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Description of the subject. Feed is the main variable cost in dairy farming. More efficient use of forage resources is one way 
to reduce production costs. Improving forage resource efficiency can start with a better assessment of the dry matter content 
and nutritional value of forages. Currently, analytical process time is often long and analyses are not repeatable while the 
quality of the fodder changes over time. Being able to analyze forages directly on-farm would make it possible to adapt the 
animal diet according to forage variability, in order to improve the profitability of the farm. 
Objectives. To propose in situ rapid analysis solutions to better characterize dry matter content and the chemical composition 
of fodder for assessing its feeding value. 
Method. The performance of three recently developed spectroscopic handheld devices, namely the Viavi’s MicroNIR 1700, 
the Ocean Insight’s FlameNIR and the Malvern Panalytical’s ASD FieldSpec 4, are evaluated to predict dry matter content 
and the chemical composition of fresh and unground grass silage in the framework of precision feeding and compared to the 
reference benchtop Foss’s XDS instrument. The conventional global PLS and local PLS are used as multivariate calibration 
methods.
Results. The assessed handheld devices allow the dairy farmer to obtain a relatively precise quantitative prediction of the dry 
matter and crude fiber content (2.5% and 1.8% respectively on average, in terms of ratios between the local PLS error on fresh 
forage and the reference method error) in order to adapt the livestock diet. Crude protein, even if the prediction accuracy is 
lower (6.4%), is still well predicted. Higher errors are obtained for ash (9.2%), crude neutral (6.8%) and acid detergent fiber 
(6.9%). 
Conclusions. The studied devices should allow the dairy farmer to obtain a relatively precise quantitative prediction of those 
quality parameters in order to directly adapt the quantity of forage distributed to the animals. Performances could probably be 
improved by including more samples/spectra into the databases.
Keywords. Infrared spectrophotometry, portable equipment, feed composition, livestock feeding, precision agriculture.

Performance de trois spectromètres NIR portatifs pour prédire la qualité de l’ensilage d’herbe
Description du sujet. L’alimentation des animaux est la principale charge variable en élevage laitier. Une utilisation plus 
efficiente des ressources fourragères est un moyen de réduire les couts de production. L’amélioration de ces ressources peut 
commencer par une meilleure évaluation de la teneur en matière sèche et de la valeur nutritionnelle des fourrages. Actuellement, 
le temps du processus analytique est souvent long et les analyses ne sont pas régulières, alors que la qualité du fourrage évolue 
dans le temps. Pouvoir analyser les fourrages directement à la ferme permettrait d’adapter l’alimentation des animaux en 
fonction de la variabilité de ce fourrage afin d’améliorer la rentabilité de la ferme.
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1. INTRODUCTION

Forages contribute largely to the self-sufficiency of 
both dairy and suckling farms. In the current context 
of the price volatility of feedstuffs and concentrates, it 
is essential to characterize forage quality to minimize 
production costs. Knowledge of the forage’s quality 
is also essential to meet animal requirements while 
controlling the environmental impact (Minet et al., 
2021). Since the seventies, near-infrared spectroscopy 
(NIRS) has been recognized as a tool for predicting 
the quality of forage (Norris et al., 1976; Deaville & 
Flinn, 2000; Baeten et al., 2016; Debode et al., 2021). 
Traditionally forage databases have been built from 
dried and ground samples using laboratory benchtop 
instruments (Decruyenaere et al., 2006), constituting 
libraries that can be considered as references on 
the topic of animal feeding. In recent years, spectral 
databases generated with handheld devices have been 
collected. Berzaghi et al. (2021) have recently shown 
that handheld instruments may provide an alternative 
to expensive laboratory equipment by providing 
sufficiently accurate predictions for dry and ground 
samples. Although NIRS is a non-destructive method 
and is environment friendly, the pre-processing of 
samples (drying and grinding) is time consuming 
and does not encourage carrying out several analyses 
during the winter season (Murphy et al., 2022). 
According to Wilkinson et al. (2014), grazed grass 
samples should be analyzed at least once a week to 
adjust diet according to the variability of grass quality. 
Grass silages are heterogeneous forages. Heterogeneity 
is caused by the variety of plant species in the sward, 
date of cut, number of cuts and grass fertilization, along 
with many other factors. Due to less intensive labor 
requirements and greater cost efficiency, the analysis 
of fresh silage by NIRS makes it possible to increase 
the frequency of measurements and could be useful in 
the framework of precision livestock farming. With 

