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1. INTRODUCTION

Reversible protein phosphorylation is an important 
regulatory mechanism that controls the activities of 
a myriad of proteins and is thus involved in virtually 
every major physiological process. In the past, most of 
the attention was focused primarily on protein kinases 
and on their regulation, mainly because phosphatases 
were then viewed as simple housekeeping enzymes. 
But advances in the understanding of protein 
phosphatases make now clear that these enzymes are 
precisely regulated and are as important as kinases in 
the regulation of cellular processes involving protein 
phosphorylation.

Protein phosphatase 2A (PP2A) is a very 
abundant – it accounts for as much as 1% of total 
cellular proteins – ubiquitous and remarkably conserved 
enzyme. A large and still-growing number of PP2A 
substrates have been identified, which makes PP2A 
an important player in the regulation of a plethora of 
cellular processes. 

This article will review the recent advances in the 
structure and regulation of this fascinating enzyme.

2. CLASSIFICATION

While proteins can be phosphorylated on nine amino 
acids, serine, threonine and tyrosine phosphorylation 
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are by far the most predominant in eukaryotic cells. 
The enzymes that dephosphorylate these three amino 
acids are classified into four groups on the basis of 
specific catalytic signatures/domain sequences and 
substrate preference. Among the 150 individual 
members of the protein phosphatases superfamily, 
more than two thirds belong to the protein tyrosine 
phosphatase family (PTP), which dephosphorylates 
phosphotyrosine and, in some cases also phosphoserine 
and phosphothreonine. The majority of the remaining 
enzymes are specific for phosphorylated serine and 
threonine residues and are originally divided into 
two families (Cohen, 2002; Moorhead et al., 2009): 
the phosphoprotein phosphatases (PPP) and the Mg2+ 
or Mn2+-dependent protein phosphatases (PPM). 
Recently, the family of aspartate-based phosphatases 
was added to this classification. This group consists of 
serine and tyrosine-phosphatases with an aspartic acid 
signature (DXDXT/V) driving catalysis and includes 
the FCP/SCP [TFIIF (transcription initiation factor 
II)-associating C-terminal domain Phosphatase/small 
CTD Phosphatase] and HAD (haloacid dehalogenase) 
family of enzymes (Moorhead et al., 2009).

The serine-threonine phosphatases share the 
common property of relying on the nucleophilic attack 
of the phosphorus atom by a metal-activated water 
molecule for their catalytic mechanism (Barford, 1996). 
The PPM family of phosphatases is mainly represented 
by the protein phosphatase type 2C (PP2C) whereas the 
PPP family is most diverse and contains 5 subfamilies. 
The PPP1 subfamily includes PP1 and the PPP2/4/6 
subfamily comprises PP2A, PP4 and PP6. The PPP3 
subfamily contains the Ca2+-activated PP2B. Two other 
minor families exist termed PPP5 and PPP7 which 
respectively comprise PP5 and PP7. 

3. STRUCTURE OF PP2A

The native forms of PP2A holoenzymes are 
predominantly heterotrimers in which a core dimer, 
PP2A

D
, made of a structural A subunit (also known as 

PR65) and a catalytic C subunit, PP2A
C
, is associated 

with a third variable regulatory B-type subunit. In 
addition to the classical PP2A heterotrimer, studies 
demonstrated that independent PP2A

D
 core dimers are 

found within cells (Kremmer et al., 1997; Janssens 
et al., 2001). In addition, some specific PP2A dimers, in 
which the PR65/A subunit is replaced by the α4 protein 
have been recently identified (Yang et al., 2007). 

The mammalian catalytic C subunit has two 
isoforms (α and β) which are 97% identical, 
ubiquitously expressed, highly conserved. While 
PP2A

Cα
 and PP2A

Cβ
 seem to be interchangeable in vitro 

(Zhou et al., 2003), studies in mice suggested that both 
isoforms are not functionally redundant in vivo (Gotz 

et al., 1998; 2003). Within the PP2A holoenzyme, 
the PR65/A subunit functions as a scaffold for the 
recruitment of the C and B-type subunits as well as 
additional proteins. The structural PR65/A subunit 
also exists in two isoforms, α and β, which are widely 
expressed and 86% identical in primary sequence 
(Hemmings et al., 1990). Interestingly, each PR65/A 
isoform shows differential ability to interact with B-
type and C subunits (Zhou et al., 2003). 

