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Five genotypes of cowpea (Vigna unguiculata), Bambey 21, Gorom local, KVX61-1, Mouride and TN88-63, grown in pots 
under glasshouse conditions, were submitted to water defi cit by withholding irrigation at vegetative stage (T1) for 14 days, 
and at fl owering stage (T2) for 12 days. Effect of this stress on leaf water potential, gas exchanges, foliar proline, total protein 
and starch contents, maximal quantum yield of photochemistry (φp

0
), root volume and yield components was determined. 

Leaf water potential decreased signifi cantly only for Mouride and TN88-63 (from -0.55 to -0.92 MPa on average) at T2 while 
root volume, gas exchanges and foliar starch content decreased for the fi ve genotypes under water stress conditions at T1 and 
T2. φp0 was not affected during water defi cit at T1. Signifi cant decrease of φp0 was observed at T2 on the 6th day after stress 
induction (Dasi) for Gorom, KVX61-1 and TN88-63 and the 10th Dasi for Bambey 21 and Mouride. Proline was signifi cantly 
accumulated during water stress at the 2 stages, Mouride and TN88-63 showed the highest contents in the case of T2 (2.88 
and 3.3 mg.g-1 DM respectively). Water defi cit did not affect signifi cantly the total proteins contents for the 5 varieties at T1 
and T2. Our results showed that the 5 varieties involved drought avoidance mechanism by decreasing stomatal conductance 
and transpiration at the 2 stages. Proline accumulation, maintenance of total protein content and starch decrease under stress 
conditions at T1 and T2 could probably contribute in turgor maintenance. In addition, these solutes contributed probably in 
the protection of photosynthetic apparatus (PSII) against denaturation notably during water stress at fl owering stage. At the 
two stages water stress reduced signifi cantly seed number per pod and seed number per plant but the genotypic variation 
observed revealed that Bambey 21 was less affected than Gorom, TN88-63 and Mouride whereas KVX61-1 was most affec-
ted. Bambey 21 proved to be tolerant to water stress at the two stages, Gorom, Mouride and TN88-63 were intermediate and 
KVX61-1 sensitive.
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Réponses physiologique, biochimique et agromorphologique de cinq variétés de niébé (Vigna unguiculata) soumises 
à un défi cit hydrique en serre. Cinq variétés de niébé (Vigna unguiculata), Bambey 21, Gorom local, KVX61-1, Mouride 
et TN88-63, cultivées en pots en serre ont été soumises à un défi cit hydrique par suspension dʼarrosage pendant 14 jours en 
phase végétative (T1) et 12 jours au stade fl oraison (T2). Les incidences de ce traitement sur le potentiel hydrique foliaire, les 
échanges gazeux, le volume racinaire, les teneurs en proline, en amidon et en protéines totales des feuilles, le rendement maxi-
mal photochimique (φp0) et les composantes de rendement ont été déterminées. Le potentiel hydrique nʼa signifi cativement 
baissé que chez Mouride et TN88-63 (de -0,55 à -0,92 MPa en moyenne) stressés en fl oraison, tandis que le volume racinaire, 
les échanges gazeux, ainsi que la teneur en amidon ont été signifi cativement réduits chez les 5 variétés en conditions de stress 
aux 2 stades. (φp0) nʼa pas été affecté par le stress en phase végétative. En phase fl oraison il a signifi cativement baissé dès le 
6e jour dʼapplication chez Gorom, KVX61-1 et TN88-63 et au 10e chez Bambey 21 et Mouride. Une accumulation signifi cative 
de la proline due au défi cit hydrique a été observée chez les 5 variétés en phase T1 et T2, Mouride et TN88-63 ont les teneurs 
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1. INTRODUCTION

Environmental stresses have adverse effects on crop 
yield. Water defi cit is one of the most important factors 
limiting yield of main grain legumes such as cowpea. 
This grain legume is the most economically important 
African indigenous legume crop (Langyintuo et al., 
2003). Cowpea is widely cultivated to enhance the 
outputs of agricultural systems and the productivity 
in the sahelian regions where water defi cit occurs 
almost each year. Cowpea has many mechanisms of 
response and survival to drought. These include some 
physiological, biochemical and agromorphological 
responses (Hall et al., 1997; Roy-Macauley et al., 
1992). The understanding of the mechanism explaining 
the resistance of cowpea varieties to drought is of 
extreme importance for improving the production of 
this grain legume (Cruz de Cavarlho et al., 1998). 
The importance of these mechanisms in the breeding 
program for improving crops adaptation to drought 
was already reported (Ronald et al., 1986; Monneveux, 
1997). They are mainly used in cereal breeding to 
improve adaptation and increase yield in drought 
environments (Turner et al., 2001). Physiological, 
biochemical and agromorphological mechanisms on 
many sahelian cowpea varieties submitted to water 
stress have been separately but largely investigated 
(Nwalozie, 1991; Zombré et al., 1994; Nwalozie 
et al., 1996; Pimmentel et al., 1999; Hamidou, 2000; 
Diallo et al., 2001; Sarr et al., 2001; Ogbannaya 
et al., 2003). Only a few of these mechanisms known 
as adaptative characteristics are successfully used in 
breeding programs to improve drought resistance and 
yield of cowpea varieties grown in the Sahel. As far 
as we know, these studies have not investigated the 
physiological, biochemical and agromorphological 
mechanisms altogether. Furthermore, the functional 
signifi cance of the physiological and biochemical 
characteristics notably their relationships with yield 
and its components, are still not clearly established 
on the cultivars, mainly on those grown in the Sahel 
(Burkina, Niger and Senegal). 

