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Watershed	management	and	hydrological	modeling	require	data	related	to	the	very	important	matter	of	precipitation,	often	
measured	 using	 rain	 gauges	 or	weather	 stations.	Hydrological	models	 often	 require	 a	 preliminary	 spatial	 interpolation	 as	
part	of	the	modeling	process.	The	success	of	spatial	interpolation	varies	according	to	the	type	of	model	chosen,	its	mode	of	
geographical	management	and	the	resolution	used.	The	quality	of	a	result	is	determined	by	the	quality	of	the	continuous	spatial	
rainfall,	which	ensues	from	the	interpolation	method	used.	The	objective	of	this	article	is	to	review	the	existing	methods	for	
interpolation	of	rainfall	data	that	are	usually	required	in	hydrological	modeling.	We	review	the	basis	for	the	application	of	
certain	common	methods	and	geostatistical	approaches	used	in	interpolation	of	rainfall.	Previous	studies	have	highlighted	the	
need	for	new	research	to	investigate	ways	of	improving	the	quality	of	rainfall	data	and	ultimately,	the	quality	of	hydrological	
modeling.
Keywords.	Rain,	spatial	distribution,	geostatistics,	kriging,	Thiessen	polygon,	Inverse	Distance	Weighting	(IDW),	computer	
applications,	simulation	models,	hydrology.

Méthodes de spatialisation de données pluviométriques dédiées à l’hydrologie opérationnelle et à la modélisation 
hydrologique à l’échelle du bassin versant (synthèse bibliographique). La	gestion	hydrologique	des	bassins	versants	et	la	
modélisation	hydrologique	exigent	des	données	relatives	aux	précipitations,	variable	très	importante,	le	plus	souvent	mesurée	
par	 des	 pluviomètres	 ou	 des	 stations	météorologiques.	 Les	modèles	 hydrologiques	 demandent	 souvent	 une	 spatialisation	
préalable	à	la	modélisation,	la	spatialisation	est	dépendante	du	type	de	modèle	et	de	son	mode	de	gestion	géographique	et	de	la	
résolution	utilisée.	La	qualité	d’un	résultat	est	conditionnée	à	la	qualité	de	la	pluie	spatiale	continue	qui	découle	de	la	méthode	
d’interpolation	utilisée.	L’objectif	de	cet	article	est	de	fournir	une	revue	sur	les	méthodes	de	spatialisation	de	la	pluie	existantes	
qui	sont	habituellement	exigées	par	la	modélisation	hydrologique.	Nous	passons	en	revue	les	méthodes	de	base	généralement	
utilisées	et	des	approches	géostatistiques.	Les	études	précédentes	mettent	en	lumière	un	besoin	de	nouvelle	recherche	sur	les	
moyens	nécessaires	pour	améliorer	la	donnée	de	pluie	et	in fine,	la	qualité	de	la	modélisation	hydrologique.
Mots-clés.	 Pluie,	 distribution	 spatiale,	 géostatistique,	 krigeage,	 polygone	 de	 Thiessen,	 distance	 inverse,	 application	 des	
ordinateurs,	modèle	de	simulation,	hydrologie.

1. INTRODUCTION

Computer	hydrological	models	that	simulate	most	of	the	
hydrological	cycle	are	an	essential	tool	for	hydrologists	
and	 engineers	 in	 understanding	 and	 describing	 the	
hydrological	system.	When	these	models	are	successful	
in	 attaining	 accurate	 results,	 they	 can	 forecast	 what	
will	occur	within	the	hydrological	system.	This	can	be	

useful	for	climate	studies	(e.g.	in	terms	of	precipitation	
or	evaporation),	optimized	water	management	and	land	
use	 changes:	 so-called	 scenario	 analysis.	 In	 the	 last	
30	years,	not	only	the	number	but	also	the	complexity	
of	 hydrological	 computer	 models	 have	 increased	
enormously,	due	 to	 the	availability	of	more	powerful	
computers	and	Geographic	Information	Systems	(GIS)	
(Singh,	1995).	Watershed	models	can	be	categorized	as	
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physically-based	or	conceptual,	according	to	the	degree	
of	 complexity	 and	 physical	 completeness	 present	 in	
the	formulation	of	the	structure	(Refsgaard,	1996).	In	
addition,	 hydrological	models	 are	 classified	 as	 either	
“lumped”	or	“distributed”,	depending	on	the	degree	of	
discretization	when	describing	the	terrain	in	the	basin.	
The	 physically-based	 models	 describe	 the	 natural	
system	 using	 the	 basic	 mathematical	 representations	
of	the	flow	of	mass,	momentum	and	various	forms	of	
energy	at	local	scale	(Refsgaard,	1996).	These	models	
are	therefore	also	described	as	“distributed”	and	they	
can	 explicitly	 account	 for	 spatial	 variability	 within	
a	 watershed.	 Physically-based	 distributed	 models	
are	generally	believed	 to	be	preferable	 to	 conceptual	
models	because	they	better	represent	a	certain	reality	
of	the	hydrological	cycle	(Ruelland	et	al.,	2008).

Fully	 distributed	 and	 physically-based	 models	
always	require	as	inputs	the	main	spatially	distributed	
dataset	 for	 the	Digital	Elevation	Model	 (DEM),	 land	
use	and	its	management,	soil,	and	climate.	The	quality	
of	 these	 inputs	has	a	significant	 impact	on	the	model	
formulation	process	and	on	the	results.	Climatic	data,	
air	 temperature,	 solar	 radiation,	 and	 precipitation	 all	
provide	essential	controls	on	surface	energy	balance	and	
ecosystem	processes.	Among	 these	 climatic	data,	 the	
amount	 of	 precipitation,	 traditionally	 collected	 using	
rain	 gauges	 or	 weather	 stations,	 is	 a	 very	 important	
parameter,	 which	 has	 a	 direct	 impact	 on	 runoff	 or	
watershed	discharge	 (Obled	et	al.,	1994).	For	a	 large	
watershed	scale,	the	spatial	variability	of	rainfall	needs	
to	be	taken	into	account	instead	of	using	areal	average	
rainfall	 as	 the	 input	 for	 the	model.	 In	 this	 context,	 it	
is	necessary	to	gain	insight	into	the	day-to-day	spatial	
variability	of	watershed	discharge,	groundwater	 level	
and	soil	moisture	content	(Schuurmans	et	al.,	2007a).	
In	 order	 to	 gain	 insight	 into	 the	 general	 behavior	 of	
the	hydrological	system,	it	is	sufficient	to	use	accurate	
predictions	of	areal	average	rainfall	over	the	watershed.

The	 spatial	 variability	 of	 rainfall	 represents	 the	
dominant	 effect	 in	 the	 production	 of	 runoff;	 as	 the	
spatial	 variability	 increases,	 so	 does	 the	 significance	
of	 appropriate	 rainfall	 characterization	 (Segond	
et	 al.,	 2007).	 Averaging	 of	 the	 rainfall	 input	 limits	
the	 accuracy	 of	 the	 model’s	 results.	 Under	 such	
circumstances,	catchment	response	is	highly	nonlinear,	
which	means	that	the	response	to	an	averaged	input	will	
differ	much	more	 from	 the	 response	 to	 a	 distributed	
input	 (Shah	et	 al.,	1996b).	When	a	 single	 rain	gauge	
is	 used	 to	model	 the	 catchment	 response,	 the	 results	
become	 less	 accurate	 at	 both	 the	 sub-catchment	 and	
catchment	scales	and	this	also	affects	the	reproduction	
of	the	hydrograph	(Segond	et	al.,	2007).	When	spatial	
homogeneity	 of	 rainfall	 is	 assumed	 to	 be	 used	 in	 a	
hydrological	model,	rainfall	variability	causes	certain	
effects	 to	 occur.	 Spatial	 variability	 in	 rainfall	 affects	
the	catchment	response	(Shah	et	al.,	1996a;	Shah	et	al.,	

1996b),	 the	 timing	of	peak	 runoff	 (Singh,	 1997),	 the	
estimation	of	model	parameters	(Chaubey	et	al.,	1999)	
and	the	hydrological	model	outputs	(Bell	et	al.,	2000;	
Segond	et	al.,	2007).

The	distributed	model	has	been	shown	to	be	sensitive	
to	the	locations	of	the	rain	gauges	within	the	catchment	
and	hence	to	the	spatial	variability	of	the	rainfall	over	
the	 catchment	 (Bell	 et	 al.,	 2000).	Failing	 to	 consider	
adequately	 the	 spatial	 variability	of	 rainfall	will	 lead	
to	errors	in	the	values	of	the	model	parameters,	which	
will	be	wrongly	adjusted	 to	compensate	 for	errors	 in	
the	rainfall	input	data	(Schuurmans	et	al.,	2007a).	This	
is	problematic	since	the	required	density	of	rain	gauges	
to	capture	the	spatial	variability	exceeds	that	normally	
available	 from	 routine	monitoring	 networks	 (Segond	
et	 al.,	 2007).	 Furthermore,	 rain	 gauge	 density	 over	
the	 forecast	 catchments	 is	one	of	 the	main	 factors	 in	
attaining	forecast	accuracy	during	an	extreme	event	that	
results	in	significant	flooding	in	a	major	metropolitan	
area	(Looper	et	al.,	2011).	Therefore,	the	precipitation	
input,	as	with	other	climatic	data,	should	be	prepared	
as	 spatially	 distributed	 data	 before	 being	 forced	 into	
the	 hydrological	 modeling.	 However,	 measuring	 at	
every	point	where	data	are	needed	is	prohibited	by	the	
associated	high	costs.