By far, the most variable subunit of the PP2A 
holoenzyme is the B-type subunit. To date, about 
20 different isoforms have been described that are 
encoded by distinct genes or result from alternative 
splicing of a single gene. The mammalian B-type 
subunits are classified into three subfamilies, called 
PR55/B, PR61/Bʹ and PR72/Bʺ (Table 1). While the 
PR55/B and PR61/B’ families are quite evolutionary 
conserved, the PR72/B’’ family consists of a less 
evolutionary conserved group of proteins, with some 
human gene products having no murine orthologue and 
vice versa (Zwaenepoel et al., 2008). Table 1 shows the 
nomenclature for human PR72/B’’ genes. Each B-type 
subunit can potentially combine with any of the two 
isoforms of both the A and C subunits, generating over 
75 potential trimeric PP2A holoenzymes (Janssens 
et al., 2001; 2008). This multiple combinatorial 
association is central to the mechanisms that regulate 
PP2A activity and ensure the pleiotropic roles of this 
important enzyme (Ruediger et al., 1992; Li et al., 
2002).

The structure of the PP2A holoenzyme has long 
remained elusive. The first structural information came 
from the isolated PR65/A scaffolding subunit, which 
consists entirely of 15 tandemly repeated motifs known 
as HEAT (huntingtin-elongation-A subunit of PP2A-
TOR). Canonical HEAT motifs consist of two helixes 
which form a helical hairpin. In PR65/A, 15 HEAT 
motifs stack together to form an elongated, horseshoe-
shaped molecule with a continuous hydrophobic core 
(Walter et al., 1989; Hemmings et al., 1990; Groves 
et al., 1999). However, it was more than 15 years later 
that the crystal structures of a PP2A

D
 and a PP2A

T61γ1
 

holoenzymes were solved (Xing et al., 2006; Xu et al., 
2006; Cho et al., 2007b). The structural analysis of 
the PP2A core dimer showed that the catalytic subunit 
contains two catalytic metal ions at the active site and 
adopts a globular structure with an α/β fold, typical 
of the serine/threonine phosphoprotein phosphatase 
(PPP) family of phosphatases (Barford, 1996; Xing 
et al., 2006). Consistent with previous mutagenesis 
studies (Ruediger et al., 1992), structural data also 
revealed that the scaffolding subunit binds to the 
catalytic subunit via the intra-repeat loops of one end 
of its HEAT-repeats. Interestingly, these studies also 
pointed to a remarkable conformational flexibility of 
the PR65/A subunit, which undergoes pronounced 
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conformational changes when incorporated into the 
PP2A core enzyme. 

The crystal structure of a trimeric PP2A holoenzyme 
containing a regulatory PR61/B’

γ
 subunit was reported 

independently by two laboratories (Xu et al., 2006; 
Cho et al., 2007b). These studies revealed that, despite 
lacking canonical HEAT motifs, the PR61/Bʹ

γ
 subunit 

harbors a superhelical structure similar to that of PR65/
A, with an apparent curvature that forms HEAT-like 
repeat motifs. In the PP2A

T61γ
 trimer, the horseshoe-

shaped PR65/A subunit undergoes additional 
conformational rearrangements, which brings the 
amino and carboxyl termini in close proximity. The 
C subunit and the convex side of the PR61/B’ pseudo 
HEAT bind to the intra-repeat loops of HEAT repeats 
2-7 and 11-15 respectively of the scaffold PR65/A 
subunit. PR61/Bʹ

γ
 also makes extensive discrete 

contacts with the C subunit by itself. In particular, the 
C-terminal tail of the C subunit docks on the interface 
of the PR65/A and B-type subunits, where it could 
regulate the recruitment of the B-type subunit.

Crystal structure analysis gave valuable insights 
on how B-type subunits could regulate PP2A substrate 
specificities. Indeed, while the active site pocket of the 
PP2A catalytic subunit appears accessible to substrate, 
the binding of the PR61/B’ subunit in the holoenzyme 
markedly changes the physicochemical environment 
near the active site and limits the accessible surface to 
the active site and provides novel potential substrate 
binding surfaces. 