The purpose of the present study is to analyze the 
physiological, biochemical and agronomical responses 
of 5 cowpea varieties to water defi cit at vegetative and 
fl owering stages, in order
– to assess the effect of this stress on some parameters
 characterizing the adaptative response,
– to compare the responses of the fi ve varieties to
 water stress,
– to identify among them the most tolerant variety(ies)
 to water defi cit.

2. MATERIAL AND METHODS

2.1. Plant material, cropping conditions and water 
stress treatments

Five cowpea genotypes, Gorom local (Gorom) and 
KVX61-1 (KVX) from Burkina Faso, Bambey 21 
(B21) and Mouride (Mou) from Senegal and TN88-
63 (TN) from Niger, were grown in pots under 
glasshouse conditions at Centre dʼEtude Régional 
pour lʼAmélioration de lʼAdaptation à la Sécheresse 
(CERAAS), Thiès, Senegal (latitude 14° 81  ̓ North 
and Longitude 16° 28  ̓ West). In the glasshouse, the 
plants experienced maximum day/night temperatures 
of 31.3/25°C and humidities of 48.1/77.4%. These 
5 genotypes were chosen mainly because they are of 
the principal varieties cultivated and consumed in the 
Sahelian zone of these countries and their agronomical 
responses to water defi cit are different. Pots were 
fi lled with 18 kg of sandy soil underlaid by 1 kg of 
gravel. One day before sowing, pots were watered 
at fi eld capacity. Three seeds were sown in each pot. 
Neither fertilizer nor nutrient solution was brought to 
the plantlets in order to mimic the farmerʼs practices. 
Ten days after sowing (DAS), pots were thinned to one 
plant per pot. The experimental design was a complete 
randomized block design with 4 replications studying 
2 factors: genotype at fi ve levels (varieties listed 
above) and water regime at three levels T0 (control = 
well watered conditions), T1 (water stress at vegetative 
stage), T2 (water stress at fl owering). The experimental 

les plus élevées (respectivement 2,9 et 3,3 mg.g-1 MS) en phase fl oraison. La teneur en protéines totales nʼa pas été signifi ca-
tivement modifi ée par le stress aux 2 stades. Nos résultats ont montré que les 5 variétés ont évité la déshydratation en baissant 
la conductance stomatique et la transpiration lors du stress en T1 et T2. L̓ accumulation de la proline, le maintien de la teneur 
en protéines totales et la baisse de la teneur en amidon chez les 5 génotypes en conditions de stress aux 2 stades pourraient 
contribuer au maintien de la turgescence cellulaire. En outre, ces solutés permettraient de protéger lʼappareil photosynthétique 
(PSII) contre la dénaturation notamment durant le stress en fl oraison. Le nombre de graines par gousse et le nombre de graines 
par plante ont été réduits en conditions de défi cit hydrique, la différence variétale observée a montré que Bambey 21 a été 
moins affecté que Gorom, TN88-63 et Mouride tandis que KVX61-1 sʼest révélée la plus sensible. Bambey 21 sʼest montrée 
tolérante au stress durant les 2 stades, Gorom, Mouride et TN88-63 ont été intermédiaires tandis que KVX61-1 a été la plus 
sensible.
Mots-clés. Niébé, Vigna unguiculata, défi cit hydrique, échanges gazeux, rendement maximal photochimique, proline, amidon, 
protéine.
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unit contained 3 pots, leading to a total of 180 pots. 
The water requirement of the plant was determined 
according to the equation: ETM = Kc × ETP, where 
ETM = maximum evapotranspiration, ETP = potential 
evapotranspiration and Kc = crop coeffi cient (Dancette, 
1983). Plants were watered every two days at T0 (ETM). 
On the 24th DAS T1 was applied. At fl owering stage (on 
36th DAS for B21, 40th for Gorom, KVX, Mou and TN) 
T2 was applied. T1 and T2 treatments were applied for 
all genotypes by withholding watering for 14 days and 
12 days, respectively for T1 and T2, before re-watering 
the plants. Measurements were done during application 
of stresses.

2.2. Methods

Physiological parameter measurements.
Chlorophyll fl uorescence parameter. During T1 and 
T2 treatments, chlorophyll fl uorescence was measured 
with a fl uorimeter PEA (Plant Effi ciency Analyser, 
Hansatech Inst Ltd, Kingʼs Lynn, England), between 
11 h (am) and 2 h (pm) on the third leaf from the top of 
the plant. Among the different fl uorescence parameters 
measured by the equipment, the maximal quantum 
yield of photochemistry (φp0) which turned out to be 
the most representative was retained.

Gaseous echanges. The gaseous echanges were 
measured on the same leaf as fl uorescence, with 
a portable infra red gas analyser of CO2 Licor LI-
6400 (Licor Inc., Lincoln, Nebraska, USA). The 
measurements were done between 11 h (am) and 
2 h (pm) on the 7 and 14th days after stress induction 
(Dasi) for T1 and 4 and 7th Dasi for T2. Measurements 
included net photosynthesis (Pn), stomatal conductance 
(Gs) and transpiration (Tr).

