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Résumé :

Facteurs de variation des propriétés physico-chimiques des sols des écosystèmes
métallifères de Tenke-Fungurume, Katanga, République Démocratique du Congo

Cette étude a pour objet les relations entre propriétés des sols et distribution des unités de
végétation dans les écosystèmes métallifères de Tenke-Fungurume au Katanga en République
Démocratique du Congo. La première question étudiée visait l’estimation des différences et
similitudes entre sols des principales unités de végétation. La caractérisation des sols a permis
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d’identifier, par analyse multivariée, quatre facteurs de variation des propriétés physico-
chimiques des sols qui sont tous liés à la lithologie. Nos résultats suggèrent que la variabilité
observée entre unités de végétation (savane steppique enrochée, pelouse et savanes steppiques
de pente ou de Dembo) est partiellement liée aux différences de composition géochimique des
matériaux parentaux entre les sites mais également et principalement due à une variabilité
importante du fond géochimique au sein de chaque unité de végétation. Les contaminations des
sols en Cu et Co proviennent de l’altération des roches et la variabilité des teneurs mesurées au
sein des unités de végétation peut aussi bien résulter de la variabilité des matériaux parentaux
que des processus d’érosion.

La deuxième question visait l’étude des transitions entre unités de végétation à l’échelle
métrique. Les changements abrupts de végétation ont été clairement mis en parallèle avec des
modifications des propriétés des sols, en lien avec la lithologie encore une fois. La clef de la
distribution de ces unités est la disponibilité du cuivre.

Abstract :

Our study aimed at deepen our understanding of relationships between soil properties and
vegetation distribution in metalliferous ecosystems of Tenke-Fungurume in the Democratic
Republic of Congo. The first question concerned the differences and similarities between soils of
the main vegetation units and four variation factors of soil properties were summarized by
multivariate analysis. They were all linked to lithology and significantly contributed to explain
the distribution of vegetation units. Our result suggest that the variation of soil properties which
is observed within the various vegetation units (rocky steppe savanna, sward, and steppe
savannas on slope or on Dembo) should partially be attributed to differences of geochemical
composition of rocks between sites but the main source of variability is to be found inside each
hill. The soil contamination in Cu and Co originates from rock weathering and besides site effect
and topographic distribution of the rocks, the variability of soil properties within one vegetation
unit may be due to variability of soil parent material and not only to erosion.

The second question dealt with the changes of soil properties at small distances. Metric variation
was studied from transects between adjacent vegetation units. Our results showed that the
abrupt changes of vegetation units which were clearly identified on the field were all truly
explained by the variations of one or more properties linked to lithology. The key point being the
Cu bioavailability.

Keywords : cobalt, copper, D. R. Congo, metalliferous hills, soil properties, vegetation units

Introduction
Metal-rich soils provide very restrictive habitats for plants due to phytotoxicity and resulting severe
selection pressure (1). They can host a unique flora (12), such as copper flora from which plant
species contribute highly to global biodiversity (20) and are priceless related to their properties
(44, 49). Primary calamine and serpentinic sites are other examples of sites on which metal-specific
vegetation develops (23, 50).

Soil enrichment in copper (Cu) and cobalt (Co) may result from natural anomalies or human
activities (21). In soils, metals from natural origin are generally less mobile than anthropogenic one
(16, 21, 37).
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Indeed, copper and cobalt are nutrients to living organisms when they are at low concentrations
(26, 38, 47) and become toxic at high concentrations (11, 47). Excess of Cu induces injuries to
plants by generating oxidative stress and reactive oxygen species while Co adversely affects shoot
growth and biomass (36). However, some plants are able to tolerate high concentrations of Cu
and Co in soils (2, 6). Tolerance mechanisms to Cu and Co were found on some cuprophytes from
Katanga (4, 7, 8, 10, 34, 35, 39).

In Katanga province, mineralized rocks rich in Cu and Co outcrop at the summit of hills which
they protect against erosion. The concentrations of these two elements can reach up to a few tens

of thousands of mg.kg-1 in soils (9, 24, 25, 28). Saad et al. (43) reported total Cu concentrations
between 100 and more than 35,000 mg/kg. On these metalliferous outcrops, grows an original flora
composed of at least 600 species of plants, of which 33 were recognized as strictly endemic to this
environment (13). These species are distributed in the landscape within plant communities, called
further as vegetation units. Mineralized particles are redistributed along the slope by erosion.
These phenomena generate a gradient of Cu and Co concentrations in the topsoil that directly
affects the distribution of native vegetation (9, 28).