Spatially	 distributed	 rainfall	 can	 be	 interpolated	
by	 a	 range	 of	 different	 methods	 but	 the	 complexity	
lies	in	choosing	the	one	that	best	reproduces	the	most	
accurate	 data	 (Caruso	 et	 al.,	 1998).	One	 approach	 is	
to	 measure	 associated	 ancillary	 data,	 which	 have	
been	available	 since	 the	 late	1960s	via	 ground-based	
meteorological	 radars	and	by	 remote	sensing	devices	
located	 on	 satellite	 platforms.	 The	 accuracy	 and	
consistency	of	these	indirect	processes	for	hydrological	
purposes	still	remain	to	be	determined.	Techniques	for	
interpolating	rainfall	must	be	calibrated	and	validated	
by	 means	 of	 historical	 information	 (Lanza	 et	 al.,	
2001).	From	2000s	onwards,	standard	range-corrected	
radar	 products	 proved	 to	 be	 sufficiently	 informative	
to	 capture	 the	 spatial	 variability	 of	 rainfall	 to	 be	
used	 in	hydrological	applications	(Schuurmans	et	al.,	
2007a).	 In	 particular,	 the	 use	 of	 radar	 products	 in	
combination	with	multivariate	 geostatistical	methods	
proved	 to	be	beneficial	 for	 spatial	 rainfall	 estimation	
(Velasco-Forero	et	al.,	2009;	Schiemann	et	al.,	2011;	
Verworn	 et	 al.,	 2011).	 However	 for	 regions	 without	
these	 sophisticated	 instruments,	 direct	 ground-based	
measurement	 deserves	 to	 be	 considered	 for	 spatial	
interpolation	processes.

The	 major	 problem,	 prior	 to	 the	 choice	 of	 the	
most	 suitable	 interpolation	 method,	 is	 related	 to	 the	
availability	 of	 rainfall	 data.	 Sometimes,	 data	 are	
continuously	 recorded	 but	 the	 rain	 gauges	 are	 too	
scattered.	 This	 is	 particularly	 true	 in	 mountainous	
areas,	where	amounts	of	precipitation	are	more	difficult	
to	 forecast	 due	 to	 complex	 topography,	 distance	 to	
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the	 sea	 and	 the	 presence	 of	 large	water	 bodies	 such	
as	 lakes	(Johnson	et	al.,	1995;	Buytaert	et	al.,	2006).	
Within	a	complex	topography,	the	spatial	scale	features	
of	 rainfall	 are	 characteristically	 difficult	 to	 capture	
even	by	means	of	a	moderately	dense	network	of	rain	
gauges.	 Topography	 impacts	 rainfall	 pattern	 through	
so-called	 orographic	 effects,	 which	 refer	 to	 the	 rise	
in	precipitation	 rates	 induced	 through	altitude	due	 to	
uplift,	adiabatic	cooling	and	resulting	condensation	of	
humid	air	masses	on	windward	mountainsides	(Chow	
et	al.,	1988).	Observation	of	these	orographic	effects	and	
weather	 patterns	 has	 prompted	ongoing	 investigation	
into	whether	 precipitation,	 in	 general,	 increases	with	
altitude	(Groisman	et	al.,	1994;	Sevruk,	1997;	Sinclair	
et	al.,	1997).	These	authors	found	that	the	relationship	
between	precipitation	 and	 elevation	depended	on	 the	
region’s	 exposure	 to	 wind	 and	 synoptic	 conditions.	
Depending	 on	 the	 predominant	 wind	 direction,	 rain	
shadows	may	appear	when	more	rainfall	occurs	at	or	
near	the	mountain	peak	and	much	less	rainfall	occurs	
at	lower	altitudes	(Sinclair	et	al.,	1997).	Even	in	flatter	
areas,	 rain	gauges	need	 to	be	 correctly	distributed	 in	
order	to	detect	air	flow	influences,	thermal	inversions	
and	other	phenomena	that	could	affect	climatic	patterns.	
This	 difficulty	 of	 accurately	 reproducing	 continuous	
spatial	rainfall	has	led	to	notable	failures	in	the	resulting	
hydrological	 response	models,	which	are	 sensitive	 to	
input	 volume	 at	 the	watershed	 scale	 (Nicotina	 et	 al.,	
2008).	At	a	smaller	scale,	rainfall	variability	also	has	a	
greater	impact	on	peak	flows	(Mandapaka	et	al.,	2009).	
As	the	scale	increases,	the	importance	of	spatial	rainfall	
decreases	and	distribution	of	catchment	response	time,	
rather	than	spatial	variability	of	rainfall,	becomes	the	
dominant	factor	governing	runoff	generation	(Segond	
et	al.,	2007).

The	objective	of	this	paper	is	to	provide	a	review	of	
existing	spatial	interpolation	methods	of	rainfall,	which	
are	required	for	hydrological	modeling.	We	review	the	
basis	for	the	application	of	some	commonly	used	spatial	
interpolation	 methods	 and	 geostatistical	 approaches	
and	provide	an	overview	of	 the	characteristics	of	 the	
methods.

2. SPATIAL INTERPOLATION METHODS FOR 
CALCULATING RAINFALL

A	 number	 of	 interpolation	 techniques	 have	 been	
described	 in	 the	 literature,	 which	 reproduce	 the	
spatial	 continuity	 of	 rainfall	 fields	 based	 on	 rain	
gauge	measurement.	These	methods	can	be	generally	
classified	 into	 two	 main	 groups:	 deterministic	
methods	and	geostatistical	methods.	Some	commonly	
used	 methods	 are	 briefly	 introduced	 here.	 Spatial	
interpolation	 is	 generally	 carried	 out	 by	 estimating	
a	 regionalized	 value	 at	 unsampled	 points	 based	 on	 a	

weight	 of	 observed	 regionalized	 values.	 The	 general	
formula	for	spatial	interpolation	is	as	follows:

where	 Zg	 is	 the	 interpolated	 value	 at	 the	 required	
points,	Zsi	is	the	observed	value	at	point	i,	ns	is	the	total	
number	of	observed	points	 and	λ	=	(λi)	 is	 the	weight	
contributing	to	the	interpolation.

The	 problem	 lies	 in	 calculating	 the	 weights,	 λ,	
which	will	be	used	in	the	interpolation.	The	different	
methods	for	computing	the	weights	will	be	presented	
in	the	following	sections.

2.1. Deterministic interpolation methods

Regarding	 the	 first	 group	 of	 spatial	 interpolation	
methods	 for	 measuring	 rainfall,	 the	 most	 frequently	
used	deterministic	methods	are	 the	Thiessen	polygon	
(THI)	and	Inverse	Distance	Weighting	(IDW),	which	
are	based	on	the	location	of	the	measured	stations	and	
on	measured	values.	In	a	general	way,	the	forecast	of	
the	regionalized	value	takes	into	account	the	weighted	
average	of	the	observed	regionalized	values.	
–	 The	simplest	and	most	common	spatial	interpolation	
	 method,	particularly	in	relatively	flat	zones,	is	to	use	
	 the	 simple	 average	 of	 the	 number	 of	 stations.	
	 However,	use	of	this	method	has	decreased	because	
	 it	does	not	provide	representative	measurements	of	
	 rainfall	in	most	cases	(Chow,	1964).
–	 The	Thiessen	polygon	 (THI)	method	 assumes	 that	
	 the	estimated	values	can	take	on	the	observed	values	
	 of	 the	 closest	 station.	 The	 THI	 method	 is	 also	
	 known	as	the	nearest	neighbor	(NN)	method	(Nalder	
	 et	al.,	1998).	The	method	requires	the	construction	
	 of	 a	 Thiessen	 polygon	 network.	 These	 polygons	
	 are	formed	by	the	mediators	of	segments	joining	the	
	 nearby	stations	to	other	related	stations.	The	surface	
	 of	each	polygon	is	determined	and	used	to	balance	the	
	 rain	 quantity	 of	 the	 station	 at	 the	 center	 of	 the	
	 polygon.	The	polygon	must	be	changed	every	time	
	 a	station	is	added	or	deleted	from	the	network	(Chow,	
	 1964).	 The	 deletion	 of	 a	 station	 is	 referred	 to	 as	
	 “missing	 rainfall”.	 This	 method,	 although	 more	
	 popular	 than	 taking	 the	 simple	 average	 of	 the	
	 number	of	stations,	is	not	suitable	for	mountainous	
	 regions,	because	of	the	orographic	influence	of	the	
	 rain	(Goovaerts,	1999).
–	 The	 Inverse	 Distance	 Weighting	 (IDW)	 method	
	 is	based	on	the	functions	of	the	inverse	distances	in	
	 which	the	weights	are	defined	by	the	opposite	of	the	
	 distance	and	normalized	so	that	their	sum	equals	one.	
	 The	weights	decrease	as	the	distance	increases.	This	
	 method	is	more	complex	than	the	previous	methods,	

	 									ns
	 Zg	=	∑	λiZsi																																																										(1)
	 															