Leaf water potential. The last day of T1 and T2 
treatments, after measuring the above parameters, the 
third leaf was excised for measurement of leaf water 
potential (ψl) with a Scholander pressure chamber 
(type PMS, model 650, Instrument Co, Corvalis 
Oregon USA).

Biochemical parameters measurements. After leaf 
water potential measurement, the leaf was immediately 
frozen into liquid nitrogen and stored at –70°C, before 
extracting and measuring total soluble protein content, 
starch content and proline content according to the 
methods of Bradford (1976), Jarnis and Walker (1993) 
and Bates (1973), respectively.

Agromorphological parameters measurements. 
After re-watering stressed plants, one plant of each 
experimental unit was sampled to measure root volume. 

Thus, soil of the pot was delicately rinsed and plant 
roots were removed. Root volume was determined by 
measuring the volume of water displaced by the root 
system into a test tube. 

At harvest, total pod number (TPN), number of 
seeds per pod (SN/Pd) and total seed number per 
plant (SN/Pt) were determined. The SN/Pt was used 
to assess the drought susceptibility index (DSI) of 
cultivars according to Fisher and Maurer (1978). 
DSI=(CI/CNI)/CI. Where CI=component value in 
well-watered conditions, CNI=component value in 
stressed conditions. 

Statistical analysis. Statistical analysis of the results 
was performed with SAS (SAS Statistical Institute, 
Cary, NC). The data were subjected to analysis of 
variance (ANOVA) procedure for a randomized 
complete block design. The Student-Newman Keuls 
test (for a 95% confi dential level) was done to compare 
the means and determine whether there were any 
differences for the parameters measured considering 
the water regimes and varieties.

3. RESULTS

3.1. Physiological parameters

Gaseous echanges and chlorophyll fl uorescence. 
The results of the gaseous echanges measurements 
during the fi rst drought stress (Table 1) showed that 
under control conditions, the highest values (Pnmax) 
reach 25 μmol CO2 m-2.s-1 for the 5 varieties. Under T1 
treatment, our results showed that Pn and Tr decreased 
from seven Dasi for the fi ve varieties (Table 1). 
A genotypic variation was observed for stomatal 
conductance (Gs) under T1 conditions at this date. 
The stomatal conductance of Bambey 21, KVX61-1 
and TN88-63 were signifi cantly higher than those of 
Gorom and Mouride. Fourteen days after T1 imposition, 
values of Pn, Gs and Tr were closed to 0, showing that 
gaseous echanges were almost stopped (Table 1). 
For T2 treatment Pn, Gs and Tr of the fi ve varieties 
were reduced signifi cantly from 4th Dasi (Table 1). A 
genotypic variation was observed at this date. Gorom 
maintained the highest rate of Pn (5.64 μmol CO2 m2.
s-1). For Gs and Tr measured 4 Dasi, there was an 
interaction between RH and Variety. No signifi cant 
difference was noted among varieties under water 
stress conditions. But under well watered conditions, 
Bambey 21 reached the highest values of Gs and Tr 
which were signifi cantly different from Gorom and 
KVX also different from Mouride and TN. Seven 
Dasi at fl owering stage, an interaction between RH 
and Variety was observed for Pn, Gs and Tr. We noted 
signifi cant differences among varieties only under 
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well watered conditions. B21 had the highest gaseous 
echanges while TN exhibited lowest Pn, Gs and Tr. 

Concerning chlorophyll fl uorescence parameter φp0, 
well watered and stressed plants were not signifi cantly 
(P = 0.563) different at vegetative stage (Figure 1a). 
At fl owering stage (Figure 1b), there was signifi cant 
(P = 0.0004) interaction between water regime and 
variety at 6th Dasi. Under well watered conditions, φp0 of 
B21 was the lowest and signifi cantly different from the 
other varieties, while under stress Gorom, TN and KVX 
recorded the lowest φp0. At 10th Dasi signifi cant water 
regime effect (P = 0.0009) was observed. φp0 of the fi ve 
varieties decreased  (5,76%) due to the water defi cit.

Leaf water potential (ψl). After the period of T1 
application, ψl of the fi ve varieties was near -0.5 MPa 
for well-watered plants and -0.7 MPa for stressed 
plants (Figure 2). Statistical analysis revealed that 
these two ψl were not signifi cantly different. Further, no 
genotypic difference was observed. In our experimental 
conditions, either withholding watering during 14 days 
at vegetative stage was not long enough to result in a 
signifi cant decrease in ψl, either this parameter is not 
suitable for genotypes discrimination.

For T2 (Figure 2), there was an interaction between 
water regime (RH) and variety (Var). Under control 
conditions (T0) there was no signifi cant difference 

Table 1. Foliar gas exchanges of 5 cowpea varieties under water stress at vegetative and at fl owering stage. [B21 = Bambey 21, 
Gorom = Gorom local, KVX = KVX61-1, Mou = Mouride, TN = TN88-63, WR = water regime, C = control, S = stressed, 
values represent means of 4 measurements, different letters express signifi cant differences between water regime in the same 
variety (a, b), or between variety under the same water regime (i, s, t, r)] — Échanges gazeux foliaires chez 5 variétés de niébé 
en conditions de défi cit hydrique aux stades végétatif et fl oraison. [B21 = Bambey 21, Gorom = Gorom local, KVX = KVX61-1, 
Mou = Mouride, TN = TN88-63, WR = régime hydrique, C = témoin, S = stressé, les valeurs représentent les moyennes de 
4 mesures, différentes lettres expriment une différence signifi cative entre régime hydrique au sein dʼune variété (a, b), et entre 
variétés pour le même régime hydrique (i, s, t, r)].