regard to conventional benchtop NIRS instruments, 
Sinnaeve et al. (1994) and Park et al. (1998) have 
shown the potential of NIR analyses of fresh materials 
to determine the chemical composition and digestibility 
of grass silages. According to Cozzolino & Labandera 
(2002), NIRS of fresh samples can predict dry matter 
(DM) and crude protein (CP) content of forages with 
calibration errors of 1.2% and 1.9%, respectively 
(in terms of SEC – Standard Error of Calibration). 
The potential of NIRS applied on fresh samples 
was confirmed by Alomar et al. (2009), Parrini et al. 
(2019), Lobos et al. (2019) and Murphy et al. (2019 
and 2022). More recently, handheld NIR spectrometers 
were developed for rapidly predicting the DM content 
and the chemical composition of forages (Bell et al., 
2018). These miniaturized and mobile instruments 
allow frequent analyses, with real-time results, that 
can help the farmer to feed their cattle more efficiently 
(Fernández Pierna et al., 2010; Bell et al., 2018; 
Carreira et al., 2021; Minet et al., 2021).

The objective of this study is to evaluate the 
efficiency of recent handheld devices for their use 
on undried and unground grass silages in Wallonia 
(Belgium). For this purpose, different NIRS calibration 
models have been constructed to predict accurately 
the DM content and the chemical composition (CP, 
total ash [ash], crude fibre [CEL] as well as acid and 
neutral detergent fiber [ADF and NDF]). To achieve 
this objective, two different chemometric strategies 
were used to build calibration models: the use of 
the conventional Partial Least Squares (global PLS) 
regression and the use of a local based PLS algorithm 
(Allegrini et al., 2016; Minet et al., 2019), the local 
partial least square regression on global PLS scores 
(LPLS-S) (Shen et al., 2019). Global PLS calibration 
models have been proven for years to always provide 
satisfactory results when the relationship between the 
spectral and reference values is linear and the data are 
sufficient to cover all possible sources of variability in 

Objectifs. L’objectif est de proposer des solutions d’analyses rapides, in situ, pour mieux caractériser la teneur en matière 
sèche et la composition chimique des fourrages pour évaluer leur valeur alimentaire. 
Méthode. Les performances de trois spectromètres portables récemment développés, à savoir le Viavi MicroNIR 1700, 
l’Ocean Insight FlameNIR et le Malvern Panalytical ASD FieldSpec 4, sont évaluées pour prédire la teneur en matière sèche 
et la composition chimique de l’ensilage frais et non broyé d’herbe, dans le cadre de l’alimentation de précision. 
Résultats. Dans l’état actuel de la recherche, ces appareils portables permettent au producteur laitier d’obtenir une prédiction 
quantitative relativement précise de la teneur en matière sèche et en fibre brute (2,5 % et 1,8 % respectivement en termes de 
ratios entre l’erreur NIR sur fourrage frais et l’erreur de la méthode de référence) afin d’adapter l’alimentation du cheptel bovin 
laitier. Les protéines brutes, même si la précision est plus faible (6,4 %), sont quand même bien prédites. Des erreurs plus 
élevées sont obtenues pour les cendres (9,2 %) et pour les fibres insolubles dans les détergents neutres (6,8 %) et acides (6,9 %). 
Conclusions. Les dispositifs étudiés doivent permettre à l’éleveur d’obtenir une prédiction quantitative relativement précise 
de ces paramètres de qualité afin d’adapter directement la quantité de fourrage distribuée aux animaux. Ces performances 
pourraient probablement être améliorées en incluant plus d’échantillons/spectres dans les bases de données.
Mots-clés. Spectroscopie infrarouge, matériel portatif, composition des aliments pour animaux, alimentation du bétail, 
agriculture de précision.
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terms of measurement factors and population source. 
However, it is usually observed that the accuracy of 
the global calibration models decreases as complexity 
of the calibration set increases (Shenk et al., 1997; 
Berzaghi et al., 2000). To deal with this situation, 
local approaches can be used to develop individual 
calibration models for each unknown sample to be 
predicted by selecting similar spectra from a large 
spectral library through distance or correlation.