i=1
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	 since	 the	 power	 of	 the	 inverse	 distance	 function	
	 must	 be	 selected	 before	 the	 interpolation	 is	
	 performed.	A	 low	power	 leads	 to	 a	 greater	weight	
	 towards	a	grid	point	value	of	 rainfall	 from	remote	
	 rain	 gauges.	As	 the	 power	 tends	 toward	 zero,	 the	
	 interpolated	values	will	approximate	the	areal-mean	
	 method,	while	for	higher	levels	of	power,	the	method	
	 approximates	 the	 Thiessen	 method	 (Dirks	 et	 al.,	
	 1998).	 There	 is	 a	 possibility	 of	 including	 in	 this	
	 method	 elevation	 weighting	 along	 with	 distance	
	 weighting,	Inverse	Distance	and	Elevation	Weighting	
	 (IDEW).	 IDEW	provides	more	 suitable	 results	 for	
	 mountainous	regions	where	topographic	impacts	on	
	 precipitation	are	important	(Masih	et	al.,	2011).
–	 In	 the	 polynomial	 interpolation	 (PI)	 method,	 a	
	 global	equation	is	fitted	to	the	study	area	of	interest	
	 using	 either	 an	 algebraic	 or	 a	 trigonometric	
	 polynomial	function	(Tabios	et	al.,	1985).	In	order	to	
	 express	 the	 polynomial	 equation	 in	 the	 form	 of	
	 equation	 (1),	 the	 least	 squares	 and	 Lagrange	
	 approaches	 can	 be	 used.	 For	 more	 details	 on	 this	
	 method,	see	Tabios	et	al.	(1985).
–	 The	 spline	 interpolation	 method	 is	 based	 on	 a	
	 mathematical	 model	 for	 surface	 estimation	 that	
	 fits	a	minimum-curvature	surface	through	the	input	
	 points.	The	method	fits	a	mathematical	function	to	
	 a	specified	number	of	the	nearest	input	points,	while	
	 passing	 through	 the	sample	points.	This	method	 is	
	 not	 appropriate	 if	 there	 are	 large	 changes	 in	 the	
	 surface	 within	 a	 short	 distance,	 because	 it	 can	
	 overshoot	estimated	values	(Ruelland	et	al.,	2008).
–	 The	Moving	Window	Regression	(MWR)	method	is	
	 a	general	linear	regression,	which	is	conducted	only	
	 in	areas	where	a	relationship	between	the	primary	and	
	 secondary	variables	is	thought	to	exist	(Lloyd,	2005).	
	 For	example,	in	applying	the	MWR	method	to	rainfall,	
	 rainfall	represents	the	primary	variable	and	elevation	
	 the	 secondary	 variable.	 The	 rainfall	 estimation	 is	
	 based	 on	 the	 modeled	 relationship	 between	 the	
	 rainfall	and	elevation	data	closest	to	the	estimation	
	 location.

2.2. Geostatistical interpolation methods

The	 second	 group	 of	 spatial	 interpolation	 methods	
for	 measuring	 rainfall,	 geostatistical	 methods,	
constitutes	 a	 discipline	 connecting	 mathematics	 and	
earth	 sciences.	 Kriging	 is	 an	 example	 of	 a	 group	
of	 geostatistical	 techniques	 used	 to	 interpolate	 the	
value	of	a	random	field.	Matheron	(1971)	named	and	
formalized	this	method	in	honor	of	Daniel	G.	Krige,	a	
South	African	mining	engineer	who	pioneered	the	field	
of	geostatistics.	Kriging	is	based	on	statistical	models	
involving	 autocorrelation.	 Autocorrelation	 refers	 to	
the	 statistical	 relationships	between	measured	points.	
Not	only	do	geostatistical	methods	have	the	capability	

of	 producing	 a	 prediction	 surface,	 but	 they	 can	 also	
provide	some	measures	of	 the	certainty	and	accuracy	
of	the	predictions.	

In	 kriging,	 the	 value	 of	 the	 interest	 variable	 is	
estimated	for	a	particular	point	using	a	weighted	sum	of	
the	available	point	observations.	The	weights	of	the	data	
are	chosen	so	that	the	interpolation	is	unbiased	and	the	
variance	is	minimized.	In	general,	the	kriging	system	
must	 be	 Linear,	 Authorized,	 Unbiased	 and	 Optimal	
(LAUO).	Kriging	 is	 the	first	method	of	 interpolation	
to	 take	 into	 account	 the	 spatial	 dependence	 structure	
of	the	data.	There	are	several	types	of	kriging,	which	
differ	according	to	the	form	applied	to	the	mean	of	the	
interest	variable:	
–	 when	 it	 is	 assumed	 that	 the	mean	 is	 constant	 and	
	 known,	simple	kriging	(SK)	is	applied;	
–	 where	the	mean	is	constant	but	unknown,	ordinary	
	 kriging	(ORK)	is	applied;	
–	 finally,	 universal	 kriging	 (UNK)	 is	 applied	 where	
	 the	mean	is	assumed	to	show	a	polynomial	function	
	 of	 spatial	 coordinates.	 So,	 in	 contrast	 to	 the	 other	
	 two	types,	this	last	type	of	kriging	is	not	stationary	
	 with	regard	to	the	mean.	

Stationarity	 defines	 itself	 here	 by	 the	 constancy	
of	 the	mean,	but	also	by	the	covariance	between	two	
observations	that	depend	only	on	the	distance	between	
these	 observations.	All	 the	 different	 types	 of	 kriging	
apply	 the	 stationarity	 of	 the	 covariance,	 or,	 more	
generally,	 the	 semi-variogram.	 This	 function,	 which	
represents	 the	 spatial	 dependence	 structure	 of	 the	
data,	must	 be	 estimated	 and	modeled	 before	making	
the	 interpolation.	 First	 of	 all,	 the	 experimental	 semi-
variogram	can	be	calculated	as	being	half	the	squared	
difference	 between	 paired	 values	 to	 the	 distance	 by	
which	they	are	separated:

where	N(h)	is	the	number	of	pairs	of	data	locations	at	
distance	h	apart.

In	 practice,	 the	 average	 squared	 distance	 can	 be	
obtained	for	all	pairs	separated	by	a	range	of	distances	
and	 these	average	 squared	differences	can	be	plotted	
against	 the	average	 separation	distance.	A	 theoretical	
model	might	 then	be	fitted	 to	 the	experimental	semi-
variogram	(Figure 1)	and	the	coefficient	of	this	model	
(nugget	effect,	sill	and	range)	can	be	used	for	a	kriging	
equation	system.

The	kriging	method	encompasses	several	ways	of	
integrating	auxiliary	variables:
–	 if	the	mean	is	not	constant,	but	we	can	estimate	the	
	 mean	at	locations	in	the	domain	of	interest,	then	this	

^
																							N(h)
γ(h)	=				1									∑	(Zsi	-	Z(si	+	h))

2																					(2)
											2N(h)					i=1
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	 locally	varying	mean	can	be	used	to	inform	estimation	
	 using	SK;	this	is	referred	to	as	Simple	Kriging	with	
	 a	Locally	varying	mean	(SKL)	(Goovaerts,	2000);	
–	 Kriging	 with	 External	 Drift	 (KED)	 assumes	 that	
	 the	 mean	 of	 the	 interest	 variable	 depends	 on	
	 auxiliary	variables;	the	theory	behind	KED	is	in	fact	
	 the	 same	 as	 the	 theory	 behind	 universal	 kriging,	
	 which	also	contains	a	non-constant	mean.	The	drift	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 is	 defined	 externally	 through	 certain	 auxiliary	
	 variables	(Hengl	et	al.,	2003);
–	 in	order	to	better	meet	the	assumptions	of	stationarity,	
	 linear	 regression	 may	 be	 carried	 out	 against	
	 secondary	variables	to	remove	first	order	trends.	The	
	 residuals	can	be	used	to	generate	a	new	variogram	
	 and	 then	 ordinary	 kriging	 can	 be	 applied	 to	 these	
	 residuals.	The	 resulting	 estimates	 can	 be	 added	 to	

Figure 1. Example	 of	 an	 experimental	 semi-variogram	 with	 different	 permissible	 models	 fitted	—	Exemple d’un semi-
variogramme expérimental sur lequel différents modèles possibles sont ajustés.
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	 the	trend	to	give	the	estimated	values.	This	technique	
	 has	been	termed	Residual	Kriging	(RK)	or	Detrended	
	 Kriging	(DK).
–	 the	 other	 type	 of	 kriging,	 Ordinary	 Cokriging	
	 (OCK),	involves	estimating	the	variable	of	interest	
	 by	the	weighted	linear	combination	of	its	observations	
	 and	the	observations	of	the	auxiliary	variables.	This	
	 technique	requires	the	study	of	the	spatial	dependence	
	 between	variables	in	addition	to	the	study	of	simple	
	 spatial	dependences.

A	 detailed	 presentation	 of	 geostatistical	 theories	
can	 be	 found	 in	 Cressie	 (1991);	 Goovaerts	 (1997);	
Chilès	et	al.	(1999)	and	Webster	et	al.	(2007).

3. APPLICATIONS AND PERFORMANCE 
OF DIFFERENT METHODS FOR SPATIAL 
INTERPOLATION OF RAINFALL DATA

Studies	 relating	 to	 the	 interpolation	 of	 precipitation	
often	involve	a	comparison	of	methods.	When	a	large	
number	 of	 data	 are	 available,	 these	 comparisons	 are	
made	by	dividing	the	dataset	into	two:	one	set	of	data	
for	 interpolation	 and	 the	 other	 for	 validation.	 This	
method	 is	 ideal	because	 the	validation	 is	 completely	
independent	of	the	formulation	of	the	model.	Often	the	
data	are	very	few	and,	in	such	cases,	the	comparison	
of	methods	is	instead	made	by	cross-validation	(Isaaks	
et	 al.,	 1990).	 However,	 whether	 the	 validation	 is	
independent	 or	 crossed,	 it	 allows	 the	 identification	
of	 errors	 of	 prediction.	 Another	 way	 to	 compare	
interpolation	methods	is	to	use	a	hydrological	model.	
Here,	the	interpolated	rainfall	data	can	be	used	as	an	
input	 into	 the	hydrological	model.	The	observed	and	
simulated	discharge	can	be	compared	and	the	error	of	
prediction	can	be	found.

