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1. INTRODUCTION

Microirrigation is used in the arid and semi-arid
countries. In this study a network is composed of
laterals with identical emitters that have a small
discharge to low pressure. The network must satisfy a
good uniformity of water distribution by emitters to
the irrigated plants. Thus, the hydraulic phenomenon
study of the lateral is primordial for the adequate and
economic network design. For the lateral, other than
changes in elevation, variations of the pressure are due
to the energy loss of friction along the lateral that
provokes disorder to the uniformity of the water
distribution. The successful design is a compromise
between the choice of high uniformity or small cost of
the installation. It is important to calculate the pressure
distribution and emitter discharge correctly along the
lateral. Using equations of energy and mass
conservation, the closing between two sections of an
elementary control volume, ends up in a two partial
differential equations system, non linear, associating
pressure and velocity. These equations describe the
flow in the lateral, their solution is tedious because of
interdependence of the discharge and the pressure in a

non linear relation. The solution of these equations
cannot be completely analytic due to the empiric
relation of discharge emitters and the energy loss
relations. The numeric control volume method (CVM)
is often used to determine pressure and discharge in
microirrigation lateral. It is applied to an elementary
control volume on the lateral and permits an iterative
development, volume after volume, from a lateral
extremity to the other. Howell and Hiler (1974), Helmi
et al. (1993) applied this technique to an example of
microirrigation lateral, starting iterative procedure of
calculation from the lateral entrance. Thus knowing
the output discharge to the lateral entrance,
represented by the sum of average emitters discharge,
the technical “Trial and error” is successively used till
the lateral end, in order to lead to the convergence.
However, the risk of obtaining a negative velocity still
exists.This approach seems to provide some precise
results but could become slow for numerous reasons
of the possible iteratives, without excluding the
divergence risk. Warrick, Yitayew (1988), Kosturkov
(1987) defined non linear system of partial differential
equations, of the second order. The first ones used the
numeric method of RK4, the others substituted the
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pressure by a velocity expression. These equations are
linear, the choice of the limit conditions permits to use
the least square method and the Rosenbrock's
algorithm. This method seems to give precise results.
Nevertheless, it requires at the begining of the
calculation, the prior knowledge of an initial vector-
solution and the solution of linear algebric system.
Valiantzas (1998) tempted an analytic approach based
on the hypothesis of spatial distribution of the
discharge along the lateral. The extension to the
network presents some difficulties. Bralts, Segerlind
(1985), Mohtar et al. (1991), Bralts et al. (1993),
Kang, Nishiyama, (1996) defined the partial
differential equations, non linear, of the second order
based on the pressure. These equations are solved after
linearisation by the numeric method of finite elements,
using not negligible extensive calculation programs
but the results obtained are exact. The present work
consists to use the numeric method of Runge-Kutta of
order four and the CVM. The RK4 allows the
integration of the differential equations system of the
first order by describing variations of pressure and
velocity from the initial conditions to the lateral
extremity (x = 0). Given the fact that the pressure in
this point is unknown, it is therefore necessary to use
an iterative process in order to converge toward the
solution to the other extremity of the lateral (x = L),
where the value of the pressure is known (input). The
iterative process is assured thanks to the interpolation
by Lagrange’s polynomial . 

2. THEORETICAL DEVELOPMENT

The mathematical model to be derived is a system of
two coupled differential equations of  the first order,
the unknown parameters are pressure and velocity. It
describes the flow of water along a horizontal
microirrigation lateral. The principle of mass
conservation is first applied to an elemental control
volume of length dx of the pipe (Figure 1).

AVx = AVx+dx + qe (1)

where
A = cross-sectional area of lateral; V = velocity of
flow in the control volume between x and x + dx and
qe is the emitter water discharge which is assumed to
be uniformly distributed through the length dx, which
expression is given by the following empirical
relation.

qe = αHy (2)

where
α = emitter constant; y = emitter exponent for flow
regims and emitter type; H = pressure at the emitter.

For the sake of simplification purposes, is taken as
the hydraulic head (elevation charge head = 0). The
principle of energy conservation is also applied to the
same elemental control volume to give the
Bernouilli’s following:

(3)

where hf is the head loss due to friction between x and
x+dx. Its expression is given by the well known
formula:

hf = aVmdx . (4)

Regime flow is determined by Reynold’s number

(5)

where D is lateral diameter, and µ is kinematic
viscosity.

When Re >2300, m = 1.852 and the value of a is
given by the following equation when the Hazen-
Williams formulation is used as

(6)

where C = H a z e n - Williams coefficient; K = c o e f-
ficient; m = exponent describing flow regime.