Crystallisation data also provided structural basis for 
PP2A regulation by post-translational modifications of 

the catalytic subunit. Methylation of the C-terminus of 
PP2A

C
 selectively affects the assembly of PP2A trimers 

in vivo (see below). Nevertheless, in vitro holoenzyme 
formation is independent of PP2A

C
 methylation since 

a C-terminal truncated mutant or an unmethylated 
catalytic subunit can still stably form a PP2A

T55
 or 

PP2A
T61

 trimeric complex (Xu et al., 2006; Ikehara 
et al., 2007). In addition to methylation, tyrosine 
phosphorylation is another modification of PP2A

C
 C-

terminal tail that regulates PP2A activity. Structural 
data indicate that a hydrogen bond forms between the 
side chain of the targeted Tyr307 residue and a carbonyl 
group in the peptide backbone of PR61/Bʹ. Tyrosine 
phosphorylation would therefore be detrimental to the 
assembly of PP2A holoenzyme containing a PR61/B’ 
subunit. Direct interaction between phosphorylated 
tyrosine and the active site within the catalytic subunit 
could also explain why tyrosine phosphorylation of 
PP2A

C
 inhibits PP2A activity (Cho et al., 2007b). 

More recently, a study reported the crystal structure 
of a PP2A holoenzyme containing another family of 
regulatory subunit: the PR55/B

α
 family member (Xu 

et al., 2008). The sequence similarity between the 
various subfamilies of the regulatory subunits is very 
low, and in agreement with this, the structure of PR55/
B

α
 subunit differs from the PR61/B’ helical structure. 

Instead, the PR55/B
α
 subunit forms a seven-bladed β 

propeller, with each blade comprising four antiparallel 
β strands. In addition to the propeller core, PR55/B

α
 

also contains additional secondary structure elements 
located above the top face which contribute to the 
formation of a putative substrate-binding groove in 

Table 1. Nomenclature and corresponding gene names of PP2A various subunits — Nomenclature et appellation génétique 
correspondant aux différentes sous-unités de PP2A.

Name Gene # Synonyms

C subunit    
  PP2A cataltytic subunit α PPP2CA PP2A-α, PP2A-Cα
  PP2A cataltytic subunit β PPP2CB  
A subunit    
  PP2A structural subunit α PPP2R1A 65kD regulatory subunit, PP2A-Aα, PR65α, R1-α
  PP2A structural subunit β PPP2R1B  
B subunit    
  PP2A regulatory B subunit α PPP2R2A B55α, PR55α, R2α, 55kD regulatory subunit
  PP2A regulatory B subunit β PPP2R2B  
  PP2A regulatory B subunit γ PPP2R2C  
  PP2A regulatory B subunit δ PPP2R2D  
  PP2A regulatory B’ subunit α PPP2R5A B56α, PR61α, R5α, 56kD regulatory subunit
  PP2A regulatory B’ subunit β PPP2R5B  
  PP2A regulatory B’ subunit γ PPP2R5C  
  PP2A regulatory B’ subunit δ PPP2R5D  
  PP2A regulatory B’ subunit ε PPP2R5E  
  PP2A regulatory B’’ α PPP2R3A B72/130, PR72/130, R3α, 72/130kD regulatory subunit
  PP2A regulatory B’’ β PPP2R3B B70/48, PR70/48, R3β, 70/48kD regulatory subunit
  PP2A regulatory B’’ γ PPP2R3C G5PR
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close proximity to the active site of the C subunit of 
PP2A. As observed for PR61/B’, the regulatory PR55/
B

α
 subunit recognizes the amino-terminal HEAT repeats 

of the PR65/A subunit. In contrast, PR55/B
α
 makes few 

interactions with the catalytic subunit, compared to 
the PR61/B’ subunit, which leads to a relatively loose 
holoenzyme. The structural observations further suggest 
that the PR55/B

α
 subunit may form a relatively stable 

complex with the isolated A subunit, but do not seem 
to support the notion that the C subunit is required for 
interaction between the PR65/A and B-type subunits. 
Due to the distinct structure of the PR55/B and PR61/
B’ structural subunits, the conformation of the scaffold 
PR65/A subunit is different in the PP2A

T55
 holoenzyme 

compared to the PP2A
T61

. The intrinsic conformational 
plasticity of the PR65/A subunit might therefore be 
important in order to interact with structurally different 
regulatory subunits (Xu et al., 2008). Indeed, the third 
regulatory subunit family PR72/Bʺ is predicted to 
adopt yet a different structure and contains two calcium 
binding EF hands (Janssens et al., 2003).

The recent characterizations of the structures of the 
PP2A holoenzyme are of prime interest because they 
constitute a new basis to improve the understanding 
of some aspects of PP2A assembly, function and 
regulation.