Mining activities lead to the destruction of the primary plant communities covering the outcrops and
the surrounding soils and contribute to the total or partial loss of the species composing them. The
protection of plant biodiversity in this specific context relies on ex-situ conservation of threatened
species and requires knowledge of their biotic and abiotic requirements for growing (12, 18).

The importance of soil properties to plant growth in reclaimed soils was reviewed by Sheoran et
al. (45). Some key soil properties (acidity-basicity and redox potential) and soil constituents (clays,
oxides and hydroxides of Fe, Mn and Al; carbonates, phosphates, organic matter) govern the
behavior of trace elements in soils (21, 29, 42). The availability of nutrients as well as changes in soil
physical properties can both contribute to the differential distribution of plants within ecosystems.
The change in plants communities in copper hills of Katanga was for a long time attributed only to
Cu and Co in topsoils (5, 9, 28, 30). However, recent studies suggested that this variation would be
also explained by the combination of edaphic factors other than trace metals concentration, such
as nutrient and water availability or physical constraints (12, 19, 43, 44).

This combination of factors constitutes an edaphic gradient which influences the vegetation
structure and would be at the origin of ecosystem complexity (44). The variation in edaphic factors
can generate highly heterogeneous environment and promote a high diversity of plant assemblage
over limited areas. At the top, chasmophytic vegetation generally develops on poorly mineralized
rocks (i.e., plant communities colonising the cracks and fissures of low mineralised rock with Cu

concentrations of 250-900 mg kg−1). Steppe vegetation colonises the upper part of the outcrops
with the highest Cu soil concentrations. Finally, steppic savannah vegetation develops on the
intermediate and foothill slopes and flat periodically flooded savannahs (dembos) at the bottom

of the outcrops with Cu concentrations varying from 100 to 3,500 mg kg−1 (9, 43). Séleck et
al. (44) found that site effect on plant diversity at local scale (differences between 3 neighbour
hills) was significant. The random nature or site physically driven origin of this diversity was
still open to debates. Effects of edaphic variation on vegetation structuration within site could be
better understood if variation of soil properties at small distances, i.e. the transitions between two
adjacent vegetation units, were examined.

The objective of this study was to deepen the relationship between soil properties and the
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vegetation units they support in the natural Cu and Co outcrops of the Tenke-Fungurume complex.
We intended to examine the diversity of edaphic conditions for given plant communities within and
between sites in order to gain objective elements for restoration strategies. Especially, the missing
scale of investigation in previous studies is the metric variation between two adjacent vegetation
units. To achieve this, two questions were developed:

1. What are the differences and similarities between soils of the four main vegetation units
encountered from top to bottom of the hills?

2. Are the scales of variation of soil properties and vegetation units congruent for small
distances?

Materials and methods

Study area

The study area is located in the region between the cities of Tenke and Fungurume, in the Southeast
of D.R. Congo (10.61°S, 26.20°E; altitude around 1,300 m). The climate is humid subtropical of CW6
type according to the Köppen classification (18), with a rainy and a dry season, from November to
March and from May to September, respectively. Rainfalls are around 1300 mm and annual average
temperature around 20°C. The dominant vegetation of southeastern DR Congo is the Miombo
woodland characterized by a predominance of Brachystegia, Julbernadia and Isoberlinia species.
Copper hills present distinct feature from surroundings Miombo as clearings remarkable by their
herbaceous vegetation (31).

The region hosts more than 40 copper outcrops (44). The geology is largely influenced by the
RAT and the Mines Series, the latter being the most mineralized zone of the Roan Group (15, 22).
The rocks within these series include, from youngest to oldest, calcareous rock with dark minerals
(CMN), dolomitic shales and schists (SDS, SDB), cellular or foliated siliceous rocks (RSC, RSF),
stratified dolomites (D-Strat), and talcose argillaceous rocks (RAT) (24, 25, 44). The siliceous rocks
make up the backbone of the hilly landscape due to higher resistance to erosion processes.

Soil sampling

To answer the first question, fifty-seven samples of surface soils (0-10 cm) from the main vegetation
units of Fungurume copper-cobalt deposits have been sampled within a list of 300 floristic 1-square
meter observation plots in the 13 metalliferous hills of Tenke-Fungurume complex (18).