Spatial	 interpolation	 techniques	 differ	 in	 their	
assumption,	deterministic	or	statistical	(geostatistical)	
nature,	and	local	or	global	perspective.	Deterministic	
techniques,	such	as	IDW,	have	been	used	in	numerous	
studies.	Even	though	IDW	is	a	fairly	straightforward	
deterministic	 interpolation	 technique,	 which	 offers	
adaptable	 weights,	 the	 selection	 of	 the	 weighting	
function	 is	 subjective	 and	 no	 measure	 of	 error	
is	 provided.	 Therefore,	 the	 literature	 has	 sought	
to	 address	 questions	 regarding	 the	 bases	 for	 the	
application	 and	 further	 development	 of	 multivariate	
geostatistical	 techniques,	 such	 as	KED	or	 cokriging,	
using	various	co-variables.	It	is	often	recognized	that	
the	 statistical	 approach,	 geostatistical	 techniques	 or	
kriging,	present	several	advantages	over	deterministic	
methods.	 Kriging	 presents	 an	 important	 advantage	
in	 its	 ability	 to	 give	 unbiased	 predictions	 with	
minimum	variance	and	to	take	into	account	the	spatial	
correlation	between	the	data	recorded	at	different	rain	

gauges	 or	weather	 stations.	 In	 addition	 to	 providing	
a	 measure	 of	 prediction	 error	 (kriging	 variance),	
another	 major	 advantage	 of	 kriging	 over	 simpler	
methods	 is	 that	 its	 geostatistical	 framework	 is	 also	
able	to	accommodate	secondary	information	in	order	
to	 improve	 the	 interpolation	 results.	 For	 countries	
with	access	to	satellites,	radar,	microwave	links,	etc.,	
the	data	obtained	via	 these	 instruments	are	generally	
used	to	improve	precipitation	interpolation.	However,	
in	 countries	 where	 these	 modern	 instruments	 are	
not	 available,	 measurements	 of	 altitude,	 especially	
as	 extracted	 from	 a	 digital	 elevation	 model	 (DEM),	
form	 an	 extensively	 accessible	 data	 source,	 which	
can	 be	 incorporated	 into	 multivariate	 geostatistical	
interpolation	 of	 rainfall.	 Nevertheless,	 some	 studies	
have	 shown	 that	 deterministic	 interpolation	methods	
perform	better	than	geostatistical	methods	and	that	the	
results	depend	on	 the	 sampling	density	 (Dirks	et	 al.,	
1998).	Dirks	et	al.	(1998)	compared	the	performance	
of	IDW,	THI	and	kriging	in	interpolating	rainfall	data	
from	 a	 network	 of	 thirteen	 rain	 gauges	 on	 Norfolk	
Island	in	all	multiple	time	steps:	hour,	day,	month	and	
year.	The	results	 led	 the	authors	 to	recommend	IDW	
for	interpolations	for	spatially	dense	networks	of	rain	
gauges.	Most	 studies	 have	 used	 only	 daily,	monthly	
or	 annual	 time	 steps	 for	 precipitation	 interpolation.	
Moreover,	 some	other	studies	have	used	only	hourly	
time	 steps	 for	 large-scale	 extreme	 rainfall	 events.	
Validations	in	these	studies	have	often	been	performed	
using	cross-validation	methods,	although	a	few	other	
studies	 have	 been	 based	 on	 results	 obtained	 through	
hydrological	 modeling.	 However,	 no	 single	 method	
has	been	 shown	 to	be	optimal	 for	 all	 time	 steps	 and	
conditions.

3.1. Studies investigating the performance of 
spatial interpolation methods for annual and 
monthly rainfall

Some	 studies	 have	 tested	 both	 deterministic	 and	
geostatistical	methods	 for	 interpolating	 rainfall	 data.	
Most	of	these	studies	have	used	only	monthly	or	annual	
time	steps	for	precipitation	interpolation	and	mapping.	
There	 have	 been	 many	 comparative	 assessments	 of	
common	interpolation	techniques.

In	 their	 study	 of	 monthly	 totals	 in	 a	 large	 scale	
network	 from	 a	 30-year	 dataset	 of	 annual	 rainfall	 at	
29	stations	 located	 in	 the	 North	 Central	 continental	
United	 States,	 Tabios	 et	 al.	 (1985)	 found	 that	 the	
statistical	methods	of	kriging	and	optimal	interpolation	
were	 superior	 to	 other	 methods.	 The	 comparison	
was	 based	 on	 the	 error	 of	 estimates	 obtained	 at	 five	
selected	 sites.	The	 authors	 found	 that	THI	 and	 IDW	
gave	 fairly	 satisfactory	 results,	 while	 PI	 did	 not	
produce	 good	 results.	 In	 a	 separate	 study,	 Phillips	
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et	 al.	 (1992)	 evaluated	 three	 geostatistical	 methods	
for	 making	 mean	 annual	 precipitation	 estimates	 on	
a	 regular	 grid	 of	 points	 in	 the	 mountainous	 terrain	
of	 the	Willamette	 River	 basin.	 Results	 showed	 that,	
compared	 with	 ORK,	 DK	 and	 OCK	 both	 exhibited	
better	 precision	 and	 accuracy.	 In	 that	 study,	 contour	
diagrams	for	ORK	and	DK	exhibited	smooth	zonation	
following	general	elevation	trends,	while	OCK	showed	
a	patchier	pattern	more	closely	corresponding	to	local	
topographic	 features.	 In	 another	 study,	Abtew	 et	 al.	
(1993)	 applied	 six	 methods	 of	 spatial	 interpolation	
over	 a	 4,000	 square	mile	 area	 in	 South	 Florida	 and	
the	 results	 validated	 historical	 observations.	 Results	
indicated	 that	 the	multiquadric,	 kriging,	 and	 optimal	
interpolation	schemes	were	the	best	three	methods	for	
interpolation	of	monthly	rainfall	within	the	study	area.	
The	optimal	and	kriging	methods	have	the	advantage	
of	 providing	 the	 error	 of	 interpolation.	Nalder	 et	 al.	
(1998)	 later	 used	 four	 types	 of	 kriging	 and	 three	
simple	 alternatives	 to	 estimate	 30-year	 averages	 of	
monthly	 precipitation	 at	 specific	 sites	 in	 western	
Canada.	One	of	the	alternatives	was	a	new	technique,	
termed	 “gradient-plus-inverse	 distance	 squared”	
(GIDS),	 which	 combines	 multiple	 linear	 regression	
and	distance-weighting.	Based	on	 the	mean	absolute	
errors	 from	cross-validation	 tests,	 the	authors	 ranked	
the	methods	in	order	of	effectiveness	for	interpolating	
monthly	precipitation	as	follows:	GIDS,	OCK,	IDW,	
NN,	ORK,	DK	and	UNK.	They	concluded	that	GIDS	
was	a	simple,	robust	and	accurate	interpolation	method	
for	use	in	their	region	of	study,	and	that	 it	should	be	
applicable	 elsewhere,	 subject	 to	 careful	 comparison	
with	other	methods.	The	authors	also	concluded	 that	
it	was	 unfair	 to	 use	 local	multiple	 linear	 regressions	
for	the	relevant	stochastic	procedure	for	deterministic	
methods,	but	not	for	geostatistical	methods	(with	the	
same	ancillary	variable).

Basistha	 et	 al.	 (2008)	 used	 data	 from	 44	stations	
to	 generate	 a	 normal	 annual	 rainfall	 map	 in	 the	
Himalayan	region	of	India	lying	in	Uttarakhand	state	
at	a	1-km	spatial	resolution.	The	authors	carried	out	a	
comparative	analysis	by	cross-validating	interpolation	
techniques	and	found	that	UNK	in	combination	with	the	
hole-effect	model	(this	model	relates	to	the	existence	
of	two	high	valued	rainfall	fields	in	the	study	area)	and	
natural	logarithmic	transformation	with	constant	trend	
and	 the	 smallest	 Root	 Mean	 Square	 Error	 (RMSE)	
constituted	the	best	choice.	That	was	followed	by	ORK,	
spline,	IDW	and	PI.	Goovaerts	(2000)	employed	three	
multivariate	 geostatistical	 algorithms	 (SKL,	 KED,	
and	 OCK)	 incorporating	 a	 digital	 elevation	 model	
for	the	spatial	prediction	of	rainfall	using	annual	and	
monthly	rainfall	observations	measured	at	36	climatic	
stations	 in	 a	 5,000	km²	 region	 of	 Portugal.	 During	
cross-validation,	 the	 author	 found	 that	 these	 three	
multivariate	 geostatistical	 algorithms	 outperformed	