The novelty of this work is twofold. Firstly, fresh 
grass silage was measured directly on the farm with 
handheld NIR spectrometers, and their performances 
were compared to a benchtop spectrometer, which was 
used for reference analysis. Secondly, an alternative 
chemometric strategy based on local models was 
compared to the classical PLS. Spectral datasets for 
dry and ground samples are already available for the 
benchtop spectrometer, which can be used to have a 
first idea of the performances that can be reached.

2. MATERIALS AND METHODS

2.1. Grass silage samples

For this study, 181 samples of grass silage were 
collected between 2018 and 2020 in 60 different silos 
in Wallonia (Belgium): 65 samples from nine silos 
in 2018, 84 samples from 33 silos in 2019 and 32 
samples from 18 silos in 2020. The sampling protocol 
is based on Decruyenaere et al. (2006) and consisted of 
taking five grass silage samples on the front of the silo 
following a straight line from the top left to the bottom 
right, with the aim of covering as much variability as 
possible. A core drill was used to extract samples from 
inside the silo. Per silo, five subsamples were gathered 
and homogenized. 

2.2. Instrumentation

Three portable systems were used in this study, 
namely the ASD FieldSpec 4 (Malvern Panalytical), 
the MicroNIR 1700 (Viavi) and the FlameNIR (Ocean 
Insight) spectrometers. 

The Malvern Panalytical’s ASD FieldSpec 4 
instrument covers the visible NIR (VNIR) and the 
short-wave infrared (SWIR) ranges (350 – 2,500 nm), 
with a spectral resolution of 3 nm in the VNIR and 
8 nm in the SWIR range. The main advantage of 
this system is its large wavelength range. The device 
contains an ASD Contact Probe designed for contact 
measurements of solid raw materials, such as silages. 
The sample area measured at approximately 1 cm2 per 
acquisition point (Malvern, 2022).

Viavi’s MicroNIR 1700 is a lightweight near infrared 
spectrometer that includes Viavi’s high-precision 

optical coating technology and miniaturization. It 
combines linear variable filter (LVF) technology, 
dispersing element and uncooled InGaAs detector, 
together with a light source, collection optics and 
electronics. The spectrometer works in the range 
908 – 1,676 nm with a spectral resolution of about 
6 nm. The measurements are performed in diffuse 
reflectance mode, in contact to the sample. The sample 
area measured is approximately 1 cm2 per acquisition 
point (Viavi, 2022).

The Ocean Insight’s FlameNIR spectrometer is a 
combination of the compact flame optical bench and an 
uncooled InGaAs detector, it is a versatile instrument 
for shortwave NIR spectroscopy from 939 –1,666 nm 
with a spectral resolution of approximately 6 nm. 
The measurements are performed in contact with the 
sample. The sample area measured is approximately 
1 cm2 per acquisition point (Ocean Insight, 2022).

Moreover, a benchtop spectrometer, namely the 
XDS (FOSS analytics), was used as reference to verify 
the performance of the different handheld systems. 
This instrument operates in reflection mode in the 400 – 
2,498 nm range, with a spectral resolution of 2 nm and 
it averages 10 spectra collected at different locations 
in a sample cup (rotating sampling device) during 
analysis. Spectra were collected using the ISIscan 
Nova software across the original wavelength range. 
Each spectrum was the average of 32 scans performed 
on the sample and it was acquired in 66 s. The sample 
area measured was about 2 cm2 per acquisition point. 
The number of measurements points increased with the 
length of the cup (Foss, 2022).

Figure 1 shows a typical spectrum of forage and 
the different wavelength ranges of the instruments 
used in this study.

2.3. NIRS measurement protocol and reference 
databases

Samples were measured in fresh, undried and 
unground states, with the three handheld spectrometers 
(MicroNIR, FlameNIR and FieldSpec 4). Twenty 
scans were acquired per sample according to two 
measurement protocols. In 2018, the protocol 
consisted of measuring each sample in four different 
locations, with five replications at each location. 
However, in 2019 and 2020, the protocol consisted 
of measuring each sample in 20 different places with 
only one replication. Fresh samples were also analyzed 
with a benchtop spectrometer (XDS). In this case, the 
protocol consisted of measuring five large rectangular 
cups per sample. 