Variety Parameter WR Vegetative stage  Flowering stage

   7 Dasi 14 Dasi 4 Dasi 7 Dasi

B21 Net photosynthesis C 22.93 ± 2.11a/i 22.67 ± 1.56a/i 27.40 ± 2.09a/i 24.27 ± 1.31a/i

   (mol CO2
.m-2.s-1) S 17.80 ± 6.61b/i 0.54 ± 0.73b/i 0.48 ± 1.64b/i 0.12 ± 1.24b/i

 Stomatal conductance C 0.19 ± 0.03a/i 0.68 ± 0.15a/i 1.03 ± 0.21a/i 0.77 ± 0.31a/i

   (mol H2O.m-2.s-1) S 0.12 ± 0.07a/i 0.020 ± 0.003b/i 0.01 ± 0.02b/i -0.006 ± 0.001b/i

 Transpiration C 5.23 ± 0.48a/i 8.94 ± 0.86a/i 10.19 ± 0.69a/i 9.2 ± 1.06a/i

   (mol H2O.m-2.s-1) S 3.63 ± 1.76b/i 0.59 ± 0.14b/i 0.23 ± 0.46b/i -0.23 ± 0.01b/i

Gorom Net photosynthesis C 22.43 ± 2.21a/i 24.87 ± 0.75a/i 18.54 ± 10.83a/i 18.82 ± 1.51a/s

   (mol CO2
.m-2.s-1) S 13.17 ± 5.56b/i 0.42 ± 0.66b/i 5.64 ± 5.84b/i 0.19 ± 0.49b/i

 Stomatal conductance C 0.18 ± 0.03a/i 0.44 ± 0.12a/i 0.52 ± 0.36a/s 0.423 ± 0.13a/s

   (mol H2O.m-2.s-1) S 0.07 ± 0.03b/s 0.02 ± 0.01b/i 0.04 ± 0.05b/i 0.003 ± 0.001b/i

 Transpiration C 5.09 ± 0.32a/i 8.25 ± 0.96a/i 6.82 ± 4.21a/s 7.63 ± 0.68a/s

   (mol H2O.m-2.s-1) S 2.29 ± 0.92b/i 0.8 ± 0.37b/i 1.17 ± 1.35b/i -0.12 ± 0.07b/i

KVX Net photosynthesis C 20.43 ± 2.34a/i 20.53 ± 5.35a/i 23.90 ± 2.32a/i 20.95 ± 1.91a/s

   (mol CO2
.m-2.s-1) S 18.17 ± 5.83b/i 0.52 ± 0.60b/i 1.82 ± 5.03b/i 0.28 ± 0.26b/i

 Stomatal conductance C 0.140 ± 0.04a/i 0.498 ± 0.50a/i 0.777 ± 0.45a/s 0.700 ± 0.460a/s

   (mol H2O.m-2.s-1) S 0.14 ± 0.06a/i 0.02 ± 0.01b/i 0.02 ± 0.03b/i -0.00 ± 0.01b/i

 Transpiration C 4.24 ± 0.96a/i 6.7 ± 3.53a/i 8.74 ± 1.77a/s 8.81 ± 1.98a/s

   (mol H2O.m-2.s-1) S 3.39 ± 1.49b/i 0.71 ± 0.13b/i 0.64 ± 0.88b/i -0.14 ± 0.24b/i

Mou Net photosynthesis C 23.08 ± 1.28a/i 24.33 ± 2.80a/i 16.68 ± 10.54a/i 13.1 ± 10.12a/t

   (mol CO2
.m-2.s-1) S 14± 7.54b/i 1.06 ± 0.66b/i 0.97 ± 0.23b/i -1.01 ± 1b/i

 Stomatal conductance C 0.20 ± 0.02a/i 0.79 ± 0.21a/i 0.35 ± 0.23a/t 0.26 ± 0.33a/s

   (mol H2O.m-2.s-1) S 0.08 ± 0.06b/s 0.010 ± 0.0001b/i 0.005 ± 0.001b/i 0.003 ± 0.001a/i

 Transpiration C 5.41 ± 0.16a/i 9.22 ± 0.67a/i 5.63 ± 3.51a/t 4.31 ± 4.19a/t

   (mol H2O.m-2.s-1) S 2.69 ± 1.72b/i 0.45 ± 0.07b/i 0.17 ± 0.05b/i -0.1 ± 0.07b/i

TN Net photosynthesis C 23.4 ± 1.28a/i 20.90 ± 3.87a/i 9.49 ± 5.4a/i 5.96 ± 2.29a/r

   (mol CO2
.m-2.s-1) S 19.73 ± 7.38b/i 0.5 ± 0.84b/i 0.23 ± 1.4b/s 0.17 ± 0.58b/i

 Stomatal conductance C 0.21 ± 0.02a/i 0.36 ± 0.1a/i 0.08 ± 0.07a/t 0.04 ± 0.02a/t