other	 interpolators,	 in	 particular	 linear	 regression,	 a	
technique	which	stresses	the	importance	of	accounting	
for	spatially	dependent	rainfall	observations	in	addition	
to	 the	co-located	elevation.	Lastly,	Goovaerts	 (2000)	
found	that	ORK	yielded	more	accurate	predictions	than	
linear	regression	when	the	correlation	between	rainfall	
and	elevation	was	moderate.	 In	Great	Britain,	Lloyd	
(2005)	 applied	 monthly	 precipitation	 from	 sparse	
point	data	to	a	range	of	interpolation	methods:	MWR,	
IDW,	 ORK,	 SKL	 and	 KED.	 The	 MWR,	 SKL	 and	
KED	methods	 relied	 on	 elevation	 data	 as	 secondary	
information.	 Based	 on	 his	 examination	 of	 mapped	
estimates	 of	 precipitation	 and	 cross-validation,	 the	
author	 found	 that	 KED	 provided	 the	 most	 accurate	
estimates	of	precipitation	for	all	months	from	March	
to	December,	whereas	for	January	and	February,	ORK	
provided	 the	 most	 accurate	 estimates.	 However,	 the	
data	 for	 these	 few	 months	 cannot	 be	 used	 to	 draw	
accurate	conclusions	regarding	the	better	performance	
of	a	particular	technique.	The	reason	for	Lloyd	(2005)	
finding	 KED	 to	 be	 the	 most	 accurate	 precipitation	
interpolation	 method	 from	 March	 to	 December	 is	
that,	 during	 these	 months,	 more	 neighborhood	 data	
were	used	for	interpolation.	KED	estimates	based	on	
a	 larger	 neighborhood	 tend	 to	 be	 more	 accurate.	 In	
another	study,	Diodato	(2005)	studied	the	influence	of	
topographic	 co-variables	on	 the	 spatial	 variability	of	
precipitation	 using	 rainfall	 observations	measured	 at	
51	climatic	stations	in	a	complex	mountainous	region	
of	 southern	 Italy	 (Benevento	 province).	 In	 addition	
to	employing	the	ORK	method,	 the	author	added	for	
OCK	 two	auxiliary	variables	of	 annual	 and	 seasonal	
precipitation:	terrain	elevation	data	and	a	topographic	
index.	 Cross-validation	 indicated	 that	 ORK	 yielded	
the	 largest	 prediction	 errors.	The	 smallest	 prediction	
errors	were	produced	by	a	multivariate	geostatistical	
method.	Diodato	(2005)	concluded	that	OCK	is	a	very	
flexible	 and	 robust	 interpolation	 method	 because	 it	
is	 capable	 of	 taking	 into	 account	 several	 properties	
of	 the	 landscape.	 More	 recently,	 Moral	 (2010)	
applied	 a	 wide	 range	 of	 geostatistical	 methods	 to	
monthly	 and	 annual	 precipitation	 data	 measured	 at	
136	meteorological	stations	in	a	region	of	southwestern	
Spain	 (Extremadura).	 Cross-validation	 revealed	 that	
the	 smallest	 prediction	 errors	 were	 obtained	 for	 the	
three	multivariate	algorithms.	 In	particular,	SKL	and	
ORK	were	found	to	outperform	OCK,	which	requires	
a	more	demanding	variogram	analysis.

In	the	studies	described	in	this	section,	geostatistical	
methods	 were	 generally	 found	 to	 outperform	
deterministic	 methods	 for	 spatial	 interpolation	 and	
mapping	 of	 monthly	 and	 annual	 precipitation.	 In	
particular,	 the	 use	 of	 multivariate	 geostatistical	
methods	 in	 combination	 with	 elevation	 data	 as	 the	
secondary	 variable	was	 generally	 found	 to	 yield	 the	
most	accurate	predictions.
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3.2. Studies investigating the performance of 
spatial interpolation methods for daily rainfall

Other	studies	have	focused	on	the	use	of	geostatistical	
and	non-geostatistical	approaches	for	the	interpolation	
of	 daily	 rainfall	 in	 different	 sizes	 of	 area.	 There	
have	 also	 been	 several	 comparative	 studies	 of	 the	
performance	 of	 interpolation	methods	 used	 for	 daily	
rainfall.

Employing	a	geostatistical	approach,	Creutin	et	al.	
(1988)	used	a	rain	gauge-radar	combination	to	measure	
eleven	daily	events	of	areal	rainfall	in	the	Paris	region.	
An	external	independent	validation	indicated	that	OCK	
improved	slightly	the	performance	of	the	raw	radar	data	
and	that	the	technique	exceeded	the	performance	of	the	
classical	uniform	calibration	method.	In	another	study,	
Beek	et	al.	(1992)	selected	four	days	in	1984	in	which	
to	 investigate	 the	 spatial	variability	 in	 the	amount	of	
daily	precipitation	in	north-western	Europe	in	relation	
to	meteorological	 conditions.	Data	were	 interpolated	
using	kriging.	Cross-validation	showed	the	occurrence	
of	 large	 differences	 in	 the	 spatial	 structure	 of	 the	
amount	 of	 daily	 precipitation	 as	 a	 result	 of	 different	
meteorological	 conditions.	 Stratification	 of	 the	 study	
area	 into	a	coast,	 a	mountain	and	an	 interior	 stratum	
proved	 to	 be	 successful,	 reducing	 the	Mean	Squared	
Error	of	prediction	to	a	level	of	55%.

Kyriakidis	 et	 al.	 (2001)	 mapped	 the	 seasonal	
average	 of	 daily	 precipitation	 for	 the	 period	 from	
1	November	 1981	 to	 31	January	 1982	 over	 a	 region	
in	northern	California	at	a	1-km	resolution.	The	study	
demonstrated	 the	 feasibility	 of	 constructing	 realistic	
analyses	of	precipitation.	The	authors	integrated	readily	
available	 and	 physically	 relevant	 predictors,	 such	 as	
atmospheric	and	terrain	characteristics,	which	control	
the	 spatial	 distribution	 of	 precipitation	 at	 regional	
scale.	Different	interpolation	methods	were	compared	
in	 terms	 of	 cross-validation	 statistics	 and	 the	 spatial	
characteristics	 of	 cross-validation	 errors.	 Interactions	
between	 lower-atmosphere	 state	 variables	 (humidity	
and	 horizontal	 wind	 components)	 and	 terrain	 (both	
elevation	 and	 its	 local	 gradients)	 provide	 valuable	
information	 for	 mapping	 the	 spatial	 distribution	 of	
orographic	 precipitation.	 A	 geostatistical	 framework	
using	 the	maximum	 amount	 of	 relevant	 atmospheric	
and	 terrain	 information	 could	 lead	 to	 more	 accurate	
representations	 of	 the	 spatial	 distribution	 of	 rainfall	
than	those	found	in	traditional	analyses	based	only	on	
rain	gauge	data.	The	magnitude	of	 this	 improvement	
in	 accuracy,	 however,	 would	 depend	 on	 the	 density	
of	the	rain	gauge	stations,	on	the	spatial	variability	of	
the	precipitation	field,	and	on	the	degree	of	correlation	
between	rainfall	and	its	predictors.	Classical	objective	
analysis	schemes	ignore	important	relevant	information	
such	 as	 humidity	 and	 vertical	 wind,	 and	 they	
consequently	 produce	 over-smooth	 representations	

of	the	spatial	distribution	of	rainfall;	such	an	adverse	
effect	 is	 intensified	 when	 the	 rain	 gauge	 network	 is	
sparse.

Buytaert	 et	 al.	 (2006)	 studied	 the	 variability	 of	
spatial	 and	 temporal	 rainfall	 in	 the	 south	Ecuadorian	
Andes	using	the	THI	method	and	kriging	with	14	rain	
gauges	in	the	western	mountain	range	of	the	Ecuadorian	
Andes.	However,	the	number	of	rain	gauges	in	that	study	
was	too	small	to	allow	the	production	of	an	informative	
variogram	 using	 standard	 estimation	 (means	 of	 the	
difference	 between	 each	 data	 pair;	 see	 equation	2).	
Therefore,	 when	 data	 series	 were	 available	 at	 each	
point,	the	experimental	semi-variogram	produced	was	
calculated	in	another	way,	resembling	more	closely	the	
definition	of	semi-variance:

Cross-validation	 undertaken	 by	 Buytaert	 et	 al.	
(2006)	 showed	 that	 spatial	 interpolation	with	kriging	
provided	 a	 better	 result	 than	 the	 one	 with	 THI,	 and	
that	 the	 accuracy	 of	 both	 methods	 improved	 when	
external	variables	were	included.	The	external	variable	
integrated	into	THI	referred	to	data	normalization	based	
on	the	correlation	between	the	mean	daily	rainfall	and	
the	external	parameters.	The	external	variable	included	
in	the	kriging	method	referred	to	the	UNK	process.	

Schuurmans	et	al.	(2007b)	performed	predictions	of	
point	 rainfall	 using	ORK	 and	 investigated	 the	 added	
value	 of	 operational	 radar	 for	 KED	 and	 OCK	 with	
respect	 to	 rain	 gauges	 in	 obtaining	 a	 high-resolution	
daily	 rainfall	 field.	 The	 spatial	 variability	 of	 daily	
rainfall	was	investigated	at	three	spatial	extents:	225,	
10,000	and	82,875	km²,	with	selected	rainfall	events.	
Cross-validation	undertaken	in	the	study	showed	that	
methods	using	both	 radar	 and	 rain	gauge	data	 (KED	
and	OCK)	proved	to	be	more	accurate	than	using	rain	
gauge	data	alone	(ORK),	in	particular,	for	larger	spatial	
extents.	 In	a	separate	study,	Carrera-Hernandez	et	al.	
(2007)	 used	 various	 forms	 of	 geostatistical	 method	
to	 analyze	 daily	 climatic	 data	 from	 approximately	
200	stations	 located	 in	 the	 Basin	 of	 Mexico	 for	 the	
months	 of	 June	 1978	 and	 June	 1985.	 The	 results	 of	
cross-validation	showed	that	the	interpolation	of	daily	
events	 was	 improved	 by	 the	 use	 of	 elevation	 as	 a	
secondary	variable	even	when	that	variable	showed	a	
low	correlation.

In	 the	 studies	 described	 in	 this	 section,	 cross-
validation	 of	 results	 showed	 that	 kriging	 methods	
outperformed	deterministic	methods	for	the	calculation	
of	daily	precipitation.	However,	both	types	of	method	
were	found	to	be	comparable	in	terms	of	hydrological	

̭
γ(h)	=	

Var(Zsi		-	Z(si	+	h))	=
																									2

Var	(Zsi)	+	Var(Z(si	+	h))	-	2Cov(Zsi,	Z(si	+	h)).		(3)
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modeling	results.	In	the	studies	described,	both	elevation	
and	radar	data	were	used	in	multivariate	geostatistical	
calculations	for	the	daily	time	step.	However,	very	few	
methods	were	compared	within	any	one	study.