Samples were then oven dried (48 h, 60 °C) for 
determining DM (expressed in terms of percentage of 
fresh material). This value was used as reference value 
for grass silage DM. Then the samples were ground 
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before NIRS analyses with the benchtop spectrometer. 
For all the datasets, values obtained by prediction 
with the XDS, using equations with historical data, 
on dried and ground samples in quarter cups were 
used as references values for the handheld spectra. 
Predicted parameters are CP, CEL, ash, NDF and 
ADF (according to Van Soest fractions) (Van Soest & 
Sniffen, 1984) constituents, all of them expressed in 
percentage of DM). Table 1 shows the performance of 
those equations used as reference.

As not all of the 181 samples were measured on all the 
devices, a set of 19 validation samples, common for all 
the instruments, was also obtained from the same period 
and coming from different silos as in the calibration sets. 

2.4. Data treatment and chemometric tools

Analyses were conducted using the Matlab R2007b 
(The Mathworks Inc., Natick, MA, USA) and the PLS 

Figure 1. Spectral ranges for the different instruments used in this study — Gammes spectrales pour les différents instruments 
utilisés dans cette étude.
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Table 1. Features of the NIR equations built for grass silage by XDS — Caractéristiques des équations de prédiction NIR 
pour l’ensilage d’herbe par XDS.
 CP (%) CEL (%) Ash (%) NDF (%) ADF (%)
Min 3.3 14.8 2.7 25.9 14
Max 26 40.6 18.7 73.4 45
Mean 14.7 27.7 10.7 49.7 29.5
STD 3.8 4.3 2.7 7.9 5.2
N 2 374 2 140 2 243 897 740
SECV 0.87 1.5 1.34 1.83 1.4
R2CV 0.95 0.88 0.75 0.95 0.93
CP: crude protein — protéines brutes; CEL: crude fiber — fibres brutes; Ash: total ash — cendres totales; NDF: neutral detergent 
fiber — fibres à détergent neutre; ADF: acid detergent fiber — fibres à détergent acide; All parameters are expressed in percentage 
of dry matter — tous les paramètres sont exprimés en pourcentage de matière sèche; Min: minimum — minimum; Max: 
maximum — maximum; STD: standard deviation — écart-type; N: number of samples — nombre d’échantillons; SECV: standard error 
in cross-validation — erreur standard en validation croisée; R2CV: coefficient of determination in cross-validation — coefficient de 
détermination en validation croisée.
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toolbox 7.0.2. (Wise et al., 2006). The spectra from 
XDS and FieldSpec 4 were first trimmed from 900 to 
2,500 nm. The VNIR range up to 900 nm was removed. 
The spectra acquired with the four devices were pre-
processed by SNV and 1st derivative Savitzky-Golay 
(window: 5, polynomial: 2). 

Chemometric tools comprised the building of 
calibration models using the conventional Partial 
Least Squares (global PLS) regression as well as the 
use of a local based PLS algorithm (Allegrini et al., 
2016; Minet et al., 2019), the local partial least square 
regression on global PLS scores (LPLS-S) (Shen et al., 
2019). LPLS-S is based on the principle of replacing 
the original spectra with a global PLS score matrix. In 
this local based method, for each new spectrum to be 
predicted, a number of nearest neighbors are selected in 
the calibration set by calculating the lowest Euclidean 
distances between the scores of each unknown sample 
and those of the available database. After the neighbors 
have been defined, a calibration model is performed 
by PLS regression only on those spectra. As explained 
by Shen et al. (2019), as local based algorithms need 
to establish an analysis model for each sample to be 
predicted, the idea of replacing the spectra by the 
global PLS scores is done with the aim of increasing 
the speed of the calculations, which can be an important 
parameter for on-line applications, especially when 
implemented on large databases. 

2.5. Statistical analyses

One way to evaluate performance is to compare the 
PLS prediction results for each device with the error 
obtained when working in the classical way based on dry 
and ground samples. The standard error of calibration 
(SECV) obtained for the dry samples measured with 

the XDS device gives us an idea of the performances 
obtained until now for grass silage. However, it 
should be noted that it is not relevant to evaluate the 
performance of devices via the standard errors of the 
NIRS equations calibration because the data sets are 
not the same between each device. It is therefore better 
to evaluate these models on the basis of the validation 
set, namely the standard error of prediction (SEP). 