4. REGULATION 

PP2A has been historically regarded as a relatively 
non-specific and unregulated enzyme. This allegation 
is in direct contradiction with the discrepancy that 
exists between the relatively small number of Ser/Thr 
phosphatases and the plethora of proteins that are 
reversibly phosphorylated on serine or threonine 
residues. It is now clear that PP2A, and the other 
protein phosphatases, are subjected to finely tuned 
control mechanisms that allow cells to adequately 
orchestrate changes in protein phosphorylation during 
virtually every cellular process (Figure 1). 

4.1. Holoenzyme composition

The composition of the holoenzyme is the most 
impacting determinant in the regulation of PP2A 
pleiotropic functions. It is now well recognized that 
the identity of the variable B-type subunit incorporated 
in the holoenzyme has specific consequences on PP2A 
activity. In accordance with structural data, binding 
of specific B-type subunit modulates the catalytic 
activity of PP2A in vitro (Sontag, 2001) and probably 
in vivo. In addition, the nature of the B-type subunit 
also influences substrate selectivity (Imaoka et al., 
1983; Agostinis et al., 1987; 1990; 1992; Mumby 
et al., 1987; Cegielska et al., 1994; Mayer-Jaekel et al., 

1994a; Sontag et al., 1996). Lastly, subunit composition 
impacts PP2A localization within the cell by targeting 
the phosphatase to specific subcellular compartments 
(Sontag, 2001).

Despite the lack of definite experimental evidence, 
recent data have lead to the model that the composition 
of the PP2A holoenzyme is not static in vivo and 
interconversions by dynamic exchange of regulatory 
subunits may represent a mechanism by which cells 
can quickly adapt to cellular demand at a given time. 
The observation that various viral proteins can replace 
specific regulatory subunits within PP2A holoenzyme 
in vivo provides a proof-of-principle that exchange 
between PP2A subunits is possible. In addition, B-
type subunits can compete for binding to the PP2A

D
 

core complex in vitro (Kamibayashi et al., 1994) and 
suggest that the same phenomenon occurs within the 
cell. As detailed below, PP2A is subjected to diverse 
post-translational modifications which can have various 
impacts on B-type subunit binding. In this context, 
regulated specific post-translational modifications 
represent an attractive mechanism for controlling PP2A 
B-type subunit exchange. Alone or in combination, 
these post-translational modifications may constitute a 
“PP2A code” that dictates the formation of a specific 
holoenzyme or promotes the exchange between two 
subunits (Janssens et al., 2008).

4.2. Binding partners

The number of proteins interacting with PP2A is large 
and still-growing. These proteins can interact with 
one or more subunits and sometimes associate with a 
specific PP2A holoenzyme. PP2A partners play critical 
roles in its function and regulation. For instance, some 
interactors have been shown to target PP2A to specific 
cellular domains and regulatory functions (Sontag 

Figure 1. Summary of PP2A principal mechanisms of 
regulation — Résumé des principaux mécanismes de 
régulation de PP2A.
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et al., 1995; 1999; Kawabe et al., 1997; Takahashi 
et al., 1999; Turowski et al., 1999; Voorhoeve et al., 
1999; Ito et al., 2000; Yan et al., 2000). Moreover, 
PP2A is part of multi-molecular signalling complexes 
through its binding to specific kinases (Westphal et al., 
1998; 1999; Lebrin et al., 1999) or scaffolding proteins 
(Kikuchi, 1999).

Among the vast array of PP2A partners are multiple 
viral proteins, such as the polyoma small t and middle 
T, as well as with the small DNA tumour viruses 
simian virus 40 small t (SV40 ST) (Janssens et al., 
2001; Arroyo et al., 2005; Janssens et al., 2005). By 
directly binding to PP2A these viral antigens inhibit its 
phosphatase activity (Scheidtmann et al., 1991; Yang 
et al., 1991; Cayla et al., 1993; Kamibayashi et al., 
1994) and/or displace the B-type subunit from the 
holoenzyme (Pallas et al., 1990; Mumby et al., 1991; 
Chen et al., 2004). This impairs the prevailing cellular 
functions of PP2A and might explain the transforming 
activities of these viral proteins.