When Re < 2300; m = 1 and the value of a is

(7)

where g is the gravitational acceleration. After expan-
sion of the terms Hx + d x and Vx + d x , equation (3) is written 
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x = 0; Vx = 0 Direction of flow

x qe x + dx

Figure 1. Elemental control volume — Volume de contrôle
élémentaire.
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(8)

If the term is supposed to be negligeable,

equation (8) becomes 

. (9)

By using the expansion of Vx+dx in equation (1), we get 

(10)

Finally, by combining equations (2), (4), (7) and (8)
the final system of equations is found as

(11)

and . (12)

In order to solve the solution of (11) and (12), the
velocity at the end of the lateral (V(x=L)=0) and the
pressure head (H(x=0)=Hmax) are given. We propose to
integrate this system using the method of Runge-Kutta
of order 4 by constructing an iteration process. Let us
assume that H(L)=Hmin is known. A new space variable
X is definied such as X=L-x. The system of equations
(11) and (12) becomes 

(13)

and . (14)

The initial conditions to this problem are V(X=0)=0 and
H(X=0)=Hmin.

2.1. Iteration process 

To integrate simultaneousely equations (13) and (14),
we have only to provide two estimates of the pressure
head at the downstream end of the lateral (X=0); call
them H°min and H1

min. Now, two solutions of the initial
value problem (13) and (14) are carried out, yielding
H°max and H1

max. A new estimate of Hmin can then be

obtained by making use of the interpolating Lagrange
polynomial of degree one. This new estimate Hmin is
written as follows (Mathews, 1998) in order to get the
next solution H2

max.

. (15)

This process is continued until convergence which
means 

(16)

or

. (16)

A program of calculation in Fortran has been
applied for the two numeric methods and executed on
a microcomputer until convergence ErH and Erv to
ε=10-5.

2.2. Uniformity equations

The uniformity of water distribution is a main finality
of network design, the discharge and pressure
uniformity are given by the statistical followings (19)
and (20).

(17)

where NG is the total emitter number in the lateral.

(18)

Cuq = 100 (1-Cvq) (19)

CuH = 100 (1-CvH) (20)

Cvq: coefficient of variation of emitter flow; 
CvH: coefficient of variation of pressure;
Cuq: coefficient of uniformity of emitter flow;
CuH: coefficient of uniformity of pressure.

3. APPLICATIONS

A lateral line at zero slope, in black polyethylene
matter was chosen in this application. The total length
is 250 m and internal diameter is 15.2 mm. Along this
lateral, 50 similar emitters were placed with equal
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interval. The characteristics of emitter used in
empirical relation (2) are as follow α=9.14 10-7,
exponent y = 0.5, C = 150, m = 1.852, K = 5.88 and
g = 9.81m/s2. Kinematic viscosity of water is µ = 10-6

m2/s. These data are introduced in calculation
program, Hmax is given to 30m, after we insert any Hmin
to obtain velocity, flow and pressure distribution along
the lateral. Results are given  by figures 2, 3 ,4 and 5.
The main values are selected in table 1.

These two calculations program of lateral, CVM and
RK4, are simple to use with non divergence problem.
The convergence criterion for calculation is ε = 10-5,
the same results are  found by finite element method
(FEM) tested by Bralts et al. (1993). These programs
have been tested for different other values of Hmin and
Hmax with several diameters and lengths and gave
precise results with very short execution time.

Programs have tested the linear and parabolic appro-
ximation of velocity and pressure distribution with but
a slight difference in the results. The precise calculation

permits to insure that the total discharge input on head
of lateral (217.56 10 -6m3/s) is completly distributed to
the emitters with the best uniformity of 94.22 %. In this
work, the effects of temperature, slope and plugging of
emitters that constitute the limiting factors of the uni-
formity have been ignored in this phase of the calculation.

Ta b l e 1 . Hydraulic parameters with two methods —
Comparaison des paramètres obtenus par les méthodes
CVM et RK4 et par celle des éléments finis (FEM).

Parameters CVM RK4 Bralts (FEM)

Vmax (m/s) 1.199 1.200 -
Hmax (m) 30 30 30
Hmin (m) 20.302 20.435 20.3
Cuq (%) 94.22 94.32 94
CuH (%) 88.15 88.36 88
Iterations 5 3 15
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Figure 2. Distribution of emitters discharge and velocity
(CVM) — Répartition du débit et de la vitesse (CVM) au
niveau des goutteurs.
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Figure 3. Distribution of pressure along lateral (CVM) —
Répartition de la pression au niveau des goutteurs (CVM) .
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Figure 4. Distribution of emitters discharge and velocity
along lateral (RK4) — Répartition du débit et de la vitesse
(RK4) au niveau des goutteurs.
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Figure 5. Distribution of pressure along lateral (RK4) —
Répartition de la pression au niveau des goutteurs.
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4. CONCLUSION 

The calculation procedure, the methods and the
interpolation by the Lagrange’s polynomial enabled us
to avoid several trial and error attempts and
complicated numerical methods which are hard to use.
The results achieved are precise and the computation
is fast. The restraint of the distribution discharge along
the lateral microirrigation opens perspectives for the
generalization of these calculation procedures to the
design of large microirrigation network without the
risk of oscillations and divergence. The precise
calculation means a well balanced functioning
network, a better uniformity of water distribution to
cultures and a lowest cost of the installation.
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