In order to take into account the difference with 
the SECV and the standard error of laboratory (SEL), 
a difference must be established between the error 
predicted by the model (SEPobserved) and the real 
prediction error (SEPactual). This SEPactual is estimated 
for each device using the following equation (Faber & 
Kowalski, 1996):

SEP2
actual = SEP2

observed – (SECV2
dry – SEL2)  (eq. 1)

where SEPobserved: Standard Error of Prediction 
(estimated on the validation set, on fresh samples); 
SEPactual: real SEP according to eq.1; SECV: Standard 
Error of Cross-Validation (estimated on the calibration 
set, on dry and ground samples) and SEL: Standard 
Error of Laboratory (reference analysis).

3. RESULTS

3.1. Sample variability

As indicated at the 2.3 section, two different protocols 
were used for the 2018 and the 2019/2020 periods. This 
was done in order to better take into account the sample 
variability against the instrument variability. That was 
demonstrated by performing a Principal Component 
Analysis (PCA) on the spectra (Figure 2), which 

Figure 2. Variability for 20 spectra acquired with the 1st protocol used in 2018 (a) and the 2nd protocol used in 2019 and 2020 
(b) — Variabilité pour 20 spectres acquis avec le 1er protocole utilisé en 2018 (a) et le 2e protocole utilisé en 2019 et 2020 (b).
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shows four different clusters of five points when using 
the 1st protocol and no cluster at all when using the 2nd 
protocol. 

3.2. Descriptive statistics

The spectral databases used to build the models 
(Table 2) differ slightly as not all samples were 
measured on all handheld devices. However, these 
databases are similar in terms of their size and the 
characteristics of their parameters in terms of mean 
and standard deviation. However, for the validation, 
the same dataset is used for all devices (Table 3).

3.3. Performances of handheld spectrometers 

Figure 3 shows, for the four devices, the performance 
results in terms of SEPobserved for all parameters predicted 
using PLS and local PLS models. 

Table 4 shows the SEL, the SECV obtained on 
ground and dry samples, as well as the SEPobserved and 
the SEPactual values (calculated using eq. 1) obtained 
on fresh samples for each parameter and for each 
instrument, using local PLS.

To better understand the errors obtained based on 
the type of instrument and the data processing technique 
(PLS and local PLS) used, two ratios have been 
calculated. The first ratio is built, for each instrument, 
between the NIR error on fresh forage (SEPactual) and 
the reference method error (SEL) and the second ratio 
is constructed between the NIR error on fresh forage 
(SEPactual) and the NIR error on dry and ground forage 
(XDS SECV dry). Table 5 shows the results in terms 
of both ratios.

4. DISCUSSION

In general and as observed in figure 2, for all tested 
parameters, the best SEPobserved values were obtained 
for local PLS models. As expected, the XDS had the 
best prediction of chemical composition of forages. 
However, for some cases, even better results were 
obtained with some of the handheld devices. 

For the PLS calibrations (Figure 2a), it was 
observed that some handheld devices had a lower 
prediction error or equivalent to the benchtop device 
(XDS) for dry matter (DM), crude protein (CP), 

Table 2. Calibration sets according to the instrument used — Sets de calibration selon l’instrument utilisé.
 DM (%) CP (%) CEL (%) Ash (%) NDF (%) ADF (%)
XDS