Structure of the SV40 ST/PP2A complex was 
recently solved and provides the basis to explain PP2A 
inhibition by viral proteins. One domain of SV40 ST is 
in a position to directly interact with the PP2A catalytic 
C subunit, near its active site. Therefore, it is likely 
that binding of SV40 ST alters PP2A phosphatase 
activity through direct competition with substrate for 
access to the catalytic site. In addition, two distinct 
SV40 ST domains interact with a specific region of 
the structural PR65/A subunit that is also recognized 
by PR55/B and PR61/B’. This observation could 
explain the competition that exists between SV40 ST 
and regulatory subunits for binding to the core enzyme 
(Chen et al., 2007; Cho et al., 2007a). However, SV40 
ST has surprising little affinity for PP2A and does not 
efficiently displace PR55/B, PR61/B’ or PR72/B’’ from 
their respective holoenzymes in vitro (Chen et al., 2007; 
Cho et al., 2007a). It is thus likely that modulation of 
PP2A holoenzyme assembly through displacement of 
structural subunits is only a minor contributor in the 
inhibition of PP2A activity by SV40 ST.

The PP2A
D
 core dimer also forms stable complexes 

with two calmodulin-binding scaffolding proteins, 
Striatin and the S/G2 nuclear autoantigen (SG2NA), 
which suggests that species of PP2A could be recruited 
to Ca2+-dependent signal transduction cascades 
(Moreno et al., 2000). Striatin and SG2NA share some 
homology with PR61/B’ isoforms and have sometimes 
been considered as a fourth regulatory subunit family. 
These PP2A interactors illustrate the fact that the 
distinction between a bona fide regulatory subunit and 
a binding partner is sometimes difficult. A proposition 
would be to consider a protein as a regulatory subunit 
only if it contains the canonincal PR65/A subunit-
binding domain conserved in the existing regulatory 
subunits (Janssens et al., 2008).

Two intracellular heat stable inhibitors of PP2A, 
named I1PP2A/Phap and I2PP2A/SET have been 
identified. Both proteins inhibit specifically all 
holoenzyme forms of PP2A, probably by binding to 
the catalytic subunit (Li et al., 1996a; 1996b).

4.3. Post-translational modifications

The catalytic subunit of the phosphoprotein phosphatase 
(PPP) family members is very conserved both in 
sequence and structure. The most distinctive feature 
of this subunit consists in a unique C-terminal tail 
which extends away from the globular structure and is 
crucially located at the interface between the two other 
subunits (Xing et al., 2006; Xu et al., 2006; Cho et al., 
2007b). Consistent with an important functional role 
for this domain, a highly conserved Thr304-Pro-Asp-
Tyr-Phe-Leu309 motif is heavily post-translationally 
modified by methylation, tyrosine and threonine 
phosphorylation. These modifications are crucial for 
PP2A regulation and holoenzyme formation.

Leu309 residue is subjected to carboxymethylation 
by the S-adenosylmethionine-dependent LCMT1 
(leucine carboxyl methyltransferase 1) (Lee 
et al., 1993; De Baere et al., 1999). The reverse 
demethylation is achieved through the action of a 
specific phosphatase methylesterase, PME-1 (Lee et al., 
1996). Carboxymethylation of PP2A

C
 has been directly 

implicated in the regulation of PP2A holoenzyme 
assembly. Indeed, several studies have shown that 
methylation enhances the affinity of the PP2A core 
enzyme for some but not all regulatory subunits. More 
specifically, C-terminal PP2A

C
 methylation seems 

to selectively affect the assembly of PP2A trimers 
containing a PR55/B subunit (Ogris et al., 1997; Bryant 
et al., 1999; Tolstykh et al., 2000; Wu et al., 2000; Wei 
et al., 2001; Yu et al., 2001; Gentry et al., 2005; Longin 
et al., 2007; Nunbhakdi-Craig et al., 2007). In contrast, 
methylation of the C subunit seems to have little 
impact on the recruitment of other regulatory subunits 
(Wei et al., 2001; Gentry et al., 2005; Longin et al., 
2007; Nunbhakdi-Craig et al., 2007). One indication 
of this selectivity relies on the observation that PP2A

T61
 

and PP2A
T72

 can recruit a mixture of methylated and 
demethylated PP2A

C
, whereas PP2A

T55
 exclusively 

associates with methylated PP2A
C
. Recent insights on 

PP2A structure suggest a plausible mechanism for how 
methylation could affect PP2A holoenzyme assembly. 
Indeed, crystal structure of a PP2A