   (mol H2O.m-2.s-1) S 0.15 ± 0.07a/i 0.03 ± 0.02b/i 0.007 ± 0.001a/i -0.02 ± 0.02a/i

 Transpiration C 5.61 ± 0.42a/i 6.42 ± 1.22a/i 2.29 ± 1.58a/r 1.20 ± 0.54a/r

   (mol H2O.m-2.s-1) S 4.26 ± 1.66b/i 0.78 ± 0.49b/i 0.24 ± 0.05b/i 0.60 ± 0.78a/i
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among varieties. Under stress conditions (T2), the 
results showed that Bambey 21 presented the highest 
ψl (-0.43 MPa) and differed signifi cantly from Gorom, 
KVX, Mouride and TN of which ψl where respectively 

-0.85, -0.87, -0.90 and -1.06 MPa. Between water 
regimes in the same variety, signifi cant difference in 
leaf water potential was noted only for Mouride and 
TN88-63.

3.2. Biochemical parameters

Fourteen days after T1 treatment imposition, the 
total protein content in leaves was not signifi cantly 
differed between well-watered and stressed plants 
for the 5 varieties (Table 2). However, water defi cit 
induced signifi cant increase of proline content. The 
proline content in leaves increased by 56% in stressed 
plants compared to well-watered plants. There was a 
signifi cant interaction (P<0.0001) between RH and 
Var for starch content. Under well watered conditions, 
starch content of B21 and KVX was higher than for 
Gorom, Mouride and TN (Table 2), while under T1 
conditions, B21 starch content (79.21 mg.g-1 DM) was 
signifi cantly higher than Gorom (36.85 mg.g-1 DM) 
which was higher than KVX (15.92 mg.g-1 DM), TN 
(8.75 mg.g-1 DM) and Mouride (3,61 mg.g-1 DM). 
Starch content of KVX, Mouride and TN was reduced 
signifi cantly under T1 conditions while it didnʼt differ 
signifi cantly from control for Gorom and Bambey 21. 

At fl owering stage, protein content was not 
signifi cantly different from stressed to well-watered 
plants. We observed genotypic difference showing that 
TN, B21 and Mouride reached signifi cantly higher 
than Gorom and KVX (Table 2). Under water defi cit, 
all varieties increased their foliar proline content. No 
genotypic difference was observed among control 

Figure 1. Changes of maximal quantum yield of photochemistry (φp0) of the 5 varieties during stress at vegetative stage (A) 
and at fl owering (B). (T0 = control, T1 = stressed at vegetative stage, T2 = stressed at fl owering stage, Dasi = day after stress 
induction) — Variation du rendement maximal photochimique (φp0)  chez les 5 variétés au cours de stress au stade végétatif 
(A) et en fl oraison (B). (T0 = témoin, T1 = stressé en phase végétative, T2 = stressé en fl oraison, Dasi = nombre de jour après 
induction du stress).
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plants while under stress conditions TN accumulated 
more proline than Mouride, Bambey 21 and Gorom 
which accumulated more than KVX. At the same stage, 

water defi cit signifi cantly decreased starch content 
of the fi ve varieties at fl owering stage (Table 2). The 
diminution was -87%, -75%, -86%, -72% respectively 
for Bambey 21, Gorom, KVX and Mouride while it 
reached only -25% for TN88-63. 

3.3. Agromorphological parameters 

Root volume. Stresses T1 and T2, caused signifi cant 
reduction in root volume of the 5 genotypes (Table 3 
and 4). This reduction reached -50% for Bambey, KVX, 
Mouride and TN88-63 and -34% for Gorom under T1 
conditions. At fl owering stage, there was an interaction 
between water regime and variety. Under well irrigated 
conditions, the genotypic difference observed revealed 
that root system of B21 was larger (volume = 40 ml) 
than other varieties (volumes≤25 ml). Under T2 
conditions, root volume decreased signifi cantly and no 
difference among the 5 varieties was noted. 

Yield components. Water stress didnʼt reduce 
signifi cantly the seed number per pod (SN/Pd) but 
decreased signifi cantly the total pod number per plant 
(TPN) and the seed number per plant (SN/Pt) (Table 3 
and 4). The reduction of TPN and SN/Pt induced by T1 
compared to control was -36% and -24% respectively 
for TPN and SN/Pt. It reached -56% for the 2 yield 
components under T2 conditions. Furthermore, the 
genotypic variation observed revealed that under 
control conditions TN produced signifi cantly more 
pods (TPN) and seeds (SN/Pt) than the other varieties. 
The drought susceptibility index (DSI) concerning the 
SN/Pt (Table 3) in the 5 varieties was higher when 
stress occurs at fl owering stage than during vegetative 
stage. At the 2 stages, B21 showed the lowest DSI 
while KVX presented the highest. 

