	MQTL	matrices,	few	
computations	are	required	to	set	up	these	coefficients.	
Also,	as	shown	by	van	Arendonk	et	al.	 (1994),	 these	
coefficients	 can	 be	 obtained	 by	 partitioned	 matrix	
theory.	The	 original	model	 of	 dependencies	 between	
levels	in	v	can	also	be	simplified	by	adding	sub-levels,	
what	 enables	 to	 set	 up	B21	 more	 readily	 (Hoeschele	
et	al.,	1991;	VanRaden	et	al.,	1991).

Setting	up	W22	and	W21	is	either	implicit	(e.g.	gametic	
relationships	and	additive	and	dominance	relationships	
of	non	inbred	populations	have	all	diagonal	elements	
equal	 to	1),	 either	 requires	 explicit	 computation	 of	
the	relationship	matrix	(e.g.	MQTL	matrices).	 In	 this	
second	case	(e.g.	additive	and	dominance	relationships	
of	inbred	populations	and	derived	epistasis	matrices),	
computation	efficiency	can	be	greatly	enhanced	using	
algorithms	 of	 partial	 computation	 of	A	 (e.g.	 Quaas,	
1976;	Colleau,	2002).

List of abbreviations

AXA:	additive	by	additive	epistasis
BLUP:	best	linear	unbiased	predictor
DXD:	dominance	by	dominance	epistasis
GIA:	genetically	identical	animals
IBD:	identical	by	descent
MQTL:	marked	quantitative	trait	locus
QTL:	quantitative	trait	locus

W(i)
−1 =

W11
−1 0
0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+

− ʹ′B21
I(x )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
W22 − B21 ʹ′W21[ ]−1 −B21 I(x )

⎡
⎣⎢

⎤
⎦⎥

	 	 	 	 	 										 								Eq.	13

.
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