T61
 heterotrimeric 

PP2A holoenzyme has shown that the C-terminal 
PP2A

C
 residue Leu309 does not mediate direct contact 

with the Aα or PR61/Bʹ
γ1

 subunits but is located in a 
highly negatively charged environment formed by 
the side chains of Glu62, Asp63, Glu64 and Glu101 
of the PR65/A subunit (Cho et al., 2007b). Although 
methylation is not strictly required for PP2A

T61γ1
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assembly, neutralization of the PP2A
C
 C-terminal 

negative charge by carboxymethylation would 
promote docking of the tail in this area and, therefore, 
binding of PR61/Bʹ

γ1
 to PP2A

D
. Methylation of the 

catalytic subunit is thus a crucial determinant in 
PP2A holoenzyme composition and could participate 
in the regulation of its diverse functions in vivo. 
Surprisingly, several studies argue that methylation of 
the C subunit is not required for the in vitro assembly 
of PP2A holoenzymes involving the PR55/B and 
PR61/Bʹ regulatory subunits (Xu et al., 2006; Ikehara 
et al., 2007). It is important to note that most of in vitro 
studies use an inactive form of PP2A

C
 harboring 

a mutation which is known to alter the affinity of 
PP2A

C
 for interacting partners (Janssens et al., 2008). 

Nonetheless, methylation may facilitate the assembly 
of the holoenzyme through enhanced binding affinity 
between the PP2A core enzyme and the regulatory 
subunit, this slight advantage being sufficient to tip 
the balance for holoenzyme assembly in cells but not 
in vitro. PP2A

C
 carboxy-methylation in cells could also 

promote assembly of PP2A holoenzymes by recruiting 
assembly factors or by targeting the catalytic subunit 
to a specific cellular compartment where the assembly 
takes place.

Due to its importance in PP2A selective composition, 
regulation of PP2A

C
 carboxy-methylation attracted 

a lot of attention these past few years. Methylation 
of PP2A

C
 changes during cell cycle, suggesting a 

critical role in cell-cycle regulation (Janssens et al., 
2001; Lee et al., 2007). In addition, differences in 
subcellular localizations of LCMT1 and PME-1 
suggest that methylation and demethylation might be 
spatially controlled (Longin et al., 2008). Interestingly, 
structure of PME-1 in complex with PP2A reveals that 
PME-1 directly binds to the active site of PP2A

C
, what 

is supposed to lead to the eviction of the metal ions 
required for the catalytic activity of PP2A (Longin 
et al., 2004; Xing et al., 2008). These findings indicate 
that, in addition to removing the methyl group from 
Leu309, PME-1 could directly control the phosphatase 
activity of PP2A. The interaction also results in the 
activation of PME-1 by structural rearrangement, 
which ensures the specificity of the methylesterase 
activity towards PP2A (Xing et al., 2008).

In addition to methylation at Leu309, the PP2A
C
 

tail is also subjected to phosphorylation on Tyr307 and 
possibly on Thr304. Tyr307 phosphorylation seems to 
have two striking consequences. First, it could inhibit 
the interaction of PP2A

C
 with PR61/B’ (Longin et al., 

2007; Nunbhakdi-Craig et al., 2007) by annihilating 
an hydrogen bound between Tyr307 of the catalytic 
subunit and the carbonyl group of Val257 in the peptide 
backbone of the PR61/Bʹ

γ1
 subunit (Cho et al., 2007b). 

On the other hand, Tyr307 could indirectly affect the 
assembly of the PP2A holoenzyme containing PR55/

B by preventing methylation of Leu309. Indeed, it has 
been suggested that Tyr307 phosphorylation might 
impair access to the LCMT1 cavity (Ogris et al., 1997; 
Yu et al., 2001; Longin et al., 2007; Nunbhakdi-Craig 
et al., 2007).

It should be emphasized that the above observations 
result from mutagenesis analysis and need to be 
physiologically confirmed. Mutagenesis studies have 
also pointed out a role for threonine phosphorylation in 
B-type subunit selection. Phosphorylation of Thr304 
induces the selective inhibition of PR55/B subunit 
recruitment (Ogris et al., 1997; Wei et al., 2001; Gentry 
et al., 2005; Longin et al., 2007; Nunbhakdi-Craig 
et al., 2007) without affecting Leu309 methylation 
(Yu et al., 2001; Longin et al., 2007). 