The main vegetation units in the sites were characterized upon a physiognomic approach according
to Duvigneaud & Denayer-De Smet (9) and Leteinturier (28) determinism. The following main
vegetation units have been the subject of this study: the rocky steppic savanna (A) [mainly located
on the topsoil over cellular siliceous rock (RSC)], sward (B) [mainly localized on very rich Cu and
Co substrates], the slope steppic savanna (C) [usually on downstream slopes after sward] and the
Dembo steppic savanna (D) [at the foot of the hill on deep soils]. Other components of the C and D
units to burned state (Ci and Di) were considered in the transects.

Soil samples were obtained by mixing 4 cores taken at the corners of the one square-meter
quadrat to a depth of 10 cm. Only six of the thirteen hills were considered for this study namely:
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Fungurume-1 (Fu1), Fungurume-3 (Fu3), Fungurume-8 (Fu8), Fungurume-9 (Fu9), Shadiranzoro-
central (SHC) and Shadiranzoro West (SHW). Soils were sampled according to the presence and the
relative importance of each vegetation unit on the selected hills. The same approach was used on
other hills of the same complex by other authors: Apostolo, Goma1, Kabwelunono, Kavifwafwaulu,
Kwatebala, Shimbidi (43), Fungurume-5, Kazinayanga, Kavifwafwaulu (44).

To answer the second question, five short-distance transects across neighbouring vegetation units
as identified on the field have been sampled. This part of the study aimed to assess whether the
physiognomic sudden change observed on vegetation was parallel to similar sudden changes of soil
physicochemical properties (Table 1). One of the transects was located at the top of Fungurume-3
(Fu3T), two on Fungurume-5 (Fu5T1 and Fu5T2) and the two others on Fungurume-8 (Fu8T1 and
Fu8T2). The FuT3 transect (Figure 1) included six samples and crossed the limit between a rocky
steppic savanna (A) and a Xerophyta sward (E – Figure 1). The Fu5T1 and Fu5T2 were respectively
transects perpendicular and parallel to the slope direction. The first one crossed three vegetation
units: a colluvium sward (B), a steppic savanna (C) and a forested vegetation with Uapaca sp. (I –
Figure 1). The Fu8T1 and Fu8T2 transects were both perpendicular to the slope direction. Fu8T1
was located on the upper slope of the eastern side hill while Fu8T2 (Figure 1) was located at the
foot of the hill on the dembo plain. The vegetation units were two steppic savanna (C and Ci)
surrounding a colluvium sward (B) for Fu8T1 and two dembo steppic savanna (D, Di) alternating
with one colluvium sward (B) and one Uapaca forest (I) on Fu8T2. Each transect targeted transitions
between two (Fu3T) to four (Fu8T2) adjacent vegetation units, mainly organised across the slope,
except Fu5T2 which was sampled along the slope. The origin of the presence of the vegetation units
was supposed to be natural in most cases but the swards in Fu8 did show evidences of former basic
activities of digging of small holes and galleries for ore extraction. Moreover, we distinguished
among the vegetation units those which were recently burned from those which did not burn.

Table 1. List and characteristics of studied transects: vegetation units, symbols (see figure 1) and
rock type

Site Transect Vegetation units Symbol* Rock**
Fungurume-3 Fu3T Xerophyta sp natural sward (E) RSF

Rocky steppic savanna (A) RSC
Fungurume-5 Fu5T1 Sward on colluvium (B) RAT

Steppic savanna on slope (C) SDS/SDB
Uapacarobynsii grove (I) SDS/SDB

Fu5T2 Xerophita sp natural sward (E) RSF
Sward on colluvium (B) RAT
Steppic savanna on slope (C) RAT

Fungurume-8 Fu8T1 Steppic savanna on slope (burned) (Ci) RAT
Sward on disturbed soil (B) RAT
Steppic savanna on slope (C) RAT

Fu8T2 Dembo steppic savanna (D) deepsoil
Sward on colluvium (B) deepsoil
Dembo steppic savanna (burned) (Di) deepsoil
Uapaca robynsii grove (I) deepsoil

* The symbols used correspond to Duvigneaud & Denayer - De Smet (1963); Ci and Di are burned
variants of C and D units respectively.
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** See legend in the text.