3.3. Studies investigating the performance of 
spatial interpolation methods for hourly rainfall

A	 small	 number	 of	 studies	 have	 considered	 using	
hourly	 time	 steps	 for	 large-scale	 extreme	 rainfall	
events.	 With	 specific	 reference	 to	 flood	 events,	
Haberlandt	 (2007)	 used	 the	 combined	 techniques	 of	
KED	and	indicator	kriging	with	external	drift	(IKED)	
for	the	spatial	interpolation	of	hourly	rainfall	from	rain	
gauges	 using	 secondary	 variables	 from	 radar,	 daily	
precipitation	within	 a	 dense	 network	 of	 rain	 gauges,	
and	 elevation.	 The	 methods	 were	 performed	 using	
data	from	the	storm	period	of	10th	to	13th	August	2002,	
which	led	to	a	severe	flood	event	in	the	Elbe	river	basin	
in	Germany.	Cross-validation	carried	out	in	the	study	
showed	 that	 the	 multivariate	 geostatistical	 methods	
KED	and	IKED	obviously	outperformed	the	univariate	
methods,	with	the	most	significant	added	value	being	
radar,	followed	by	rainfall	from	the	daily	network	and	
elevation.	The	authors	found	that	the	best	performance	
was	achieved	when	all	secondary	information	was	used	
at	the	same	time	with	KED.	In	some	cases,	indicator-
based	 kriging	 techniques	 give	 a	 smaller	 RMSE	 than	
univariate	techniques,	which	use	only	a	single	source	of	
information,	but	this	is	at	the	expense	of	a	considerable	
loss	of	variance.	

Also	 focusing	 on	 hourly	 precipitation,	 Velasco-
Forero	 et	 al.	 (2009)	 compared	 three	 geostatistical	
methods,	 all	 incorporating	 radar	 data	 as	 auxiliary	
variables	 in	 combination	 with	 a	 non-parametric	
technique	 to	 automatically	 compute	 correlograms.	
Cross-validation	 and	 spatial	 pattern	 analysis	 showed	
that	 KED	 produced	 the	 most	 accurate	 results.	
Schiemann	 et	 al.	 (2011)	 also	 used	 a	 geostatistical	
radar-rain	 gauge	 combination	 with	 non-parametric	
correlograms	 and	 parametric	 semi-variogram	models	
for	 the	 construction	 of	 hourly	 precipitation	 grids	 for	
Switzerland,	 based	 on	 data	 from	 a	 sparse	 real-time	
network	of	rain	gauges	and	from	a	spatially	complete	
radar	composite.	In	that	study,	cross-validation	showed	
the	KED	formulation	 to	be	beneficial,	particularly	 in	
mountainous	 regions	 where	 the	 quality	 of	 the	 Swiss	
radar	 composite	 was	 comparatively	 low.	 Recently,	
Verworn	et	al.	(2011)	used	a	multivariate	geostatistical	
approach	(KED)	for	the	spatial	interpolation	of	hourly	
rainfall,	 using	 auxiliary	 topographic	 data,	 rainfall	
data	 from	 dense	 daily	 networks	 and	 weather	 radar	
data.	 The	 study	 analyzed	 certain	 inundation	 events	
occurring	between	2000	and	2005	caused	by	diverse	
meteorological	 conditions	 in	 northern	 Germany.	
Through	 cross-validation,	 the	 authors	 found	 that	

weather	 radar	 data	 were	 the	 most	 useful	 secondary	
data	for	KED	for	convective	summer	events,	while	for	
the	interpolation	of	stratiform	winter	events,	the	use	of	
daily	precipitation	as	secondary	data	was	satisfactory.	
Generally,	 the	 density	 of	 rain	 gauges	 is	 usually	 not	
sufficient	 to	produce	useful	 variograms	on	 an	hourly	
basis;	so	 the	advantage	of	using	a	 radar	estimate	 lies	
not	only	in	its	ability	to	give	the	approximate	external	
variable,	but	also	in	the	clues	it	provides	regarding	the	
spatial	structure	of	rainfall.	The	variogram	is	not	given	
by	the	reference	data	(rain	gauges)	but	by	the	ancillary	
data.

In	their	investigation	of	hourly	rainfall,	the	studies	
described	 in	 this	 section	 focused	 on	 large-scale	
extreme	 rainfall	 events.	A	 multivariate	 geostatistical	
method	(KED)	was	the	one	most	commonly	employed,	
typically	 with	 the	 incorporation	 of	 radar	 data	 as	
the	 secondary	 data	 source.	 Generally,	 multivariate	
geostatistical	 methods	 were	 shown	 to	 outperform	
univariate	methods	in	these	studies.

3.4. Validation of interpolation methods using 
hydrological modeling

Another	 way	 to	 compare	 the	 alternative	 spatial	
interpolation	 methods	 is	 to	 produce	 and	 compare	
various	 time-series	 of	 daily	 areal	 precipitation	
distributions	 using	 not	 only	 an	 internal	 precipitation	
validation,	 but	 also	 an	 objective	 verification	 based	
on	stream	flow	simulations	(Haberlandt	et	al.,	1998).	
Haberlandt	 et	 al.	 (1998)	 used	 the	 Mackenzie	 River	
Basin	 in	 north-western	 Canada	 as	 their	 study	 area,	
carrying	out	hydrological	simulations	using	the	Semi-
distributed	Land	Use-based	Runoff	Processes	(SLURP)	
model.	 The	 authors	 found	 that	 better	 interpolation	
techniques	and	the	use	of	combined	precipitation	data	
were	able	to	improve	hydrological	simulations	and	that	
these	improvements	were	related	to	the	relative	size	of	
the	simulation	units	used.	In	a	separate	study,	Ruelland	
et	al.	(2008)	analyzed	the	sensitivity	of	a	lumped	and	
semi-distributed	 hydrological	 model	 (Hydrostrahler)	
to	 several	 spatial	 interpolations	 of	 rainfall	 data.	 The	
study	was	 carried	out	within	 a	 context	of	 scarcity	of	
data	over	a	large	West	African	watershed.	

Point	by	point	assessment	shows	that	interpolation	
using	IDW	and	kriging	methods	is	more	efficient	than	
the	simple	Thiessen	technique,	and	spline,	particularly	
when	 a	 monthly	 time	 step	 is	 used.	 In	 fact,	 spline	
interpolation	can	be	shown	to	perform	equally	as	well	
as	the	kriging	method	if	the	appropriate	covariance	is	
used.	 In	other	words,	a	spline	estimate	with	arbitrary	
parameters	will	perform	in	the	same	way	as	a	kriging	
technique	with	an	arbitrary	variogram.	In	the	study	of	
Ruelland	et	al.	(2008),	the	use	of	these	data	in	a	daily	
lumped	 modeling	 showed	 a	 different	 ranking	 of	 the	
various	 interpolation	methods	with	 regard	 to	 various	
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hydrological	 assessments.	 That	 model	 seems	 to	 be	
particularly	sensitive	to	the	differences	in	the	volume	
of	 rainfall	 input	 produced	 by	 each	 interpolation	
method.	In	fact,	the	model	is	calibrated	for	each	rainfall	
input.	Compensation	may	be	built	 into	 the	model	 for	
inadequate	rainfall	data.	

Recently,	 Masih	 et	 al.	 (2011)	 used	 a	 semi-
distributed	hydrological	Soil	&	Water	Assessment	Tool	
(SWAT)	model	 to	compare	 that	model’s	performance	
under	 standard	 precipitation	 input	 and	 modified	
areal	 precipitation	 input	 obtained	 through	 the	 spatial	
interpolation	Inverse	Distance	and	Elevation	Weighting	
(IDEW)	method.	The	 authors	 concluded	 that	 the	 use	
of	 areal	 precipitation,	 obtained	 through	 interpolation	
of	 the	 available	 station	data,	 improved	SWAT	model	
simulated	 stream	 flows.	 The	 results	 were	 strongly	
influenced	by	the	spatial	extent	of	the	investigations	as	
well	as	by	the	station	density	and	spatial	distribution	of	
the	available	rain	gauge	data	used	in	the	interpolation.	
Moreover,	 the	authors	 strongly	 recommended	 further	
testing	 of	 the	 SWAT	model	 using	 areal	 precipitation	
as	an	 input	obtained	 through	 the	application	of	other	
interpolation	 methods	 to	 rain	 gauge	 records.	 They	
highlighted	 the	 fact	 that	 the	 SWAT	 model	 added	
value	to	stream	flow	simulations	and	other	processes.	
They	also	suggested	 that	development	of	an	optional	
component	for	the	interpolation	of	climatic	data	within	
the	 existing	 SWAT	 model	 would	 benefit	 multiple	
SWAT	users.	 In	 a	 separate	 study,	Tobin	 et	 al.	 (2011)	
presented	 a	 comparative	 analysis	 of	 the	 performance	
of	 IDW,	 ORK,	 and	 KED	 for	 hourly	 precipitation	
fields	in	complex	Alpine	terrain.	The	relevance	of	the	
study	hinged	on	the	major	impact	made	by	inadequate	
interpolations	of	meteorological	forcing	on	the	accuracy	
of	hydrological	predictions	regardless	of	the	specifics	
of	 the	 semi-distributed	 GSM-SOCONT	 models,	
during	 three	flood	events.	The	geostatistical	methods	
used	relied	on	a	 robust	anisotropic	variogram	for	 the	
definition	of	the	spatial	rainfall	structure.	Results	from	
cumulative	precipitation	analysis	in	the	study	indicated	
that	IDW	tended	to	significantly	underestimate	rainfall	
volumes,	 whereas	 ORK	 and	KED	methods	 captured	
spatial	patterns	and	rainfall	volumes	induced	by	storm	
advection.	The	use	of	numerical	weather	forecasts	and	
elevation	data	as	covariates	for	precipitation	provided	
evidence	 for	KED	 outperforming	 the	 other	methods.	
Hydrological	 simulations	 run	 with	 KED-interpolated	
input	fields	significantly	improved	results	 in	terms	of	
specific	runoff	volume.	The	model	was	not	re-calibrated	
with	each	technique.