Evidence suggests that regulatory subunits, and 
in particular PR61/B’ could also be subjected to 
phosphorylation. Phosphorylation of PR61/Bʹ could 
have opposing effects depending on the physiological 
context. While phosphorylation of a conserved Ser/
Pro motif by extracellular signal-regulated kinase 
ERK would promote dissociation of PR61/Bʹ from the 
catalytic subunit (Letourneux et al., 2006; Cho et al., 
2007b), phosphorylation of Ser37 by Chk1 enhances 
holoenzyme formation (Margolis et al., 2006). 

It is now well-admitted that post-translational 
modifications of PP2A subunits have important roles in 
various aspects of holoenzyme regulation. Particularly, 
each B-type subunit is associated with a combination 
of specific post-translational modifications on PP2A

C
. 

Leu309 methylation specifically favors formation of 
PR55/B subunit-containing PP2A holoenzyme. In 
contrast, Tyr307 phosphorylation is defavorable to 
association with PR55/B and PR61/B’ and Thr304 
selectively inhibits incorporation of PR55/B. This has 
lead to the notion of a “PP2A code” on the C-terminal 
tail that dictates the formation of specific PP2A 
holoenzymes (Janssens et al., 2008). 

4.4. Substrate specificity

The reversible protein phosphorylation on proline-
directed Ser/Thr motifs (Ser/Thr-Pro) is a key regulatory 
mechanism for the control of various cellular processes. 
Pro can exist in two conformations, cis and trans, in 
this motif. PP2A is considered as a major Pro-directed 
phosphatase which dephosphorylates phospho-Ser/
Thr-Pro substrates. Studies of several PP2A substrates 
including Tau, Cdc25C, Myc and Raf1 substrates 
have lead to the hypothesis that a trans configuration 
of the proline residue adjacent to the phosphorylated 
residue is more favorable to dephosphorylation by 
PP2A. Pin1 is a peptidyl-prolyl isomerase (PPIase) 
which catalyses cis-to-trans isomerisation of specific 
pSer/Thr-Pro motifs. Studies have suggested that 
isomerisation of the Ser-Pro bound by Pin1 would be 
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required to promote dephosphorylation of substrates 
by PP2A (Zhou et al., 2000; Stukenberg et al., 2001; 
Yeh et al., 2004; Dougherty et al., 2005). Nevertheless, 
some observation that specific PP2A holoenzyme 
(especially PP2A

T55
) could dephosphorylate these 

motifs without Pin1 requirement are not compatible 
with this model (Agostinis et al., 1992; Mayer-Jaekel 
et al., 1994b).

On the other hand, PP2A itself seems to subjected to 
proline isomerization. Indeed, PTPA (phosphotyrosyl 
phosphatase activator, newly renamed phosphatase 
two A phosphatase activator) can activate the classical 
Ser-Thr phosphatase activity of a native inactive 
PP2A form (Longin et al., 2004) through an isomerase 
activity. Isomerization induces a conformational 
change in PP2A which correlates with its activation 
(Jordens et al., 2006; Leulliot et al., 2006). 

5. CONCLUSION

Genetic deletion of PP2A catalytic subunit is lethal 
in yeast (Sneddon et al., 1990), demonstrating the 
prevailing place of PP2A in homeostasis. In accordance 
with this and early observations (Bialojan et al., 
1988), dysregulation of PP2A-regulated signalling 
pathways can contribute to cancer (Arroyo et al., 
2005; Janssens et al., 2005; Eichhorn et al., 2009). 
Initial understanding of PP2A as a tumor suppressor 
was mainly based on the tumor-promoting activities 
of okadaic acid, the most famous naturally occurring 
PP2A inhibitor. But this loss of function approach 
does not discriminate between specific holoenzyme 
contribution and it now appears that the description 
of PP2A as a tumor suppressor is oversymplistic and 
needs more investigation (Eichhorn et al., 2009). 
Moreover, studies employing general inhibitory 
strategy, like okadaic acid, have pointed to a role for 
PP2A in multiple pathologies besides cancer. In this 
context, in order to improve our knowledge of this 
clinically relevant target protein, it seems important 
to dissect PP2A-controlled signalling pathways and, 
to achieve this, to precisely delineate specific cellular 
functions and context of each holoenzyme. Further 
studies on the precise role of individual PP2A B-type 
regulatory subunits within these signalling cascades is 
thus a challenging question for the future.
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