Min
Max
Mean
STD
N

27.0
88.2
48.4
12.7

139

10.6
22.5
16.8
2.6

141

19.5
34.3
26.7
2.7

141

7.7
16.8
11.4
1.7

141

33.5
64.6
48.0
6.3

141

20.1
39.7
29.6
3.2

141
MicroNIR

Min
Max
Mean
STD
N

20.5
78.8
47.3
12.8

149

11.1
22.5
16.5
2.9

150

20.3
37.8
27.5
3.2

150

7.0
16.8
11.2
1.8

150

36.3
74.6
49.3
7.2

150

21.9
44.1
30.5
3.7

150
FlameNIR

Min
Max
Mean
STD
N

21.5
77.3
44.2
12.9

115

11.2
22.5
16.8
3.0

113

20.7
37.8
27.2
2.8

113

7.0
16.8
11.4
1.5

113

36.3
74.6
48.7
6.9

113

21.9
44.1
29.9
3.6

113

FieldSpec 4
Min
Max
Mean
STD
N

24.0
88.9
50.0
13.4

150

10.6
22.3
16.3
2.6

151

19.5
36.2
28.0
3.2

151

7.0
16.8
10.8
1.8

151

33.5
64.6
49.8
6.5

151

20.1
41.7
31.0
3.9

151

DM: Dry Matter (oven 48 h 60 °C) — matière sèche (au four 48 h à 60 °C); DM is expressed in percentage of fresh material — la 
matière sèche est exprimée en pourcentage de la matière fraîche; All parameters predicted by NIRS are expressed in percentage of the 
dry matter — tous les paramètres prédits par le NIRS sont exprimés en pourcentage de la matière sèche; CP (NIRS), CEL(NIRS), Ash 
(NIRS), NDF (NIRS), ADF(NIRS), Min, Max, Standard deviation, N: see table 1 — voir tableau 1.



Handheld NIR spectrometers for grass silage quality 315

Table 3. Validation set for all instruments used — Ensemble de validation pour tous les instruments utilisés. 
 DM (%) CP (%) CEL (%) Ash (%) NDF (%) ADF (%)
Min 28.1 13.1 21.6 7.5 41.3 23.9
Max 78.6 20.9 27.9 16.8 52.5 30.1
Mean 44.3 16.9 25.2 11.0 46.9 27.6
STD 12.6 1.6 1.8 1.9 3.6 1.7
N 19 19 19 19 19 19
DM: Dry Matter (oven 48 h 60 °C) — matière sèche (au four 48 h à 60 °C); DM is expressed in percentage of fresh material — la 
matière sèche est exprimée en pourcentage de la matière fraîche; All parameters predicted by NIRS are expressed in percentage of the 
dry matter — tous les paramètres prédits par le NIRS sont exprimés en pourcentage de la matière sèche; CP (NIRS), CEL(NIRS), Ash 
(NIRS), NDF (NIRS), ADF(NIRS), Min, Max, Standard deviation, N: see table 1 — voir tableau 1.

Figure 3. Results in terms of Standard Error of Prediction SEPobserved for (a) PLS and (b) local PLS — Résultats en termes 
d’erreur standard de prédiction SEPobserved  pour (a) PLS et (b) PLS locale.

DM: dry matter — matière sèche; CP, CEL, Ash, NDF, ADF: see table 1 — voir tableau 1.
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Table 4. Results in terms of Standard Error of Prediction SEPobserved and SEPactual for each instrument and for each parameter, 
using local PLS — Résultats en termes d’erreur standard de prédiction SEPobserved et SEPactual pour chaque instrument et pour 
chaque paramètre, en utilisant la PLS locale.

 — exprimé en % de MS.
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total ash (Ash) and acid detergent fiber (ADF). The 
FlameNIR has a lower SEPobserved (1.66% vs 1.89%) 
for ash and equivalent to the benchtop instrument for 
the DM parameter (3.03%). The FieldSpec 4 also has a 
lower SEPobserved than the XDS for ash (1.74% vs 1.89%) 
and crude protein (1.38% vs 1.45%). The MicroNIR on 
the other hand has a lower SEPobserved than the XDS for 
the ADF parameter (1.95% vs 2.07%). 

For the local PLS models (Figure 2b), for DM, 
the SEPobserved value of MicroNIR (2.14%) appeared 
lower than XDS (2.66%). CP content was well 
predicted by all handheld spectrometers (SEPobserved 
values < 2%), with the FieldSpec 4 showing the best 
performance (1.16%) compared to the other systems 
(1.83% for MicroNIR and 1.65% for FlameNIR) and 
close to the XDS value (0.92%). In the case of CEL, 
the FlameNIR presented the best performance (1.51%). 
In the case of ash content, both FieldSpec 4 (1.29%) 
and FlameNIR (1.67%) showed similar or better results 
than XDS (1.4%). It appeared difficult to predict 
NDF fraction with a good accuracy with handheld 
spectrometers, being the FieldSpec 4 the one showing 
a lower performance (3.18%) but still far from the XDS 
(2.16%). In the case of ADF, the best performance is 
obtained with MicroNIR (1.95%) but lower than the 
one obtained with XDS (1.16%).