4. DISCUSSION

The gaseous echanges of the 5 varieties decreased under 
water stress conditions. This decrease was signifi cant 
7 Dasi for T1 and four Dasi for T2. The early effect of 
water defi cit on gaseous echanges at fl owering stage 
could be due, in one hand to the fact that fl owering 
is a critical growth stage of plants (Zombre et al., 
1994; Anyia et al., 2004), and in the other hand to the 
water requirement of plants which is more important 
at fl owering stage due to higher biomass (roots and 
shoots) than at vegetative stage. After 4 days of stress 
occurring at fl owering stage, Gorom maintained 
signifi cantly the highest values of Pn (5.64 μmol 
CO2 m2.s-1), indicating that assimilation still occurred 
in spite of the constraint. As stress intensity increased 
(14 days at vegetative stage and 7 days at fl owering), 

Table 2. Protein, proline and starch contents of 5 cowpea 
varieties, under water stress at vegetative and at fl owering 
stage. [B21 = Bambey 21, Gorom = Gorom local, KVX = 
KVX61-1, Mou = Mouride, TN = TN88-63, WR = water 
regime, C = control, S = stressed, values represent means of 
4 measurements, different letters express signifi cant differences 
between water regime in the same variety (a, b), or between 
variety  under the same water regime (i, s, t, r)] — Teneurs en 
protéines, proline et amidon chez 5 variétés de niébé, en 
conditions de défi cit hydrique au stade végétatif et au stade 
fl oraison. [B21 = Bambey 21, Gorom = Gorom local, KVX = 
KVX61-1, Mou = Mouride, TN = TN88-63, WR = régime 
hydrique, C = témoin, S = stressé, les valeurs représentent 
les moyennes de 4 mesures, différentes lettres expriment 
une différence signifi cative entre régime hydrique au sein 
dʼune variété (a, b), et entre variétés pour le même régime 
hydrique (i, s, t, r)].

Variety Parameter WR Growth stage

   Vegetative Flowering

B21 Total protein  C 37.22 ± 1.87a/i 34.32 ± 1.25a/i

   (mg.ml-1) S 36.78 ± 1.08a/i 38.81 ± 1.63a/i

 Proline quantity  C 0.34 ± 0.14a/i 0.29 ± 0.04a/i

   (mg.g-1 DM) S 0.65 ± 0.09b/i 1.38 ± 0.75a/i

 Starch C 75.06 ± 4.56a/i 48.43 ± 6.21a/i

   (mg.g-1 DM) S 79.22 ± 6.89a/i 6.03 ± 1.61b/i

Gorom Total protein  C 37.09 ± 2.21a/i 31.14 ± 4.35a/s

   (mg.ml-1) S 39.82 ± 4.92a/i 30.21 ± 4.95a/s

 Proline quantity  C 0.24 ± 0.11a/i 0.32 ± 0.21a/i

   (mg.g-1 DM) S 0.94 ± 0.35b/i 1.53 ± 1.46b/i

 Starch C 44.38 ± 2.10a/s 65.21 ± 11.59a/s

   (mg.g-1 DM) S 36.85 ± 7.30a/s 16.25 ± 0.73b/s

KVX Total protein  C 35.22 ± 4.76a/i 31.87 ± 0.77a/s

   (mg.ml-1) S 34.24 ± 4.32a/i 29.04 ± 1.50a/s

 Proline quantity  C 0.40 ± 0.10a/i 0.42 ± 0.23a/i

   (mg.g-1 DM) S 0.71 ± 0.31b/i 0.73 ± 0.36a/i

 Starch C 68.55 ± 13.29a/i 73.82 ± 23.12a/s

   (mg.g-1 DM) S 15.92 ± 7.39b/t 10.24 ± 3.37b/i

Mou Total protein  C 35.41 ± 2.55a/i 34.75 ± 6.62a/i

   (mg.ml-1) S 37.62 ± 4.80a/i 37.37 ± 2.85a/i

 Proline quantity  C 0.456 ± 0.09a/i 0.55 ± 0.06a/i

   (mg.g-1 DM) S 1.42 ± 0.87b/i 2.89 ± 1.20b/s

 Starch C 48.41 ± 10.34a/s 71.94 ± 4.88a/s

   (mg.g-1 DM) S 3.61 ± 0.48b/t 19.63 ± 4.65b/s

TN Total protein  C 34.65 ± 3.00a/i 39.11 ± 1.01a/i

   (mg.ml-1) S 36.93 ± 2.23a/i 38.89 ± 5.36a/i

 Proline quantity  C 0.41 ± 0.06a/i 0.33 ± 0.05a/i

   (mg.g-1 DM) S 0.64 ± 0.25b/i 3.30  ± 2.01b/s

 Starch C 44.64 ± 4.36a/s 46.97 ± 9.73a/i

   (mg.g-1 DM) S 8.89 ± 0.80b/t 35.18 ± 4.23b/t
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gaseous echanges of the 5 varieties decreased. Cowpea 
is known to have a high stomatal control leading to a 
rapid closure of stomata under water stress conditions 
(Hall et al., 1997; Scotti et al., 1999; Cruz de Carvalho, 
2000; Sarr et al.; 2001, Ogbonnaya et al., 2003). The 
consequence of this stomatal closure is the reduction 
of net photosynthesis which was closed to 0 for the 
5 varieties after 14 and 7 days of stress at vegetative and 
fl owering stages, respectively. In addition to stomatal 

control, the decrease of net photosynthesis under water 
stress conditions could be due to some non-stomatal 
processes like the disturbance of the photochemical 
activities or damages of the photosynthetic apparatus 
(PSII) (Niinemets, 2002). Chlorophyll fl uorescence 
parameters are direct indicators of the photosynthetic 
activity (Lichtenthaler et al., 2000) and give an 
indication of status of photosynthetic apparatus. The 
maximal quantum yield of photochemistry (φp0) of 
stressed and well watered plants was similar at vegetative 
stage for the 5 varieties. The lack of signifi cant 
decrease of φp0 could indicate that the photochemical 
apparatus (PSII) was quite stable under water defi cit, 
as it was previously demonstrated in the case of some 
moderate water defi cits (Lu et al., 1999; Souza et al., 
2004). At fl owering stage, water stress decreased φp0