As	we	have	seen	 in	 this	section,	very	few	studies	
have	 focused	 on	 comparing	 the	 performance	 of	
different	 interpolation	 methods	 as	 evaluated	 by	
hydrological	 modeling.	 Based	 on	 these	 few	 studies,	
the	 performance	 of	 the	 IDW	method	 can	 be	 said	 to	
be	comparable	 to	 that	of	 the	ORK	method	(Ruelland	

et	al.,	2008;	Masih	et	al.,	2011).	KED	was	not	included	
in	 these	 two	studies,	but	 this	 technique	demonstrated	
the	 best	 performance	 in	 the	 study	 of	 Tobin	 et	 al.		
(2011).

3.5. Use of variogram models and negative weight 
in geostatistical methods for interpolating rainfall 

Previous	studies	investigating	geostatistical	approaches	
have	generally	applied	the	same	theoretical	variogram	
model	for	all	time	steps.	The	spherical	model	has	been	
the	one	most	commonly	chosen	to	interpolate	rainfall.	
Recently,	 Van	 De	 Beek	 et	 al.	 (2011)	 applied	 the	
spherical	model	in	examining	the	seasonal	variogram	
parameters	 of	 daily	 rainfall	 in	 The	 Netherlands.	
Similarly,	Verworn	et	al.	(2011)	applied	the	spherical	
model	to	interpolate	hourly	rainfall	in	the	northern	part	
of	Germany.	However,	negative	interpolated	values	can	
occur	in	kriging	(Deutsch,	1996).	Once	a	sample	close	
to	the	location	being	interpolated	exhibits	an	outlying	
value,	negative	weights	in	ORK	occur.	These	negative	
weights	 can	 be	 large,	 depending	 on	 the	 variogram	
model	and	the	data	values.	Moreover,	negative	weights	
may	 produce	 negative	 and	 nonphysical	 interpolated	
values	when	 applied	 to	 high	 data	 values.	 In	 general,	
two	approaches	can	be	used	to	avoid	a	negative	value:	
a posteriori	 correction	 as	 recommended	 by	 Deutsch	
(1996)	 or	 replacing	 all	 negative	 interpolated	 values	
with	 a	 zero	 value.	 Both	 are	 realistic	 solutions,	 but	
neither	is	perfect.	Despite	the	fact	that,	in	some	cases,	
the	negative	values	are	large,	no	study	has	yet	examined	
this	problem.

4. DISCUSSION

In	 the	 literature,	 the	 results	 of	 the	 comparison	 of	
interpolation	methods	differ	from	one	study	to	another.	
The	 successful	 performance	 of	 the	methods	 depends	
on	 several	 factors,	 in	particular,	 temporal	 and	 spatial	
resolutions	 of	 the	 data,	 and	 the	 parameters	 of	 the	
models,	 such	 as	 the	 semi-variogram	 in	 the	 case	 of	
kriging.	 The	 studies	 discussed	 here	 focused	 on	 the	
analysis	 of	 annual,	 monthly,	 daily,	 hourly	 or	 total	
rainfall	 for	 precipitation	 events	 of	 some	 duration	
with	different	densities	of	observation	networks.	 It	 is	
thus	 difficult	 to	 draw	 a	 general	 conclusion.	 No	 one	
interpolation	method	 stands	 out	 as	 being	 universally	
the	best.	Some	authors	recommend	a	particular	method	
as	being	the	best	according	to	their	judgment	as	to	what	
is	the	most	practical	(Tabios	et	al.,	1985;	Abtew	et	al.,	
1993;	 Syed	 et	 al.,	 2003).	 These	 authors	 note	 all	 the	
relatively	 equivalent	 levels	 of	 performance	 between	
the	ORK	 technique	 and	 the	multiquadratic	 functions	
(spline	type).	However,	both	Tabios	et	al.	(1985)	and	
Abtew	et	 al.	 (1993)	 recommend	 the	use	of	 the	ORK	
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technique	because	it	allows	the	calculation	of	errors	
of	prediction.	On	the	other	hand,	Syed	et	al.	 (2003)	
chose	to	employ	the	multiquadratic	functions	because	
they	 consider	 them	 easier	 to	 use.	 Also,	 within	 the	
context	 of	 a	 dense	 network	 of	 stations,	Dirks	 et	 al.	
(1998)	 did	 not	 obtain	 significant	 improvements	 in	
results	 by	 using	 ORK	 rather	 than	 IDW.	 They	 thus	
recommend	 the	 simpler	 IDW	 method.	 In	 fact,	 this	
observation	 of	 the	 better	 performance	 of	 IDW	 has	
been	 extended	 to	 its	 use	 with	 other	 types	 of	 data.	
For	 example,	 in	 an	 analysis	 of	 synthetic	 data	 from	
a	 computational	 experiment,	 Zimmerman	 et	 al.	
(1999)	 obtained	 a	 better	 interpolation	with	ORK	or	
with	UNK	than	with	the	IDW	method	only	when	the	
sampling	 point	 was	 regular,	 the	 noise	 low	 and	 the	
spatial	correlation	strong.	

Several	 studies	 have	 examined	 methods	
of	 multivariate	 interpolation.	 In	 some	 studies,	
radar-rainfall	 data	 have	 been	 used	 in	 combination	
with	 measurement	 at	 weather	 stations	 for	 spatial	
interpolation	 of	 precipitation	 (Creutin	 et	 al.,	 1988;	
Haberlandt,	 2007;	 Schuurmans	 et	 al.,	 2007b;	
Velasco-Forero	 et	 al.,	 2009).	 However,	 the	 bulk	 of	
studies	have	made	use	of	a	cheaper,	widely	available	
data	 source,	 the	 Digital	 Elevation	 Model	 (DEM),	
taking	advantage	of	the	relationship	between	amount	
of	precipitation	and	elevation.	In	particular,	Phillips	
et	al.	(1992);	Nalder	et	al.	(1998);	Goovaerts	(2000)	
and	 Lloyd	 (2005)	 incorporated	 elevation	 into	 the	
interpolation	 of	 precipitation.	These	 authors	mainly	
used	spline,	SKL,	RK	or	DK,	KED	and	OCK.	These	
multivariate	methods	seem	to	give	better	results	than	
univariate	 methods	 in	 mountainous	 regions	 for	 a	
scale	 of	 about	 10,000	km²	 (Phillips	 et	 al.,	 1992)	 or	
when	 the	 correlation	 between	 the	 rainfall	 data	 and	
the	elevation	 is	higher	 than	0.75	(Goovaerts,	2000).	
It	 is	 important	 to	 note	 that	 all	 these	 studies	 were	
conducted	using	annual	or	monthly	precipitation.	For	
finer	temporal	resolutions,	such	as	a	daily	resolution,	
a	 strong	 relationship	 between	 elevation	 and	
precipitation	is	questionable,	according	to	Haberlandt	
et	 al.	 (1998).	 Even	 though	 these	 authors	 observed	
an	 average	 correlation	 of	 0.52	 between	 elevation	
and	 the	 annual	 accumulation	 of	 precipitation,	 this	
correlation	 fell	 to	0.06	 for	daily	observations.	They	
thus	relied	more	on	integration	into	the	interpolation	
of	another	auxiliary	variable:	precipitation	simulated	
by	 an	 atmospheric	 model.	 Furthermore,	 these	
authors	 studied	 the	 interpolation	 of	 precipitation	
within	 a	 context	 of	 hydrological	 modeling	 and	
used	 hydrological	 simulations	 in	 addition	 to	 cross-
validation	 to	 compare	 their	 tested	 methods.	 The	
only	 multivariate	 method	 that	 they	 examined	 was	
KED.	 They	 applied	 this	 method	 either	 to	 all	 the	
time	 steps	 of	 their	 test	 period,	 or	 only	 when	 the	
correlation	between	the	observations	of	stations	and	

the	auxiliary	data	exceeded	a	certain	threshold	(0.5	or	
0.3	depending	on	the	auxiliary	variable	in	question).	
Where	the	correlation	was	too	low,	they	used	ORK.	
The	 authors	 obtained	 better	 results	 by	 applying	 the	
KED	method	conditionally	rather	than	by	using	it	for	
every	 time	 step.	On	 the	 other	 hand,	 the	 indications	
obtained	via	cross-validation	for	the	conditional	KED	
were	 only	 very	 slightly	 better	 than	 those	 for	ORK.	
Furthermore,	for	the	hydrological	simulations,	it	was	
ORK	that	gave	the	best	results.	Multivariate	methods	
were	 found	 to	 bring	 an	 improvement	 to	 the	 quality	
of	the	interpolation	only	when	they	were	used	at	the	
right	 time,	 but	 this	 improvement	 did	 not	 seem	 to	
have	a	great	impact	on	the	quality	of	the	hydrological	
modeling.

In	contrast,	Ruelland	et	al.	(2008)	found	a	different	
ranking	 of	 the	 various	 interpolation	 methods	 used	
between	point	by	point	assessment	and	hydrological	
simulation.	They	 found	 that	 accurate	 assessment	 of	
the	 rainfall	 input	 volume	 was	 more	 important	 than	
the	 rainfall	pattern	 itself	 for	 simulating	 stream	flow	
hydrographs.	They	 reached	 this	 conclusion	 through	
the	 use	 of	 a	 lumped	 model.	 This	 model	 does	 not	
account	 for	 the	 spatial	 variability	 of	 precipitation	
input	 with	 the	 basin.	 Masih	 et	 al.	 (2011)	 found	
IDEW	 to	 be	 a	 good	 method	 for	 rainfall	 input	 in	 a	
semi-distributed	SWAT	model.	However,	the	authors	
did	not	make	a	comparison	between	IDEW	and	any	
geostatistical	methods,	which	are	usually	found	to	be	
superior	to	such	a	simple	method.	To	overcome	such	
limitations,	more	types	of	geostatistical	methods	are	
currently	being	tested	to	prepare	hourly	rainfall	input	
for	hydrological	modeling	during	flood	events	(Tobin	
et	 al.,	 2011).	The	 use	 of	 improved	 rainfall	 input	 in	
KED	provides	evidence	for	increased	accuracy	in	the	
prediction	of	discharge	volume	and	peaks.