As observed in table 4, the SEPactual are lower than 
the SEPobserved. For the benchtop XDS device, those 
values are higher than the SEL values but lower than 
the SECV values on dry samples. For most of the 
parameters, those values are also lower than the ones 
obtained with the handheld instruments. For the latter 
devices, the lower SEPactual is obtained for DM and ADF 
using the MicroNIR, CEL and ash using the FlameNIR, 

and CP and NDF using the FieldSpec 4. The higher 
SEPactual calculated for protein using FlameNIR and 
MicroNIR can be explained by the wavelength range 
limited to 1,650 nm, without the protein bands around 
2,100 nm.

It can be observed that the models using local PLS 
(Table 5) allow to reduce the errors on fresh forage and 
that these errors are at the same level as the NIR error 
on dry and ground samples. Based on the XDS models, 
this error is even two times lower with a ratio from 0.2 
to 0.7 depending on the parameter. In comparison to 
the SEL, the SEPactual error is 0.7 to 3.3 times higher 
using the XDS. For the handheld instruments, this 
error is around two times higher for DM and CEL and 
more than five times higher for the other parameters 
except for CP using the FieldSpec 4 device. 

As expected, in general, performances are lower 
when working with fresh and unground samples 
compared to classical analysis (dry and ground samples 
and benchtop spectrometer). However, in the current 
state of this research, these handheld devices allow 
the dairy farmer to obtain an adequate quantitative 
prediction of the dry matter, CEL and ashes in order to 
directly adapt the quantity of forage distributed to the 
animals. CP content was well predicted by all handheld 
spectrometers. Higher errors were obtained for NDF 
and ADF in comparison to the reference method. 

Two major difficulties were encountered in this 
type of on-farm analysis. The first concerns the 
heterogeneity of the samples. It is therefore essential 
to set up a correct measurement protocol that allows 
sufficient representativeness of the sample; this has 
been done by multiplying the number of measurements 
to 20, which means that an area of more or less 20 cm2 

Table 5. Results in terms of ratios between the NIR error on fresh forage (Standard Error of Prediction SEPactual) and the 
reference method error (standard error of laboratory SEL) or the NIR error on dry and ground forage, for each instrument 
and for each parameter using PLS or local PLS — Résultats en termes de ratios entre l’erreur NIR sur fourrage frais (erreur 
standard de prédiction SEPactual) et l’erreur de la méthode de référence (erreur standard du laboratoire SEL) ou l’erreur NIR 
sur fourrage sec et broyé, pour chaque instrument et pour chaque paramètre en utilisant PLS ou PLS locale.
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is measured for each sample. The second difficulty 
concerns the high water content of the “fresh” samples 
that has the effect of inducing a high prediction error 
for all the parameters other than the dry matter. This is 
because the water strongly absorbs the near infrared 
radiation and then the other chemical constituents of 
the fodder are masked. This effect has been already 
highlighted in several studies dealing with feed and 
food products (Reeves, 1994; Büning-Pfaue, 2003; 
Giordanengo et al., 2008; Zhang et al., 2018; Evangelista 
et al., 2021; Mallet et al., 2021). A qualitative approach 
is under development for these parameters. Moreover, 
these performances can be probably improved by 
including more samples/spectra into the databases 
and by applying new validation sets covering a large 
majority of the variation present in the calibration sets 
for these parameters, which is not the case in the present 
study (Au et al., 2020; Ng et al., 2020).  

5. CONCLUSIONS

Thanks to technological developments, there is now a 
new range of handheld analyzers that offer interesting 
potential for direct use on the farm, either by the breeder 
or by his advisers. One of the objectives of this study 
was to validate these rapid analysis devices making 
it possible to determine the dry matter and chemical 
composition of forages in order to better assess their 
nutritional value. The advantages of such an approach 
are from one side to drastically reduce the response 
time during the analysis and from the other side to 
allow a better adaptation of the diets by the breeder by 
performing forages analysis on a more regular basis. 
This study consisted of evaluating three handhelds near 
infrared spectrometers for the analysis of grass silages. 
In order to assess the quality of forage on a regular basis, 
setting up a complete sampling plan is essential. The 
sampling step is probably the most important source 
of errors when estimating the value of a forage. In a 
perspective future work, an interesting alternative could 
be the use of fusion data methods in order to combine 
spectra from all the available instruments and study the 
advantages of transferring historical datasets from the 
classical NIR instrument to the handheld devices. 
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