 
of the 5 varieties notably at 10th Dasi indicating that 
water defi cit was much severe than at vegetative stage, 
and affected the photochemical activity. The decrease 
of φp0 could indicate a downregulation of PSII. Souza 
et al. (2004) suggested that under more severe water 
stress, the capacity of protective mechanisms in 
cowpea could be exceeded. Felexas et al., (1999) also 
reported that when water defi cit becomes stronger, it 
induces a drastic downregulation of photosynthesis, 

Table 3. Agromorphological traits of 5 cowpea varieties under control (C) and water defi cit (S) at vegetative (vg) or fl owe-
ring (fl w) stages conditions. (Values represent means of 4 measurements, B21 = Bambey 21, Gorom = Gorom local, KVX = 
KVX61-1, Mou = Mouride, TN = TN88-63, WR = water regime, RV = root volume, TPN = total pod number, SN/Pd = seed 
number per pod, SN/Pt = seed number per plant, DSI = drought susceptibility index) — Caractères agromorphologiques 
chez 5 variétés de niébé, en conditions témoin (C), sous stress (S) en phase végétative (vg) et sous stress en fl oraison (fl w). 
(Les valeurs représentent les moyennes de 4 mesures, B21 = Bambey 21, Gorom = Gorom local, KVX = KVX61-1, Mou = 
Mouride, TN = TN88-63, WR = régime hydrique, RV = volume racinaire, TPN = nombre total de gousses, SN/Pd = nombre 
de graines par gousse, SN/Pt = nombre de graines par plante, DSI = indice de sensibilité à la sécheresse).

Variety Stage WR RV (ml) TPN SN/Pd SN/Pt DSI of SN/Pt

B21 vg C 15.25 ± 6.29 9 ± 1 6 ± 2 62 ± 9 0.13
  S 7.25 ± 2.62 9 ± 3 6 ± 1 54 ± 9
 fl w C 40.00 ± 3.36 9 ± 1 6 ± 2 62 ± 9 0.46
  S 15.75 ± 2.62 7 ± 2 5 ± 1 33 ± 12

Gorom vg C 11.00 ± 4.96 15 ± 3 6 ± 3 68 ± 14 0.33
  S 7.25 ± 3.77 7 ± 2 7 ± 2 45 ± 4
 fl w C 25.5 ± 6.6 15 ± 3 6 ± 3 68 ± 14 0.55
  S 18.75 ± 3.59 6 ± 1 5 ± 2 30 ± 11

KVX vg C 13.25 ± 4.19 15 ± 8 7 ± 1 107 ± 41 0.44
  S 6.625 ± 3.19 11 ± 2 5 ± 2 60 ± 16
 fl w C 22.25 ± 10.14 15 ± 8 7 ± 1 107 ± 41 0.72
  S 12.50 ± 1.29 6 ± 1 5 ± 1 29 ± 3

Mou vg C 21.25 ± 10.62 14 ± 4 7 ± 2 77 ± 9 0.27
  S 7.00 ± 2.16 7 ± 1 9 ± 1 56 ± 13
 fl w C 23.00 ± 2.58 14 ± 4 7 ± 2 77 ± 9 0.56
  S 16.75 ± 2.5 7 ± 3 7 ± 3 34 ± 27

TN vg C 17.25 ± 6.39 22 ± 2 7 ± 2 152 ± 7 0.14
  S 8.50 ± 3.37 15 ± 2 8 ± 1 130 ± 23
 fl w C 29.00 ± 1.5 22 ± 2 7 ± 2 152 ± 7 0.51
  S 18.75 ± 1.5 10 ± 3 7 ± 2 74 ± 35

Table 4. Variance analysis on agromorphological traits. 
(RH = water regime, VAR = variety, RV = root volume, 
TPN = Total number of pods, SN/Pd = seed number per pod, 
SN/Pt = seed number per plant) — Analyse de variance des 
paramètres agromorphologiques. (RH = régime hydrique, 
VAR = variété, RV = volume racinaire, TPN = nombre total 
de gousses, SN/Pd = nombre de graines par gousse, SN/Pt = 
nombre de graines par plante).

Effect Signifi cation level at 0,05

 RV (vg) RV (fl w) TPN SN/Pd SN/Pt

RH < 0.0001 < 0.0001 < 0.001 0.0972 < 0.001
VAR    0.1238    0.0009 < 0.0001 0.0684 < 0.0001
RH × VAR    0.1694    0.0023    0.1339 0.8072    0.0975
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a decrease of photon accumulation, a dissipation of 
important energy and a decrease of quantum yield of 
PSII electron transport. B21 and Mouride revealed less 
affected because their φp0 didnʼt decease at 6th Dasi 
while it decreased signifi cantly for the other varieties. 
Our results suggested that the decrease of the Pn under 
stress conditions at vegetative stage was mainly due 
to stomatal process. At fl owering stage, in addition to 
the stomatal control process, the decrease of Pn was 
induced by perturbation of PSII activities due to water 
defi cit. Present results also demonstrated that φp0 could 
be used to screen varieties under water defi cit notably 
at fl owering stage.