For	 annual	 and	 monthly	 rainfall,	 geostatistical	
methods	 appear	 preferable	 particularly,	multivariate	
geostatistical	 methods	 which	 can	 be	 beneficial	
when	 using	 elevation	 data	 as	 a	 secondary	 variable.	
On	 the	 other	 hand,	 for	 daily	 rainfall,	 multivariate	
geostatistical	methods	 and	 IDW	are	 in	 competition.	
This	is	probably	due	to	the	fact	that	studies	indicating	
the	better	performance	of	IDW	were	conducted	using	
only	 one	 geostatistical	 method	 (ORK)	 and/or	 other	
simple	methods	such	as	THI	and	spline,	while	studies	
indicating	 the	 better	 performance	 of	 multivariate	
geostatistical	methods	only	made	a	comparison	within	
the	 family	 of	 geostatistical	 methods.	 Some	 authors	
have	used	radar	data	as	a	secondary	variable,	which	
is	 normally	 well	 correlated	 with	 rainfall	 from	 rain	
gauges	 thanks	 to	 the	 similar	 nature	 of	 the	 variable.	
A	 comparison	 between	 common	 deterministic	
methods	(such	as	THI	and	IDW)	and	different	types	
of	geostatistical	methods	has	not	yet	been	made	for	
daily	rainfall.
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More	 recent	 studies	 have	 focused	 on	 hourly	
rainfall	 rather	 than	 on	 calculating	 rainfall	 in	 other	
time	 steps,	 as	 in	 previous	 studies.	 These	 more	
recent	 studies	 have	 been	 conducted	 in	 developed	
countries	where	modern	 instruments,	 such	 as	 radar,	
are	 available.	As	 a	 result,	 radar	 rainfall	 has	 always	
been	used	in	these	studies	as	a	secondary	variable	in	
multivariate	geostatistical	analysis	(KED	and	OCK).	
These	two	methods	have	always	demonstrated	better	
performance	 in	 comparison	 with	 other	 types	 of	
geostatistical	 methods.	 However,	 the	 transposition	
of	these	methods	(using	radar	rainfall)	to	developing	
countries	cannot	be	made	unless	modern	instruments	
are	 installed.	 This	 is	 very	 costly.	 Therefore,	 other	
cheap	 data	 such	 as	 elevation	 should	 be	 used	 as	 a	
secondary	variable	for	incorporation	into	multivariate	
geostatistical	methods.

Radar	 rainfall	 and	elevation	have	generally	been	
used	 as	 the	 secondary	 variables	 for	 integration	 into	
multivariate	geostatistical	methods.	Radar	rainfall	has	
been	 found	 to	 be	 beneficial	when	 incorporated	 into	
multivariate	geostatistical	methods	in	the	interpolation	
of	daily	and	hourly	rainfall.	Elevation	has	also	provided	
a	major	advantage	in	improving	the	use	of	multivariate	
geostatistical	methods	for	interpolating	monthly	and	
annual	 rainfall.	 However,	 very	 few	 studies	 have	
focused	on	 incorporating	elevation	 into	multivariate	
geostatistical	methods	for	daily	rainfall	interpolation.	
The	reliability	of	predictions	may	vary	if	a	different	
time	 step	 is	 chosen.	 The	 stochastic	 nature	 of	 daily	
rainfall,	 in	 particular,	 differs	 from	 that	 of	 monthly	
or	annual	rainfall.	Therefore,	it	would	be	interesting	
to	 discover	 whether	 integration	 of	 elevation	 as	 a	
secondary	 variable	 improves	 interpolation	 accuracy,	
because	 rainfall	data	 are	mostly	 available	 at	 a	daily	
time	step	 in	countrywide	or	 regional	measurements.	
Daily	 rainfall	 is	 the	 most	 important	 meteorological	
input	into	water	resources	and	agricultural	modeling	
systems.	The	question	is	whether	what	constitutes	the	
best	 technique	 when	 applied	 to	 monthly	 or	 annual	
rainfall	 is	 also	 appropriate	 to	 apply	 to	daily	 rainfall	
when	precipitation	pattern	differences	exist	between	
daily	and	monthly	timescales.

Very	few	analyses	have	been	made	of	the	impact	
of	rain	gauge	density	on	interpolation	methods.	Some	
studies	 have	 focused	primarily	 on	 the	 effect	 of	 rain	
gauge	density	using	only	one	method	(ORK,	UNK	or	
KED)	or	two	methods	(multiquadratic	surface	fitting	
and	kriging)	(Borga	et	al.,	1997).	This	use	of	only	one	
or	two	methods	may	have	been	due	to	the	cumbersome	
nature	of	the	analysis,	in	terms	of	computation	time.	
However,	 given	 that	 computational	 facilities	 are	
now	 better	 developed	 and	 more	 widely	 available,	
it	 would	 be	 interesting	 to	 now	make	 a	 comparison	
between	 a	 wider	 range	 of	 techniques.	 This	 might	
provide	some	insights	in	terms	of	particular	strengths,	

weaknesses	and	applicability	of	a	variety	of	methods.	
Such	 analyses	 related	 to	 rain	 gauge	 density	 would	
be	 valuable	 for	 engineers,	 hydrologists	 or	 decision	
makers	working	with	sparse	rain	gauge	data.	

Solutions	 to	 the	 problem	 of	 negative	 weights	
in	 kriging	 are	 extremely	 limited	 in	 the	 method’s	
application	 to	 rainfall.	 We	 recommend	 further	
investigation	 into	 how	 negative	 results	 can	 be	
eliminated	through	using	kriging.	For	example,	since	
negative	kriged	values	may	be	generated	as	the	result	
of	 a	 chosen	 variogram	 model,	 several	 variogram	
models	could	be	used	to	minimize	the	risk	of	negative	
results	 appearing.	 Using	 a	 variety	 of	 variogram	
models	might	avoid	negative	rainfall	calculations.

5. CONCLUSION

This	 article	 has	 presented	 and	 discussed	 previous	
studies	related	to	spatial	interpolation	of	rainfall.	The	
main	conclusions	drawn	here	can	be	summarized	as	
follows:
–	 for	 annual	 and	 monthly	 rainfall,	 geostatistical	
	 interpolation	 methods	 seem	 preferable	 to	
	 deterministic	 methods.	 In	 particular,	 the	 use	 of	
	 multivariate	geostatistical	methods	in	combination	
	 with	 elevation	 data	 has	 generally	 yielded	 more	
	 accurate	interpolations;
–	 for	daily	rainfall,	geostatistical	methods	and	IDW	
	 have	 proved	 to	 be	 comparable	 approaches,	 in	
	 particular	 for	 hydrological	 modeling.	 However,	
	 very	few	studies	have	focused	on	incorporating	the	
	 variable	of	elevation	into	multivariate	geostatistical	
	 interpolation	 of	 daily	 rainfall.	Moreover,	 the	 use	
	 of	differently	 interpolated	 rainfall	as	an	 input	 for	
	 hydrological	models	has	been	very	little	studied;
–	 most	 authors	 have	 applied	 radar	 data	 as	 the	
	 secondary	variable	when	analyzing	hourly	rainfall.	
	 Studies	following	this	trend	have	been	carried	out	
	 mostly	with	multivariate	geostatistics	(KED)	and	a	
	 few	other	univariate	methods;
–	 limited	comparison	has	been	made	within	a	study	
	 between	 the	 use	 of	 common	 deterministic	 and	
	 different	 types	 of	 geostatistical	 interpolation	
	 methods,	in	particular	for	daily	rainfall;
–	 the	 impact	of	 rain	gauge	density	on	 interpolation	
	 methods	has	been	very	little	studied.

The	studies	 reported	here	have	made	us	strongly	
aware	 of	 the	 need	 for	 further	 research	 in	 order	 to	
discover	the	ways	and	means	to	improve	the	accuracy	
of	 rainfall	 input	 for	 hydrological	 modeling.	 The	
investigations	undertaken	so	far	have	been	restricted	
in	 numerous	 aspects,	 thereby	 stressing	 the	 need	 for	
further	research.	They	have,	however,	provided	very	
useful	steps	in	that	direction.
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Quantification	and	awareness	of	the	uncertainties	
associated	with	 hydrological	 data	 are	 thus	 essential	
for	 the	 correct	 interpretation	 of	 the	 results	 of	 the	
modeling.	The	precise	evaluation	of	the	spatiotemporal	
variability	of	rainfall	on	the	watershed	scale	presents	a	
complex	problem	because	of	the	small	number	of	rain	
gauges	in	most	cases	and	because	rainfall	is	extremely	
varied	in	space	and	time.	The	choice	of	interpolation	
method	for	measuring	rainfall	depends	on	the	quantity	
of	valid	measures,	the	nature	of	the	rain	in	the	regions	
under	 study	 and	 the	 quality	 of	 the	 observations.	The	
choice	 of	 method	 is	 therefore	 crucial.	 Furthermore,	
a	 sensitivity	 analysis	 of	 a	 hydrological	 model	 can	
be	 a	 complementary	 indicator	 of	 the	 quality	 of	 the	
interpolation	 of	 rainfall	 and	 of	 other	 meteorological	
parameters.	 Thus,	 strategies	 for	 the	 acquisition	 and	
the	pretreatment	of	data	can	be	better	realized	so	as	to	
achieve	a	more	efficient	hydrological	modeling.
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