The decrease of leaf water potential was only 
signifi cant under water stress occurring at fl owering 
stage. The senescence of leaves could explain these 
results. Indeed, previous works reported that age of 
leaves contributed to decrease leaf water potential 
notably under stress conditions (Anyia et al., 2004). 
Furthermore, reproductive stage of plants is critical 
due to important physiological activities occurring at 
that time, notably the transfer of assimilates to grains. 
The decrease was more important for Mouride and TN 
varieties. The maintenance of leaf water potential in 
drought conditions is considered to be associated with 
dehydration avoidance. A turgor maintenance of tissues, 
which could allow continuation of the physiological 
activities (Jongdee et al., 2002), could be done by 
osmolytes accumulation (Serraj et al., 2002). Our results 
showed that proline content increased for all cultivars in 
response to water stress at the 2 stages but it increased 
more for Mouride and TN than for Gorom, B21 and 
KVX. Proline accumulation is known to provide an 
effi cient mechanism for cellular adaptation to osmotic 
stress (Martinez et al., 1995). In another hand, Marjorie 
et al. (2002) demonstrated that proline accumulated 
during water defi cit has a minor contribution to total 
osmolytes in drought conditions but plays a key role 
after re-watering. At the same time, total protein content 
was not affected for any cultivars whatever the treatment. 
This could mean either that proteins were not degraded 
and their synthesis was inhibited during water stress, 
or that their degradation and de novo synthesis were 
similar. On the opposite, starch content decreased in the 
5 varieties mainly at fl owering stage. This decrease could 
be explained by a reduction of starch synthesis during 
water defi cit due to the Pi increase and the inhibition of 
phosphorylase activity (Da Silva et al., 2004), and/or an 
increase of hydrolytic enzymes activities as amylase and 
acid invertase which hydrolyze starch into soluble sugars, 
sucrose and organic acids (Keller et al., 1993). These 
carbohydrates could compensate the lack of synthesis of 
carbohydrates due to photosynthesis inhibition caused 
by water stress and/or act as osmoticums and decrease 
hydric potential (Pelleshi et al., 1997; Sanchez et al., 
1998).

Under water defi cit occurring at fl owering stage, 
we observe simultaneously in the case of Mouride and 
TN a signifi cant decrease of their leaf water potential, 
in a lesser extent a diminution of the starch content 
and an accumulation of proline higher than in Gorom, 
B21 and KVX. These observations indicate that the 
2 genotypes, could have the capacity of osmoregulation, 
by  increasing the solutes contents in leaf tissues, trough 
hydrolysis of starch for soluble sugars production and 
synthesis of proline, thus resulting in a decrease of 
osmotic potential and fi nally of leaf water potential. 
In the case of Gorom, B21 and KVX, the signifi cant 
decrease of starch and the increase of proline content 
are not linked with a diminution of leaf water potential, 
which give food for thought that these 3 varieties 
would not be able to osmoregulate under water stress 
as Mouride and TN. In that case, proline accumulation 
and starch decrease observed under water stress should 
be considered as injury symptoms.

For the 5 varieties, stress conditions resulted in low 
root volume indicating that the development of roots 
was inhibited or stopped during water stress. These 
could be explained by the pot culture conditions because 
Sarr et al. (2001) observed that cowpea increased root 
system under water stress in fi eld conditions.

The agronomical parameters measured on the 
5 varieties were reduced under water stress conditions. 
The decrease was more important at fl owering than at 
vegetative stage. This could be due to the fact that water 
stress occurring at fl owering stage affects immediately 
the reproduction process, unlike stress at vegetative 
stage that can be compensated by the plant trough 
different mechanisms. Whatever the stress applied 
(T1, T2) the agronomical parameters of B21 were less 
reduced while those of KVX were most affected.

5. CONCLUSION

In our experimental conditions, water defi cit 
affected almost all the physiological, biochemical 
and agronomical parameters we measured on 
the 5 varieties. The effect was more important at 
fl owering than at vegetative stage. Genotypes avoided 
dehydration trough a decrease of stomatal conductance 
and transpiration. This adaptative strategy was 
associated with a net decrease of photosynthesis. The 
photochemical activities of PSII were maintained 
under water stress occurring at vegetative. But at 
fl owering stage, the decrease of the maximal quantum 
yield of photochemistry proved that these processes 
were obviously disturbed for the 5 varieties. The starch 
content decreased and proline accumulated under water 
defi cit conditions for the 5 genotypes but no signifi cant 
change was observed for the total protein content. 
Mouride and TN88-63 accumulated more proline and 
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less decreased starch than Bambey 21, Gorom and 
KVX61-1 under water stress at fl owering stage. Due to 
their high accumulation of solutes, Mouride and TN88-
63 have the lowest leaf water potential under stress 
conditions. Water defi cit did not decrease signifi cantly 
leaf water potential of Bambey 21, Gorom and KVX, 
showing that their osmoregulation capacity would be 
very limited. Our results indicated that Bambey 21 
was tolerant to water defi cit because its agronomical 
parameters were less affected; Gorom, Mouride and 
TN88-63 were intermediate while KVX61-1 was the 
most sensitive.
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