Figure 1: View over four of the five mini-transects carried out to evaluate the short scale changes
in soil characteristics observed in adjacent vegetation units.
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See legend in table 1. Soil samples were taken at 1m of both ends of vegetation units along the
transects and in the middle.

Soil analysis

All soil samples were dried at open air inside a room for 8 days and then passed through a 2 mm
sieve. The pH was determined by mixing 2 g of soil with 50 ml of distilled water and/or 1 N KCl.
The mixture was stirred for 2 hours on a rotary device and centrifuged for 10 minutes at 3,000 rev/
min. Measurement was performed with a pH meter. Total organic carbon was measured by titration
after wet oxidation with K2Cr2O7, according to the Walkley & Black method (48).

Available cations (K, Mg, Ca, P, Cu, Co, and Mn) were extracted with EDTA + CH3COONH4 at pH 4.65
(27). Total concentrations of elements were obtained by a digestion of 0.5 mg of soil with a mixture
of three acids namely: 2 ml HNO3 + 1 ml HClO4 + 5 ml HF according to AFNOR 1996:NF X31-147.
Total contents (Cu, Co, Al, Fe, Mn) were only measured on transect samples. The determination
of Al, Fe and Mn aimed at characterizing the general soil properties, especially they express the
mineralogical signature of rocks (15, 22) and Al and Fe may be used as proxies of soil texture (29).
Soluble metals (Cu, Co) were obtained by extraction with 0.01 M CaCl2 (17). This is considered as
labile or mobile fraction (33, 46) in soils. Measurement of total, available and soluble metals have
been made by flame atomic absorption spectrometry (VARIAN model 220).

Statistics

Factorial analysis was performed from Principal Component Analysis (PCA) with varimax rotation
in order to identify the underlying factors of variability among the studied soil properties. Analysis
of variance was used in order to test the significance of “Site” and “Vegetation” factors in the first
analysis, and of differences between vegetation units in the study of transects. Soil characteristics
were transformed, except for pH, in order to approach normality and homoscedasticity.
Transformations were square-root for TOC and Log10 for all other parameters. A General Linear
Model (GLM) was used in the comparison of sites and vegetation units because of unbalanced
design: The Dembo steppic savanna (D) was only present in Fu1 and Fu8, the rocky steppic savanna
(A) was absent from SHW, and the colluvium sward (B) absent from Fu9. The interactions between
“Site” and “Vegetation” were tested separately according to the associations. Results indicated the
absence of significant interactions and factors could be analysed at once.

One-way ANOVA and Tukey test at p 0.05 were used to analyse the variability of soil properties
in the transects. The fifteen properties were tested after transformation accepted for pH and total
Mn, Al and Fe. The available Co was not measured. Additionally, the variation of properties between
pairs of neighbouring points inside vegetation units was compared to that of neighbours at both
sides of the limit between two vegetation units. The indicator of variation was the semi-variance,
which use is frequent in geostatistics (Equation I).
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(I)

where z(uα) and z(uα+h) are the values of the variable under consideration at the two locations
separated by a distance h. The distances h were fixed at 2 and 10 meters in order to discriminate
the variations of neighbouring points between and within vegetation units. N(h) is the number of
pairs for the given distance h.

In the semivariance analysis, the “within-unit” estimates the variance with the closest point
within the same unit while the “between-unit” relates to differences across the limit between two
vegetation units. Semivariance was also compared to variance within vegetation units, which was
estimated by the residual mean square in the ANOVA.

The software used for statistical analysis were Minitab 17 and R.

Results

Soil properties under main vegetation units of the studied hills

As stated previously, the interactions between the types of vegetation and the sites were considered
as non-significant for most parameters. The only exception to this was the case of CuCaCl2 when
comparing differences of A, B, C, D vegetation units between Fungurume 1 and 8 (the only two hills
presenting all the 4 vegetation units). The p-value for interactions was 0.015, due to the fact that
B and C units showed lower content in Fu8 compared to Fu1. Nevertheless, we performed analysis
of the GLM without interactions and analysed the effects of factors independently.

The means and standard variations of soil chemical characteristics are given in table 2, according
to the sites and vegetation units. It should be reminded that if untransformed data are presented,
analysis of variances and p-values concerned transformed data. It can be seen that the variations
within sites are high according to the values of standard deviations. In some cases, the coefficients
of variation are higher than 100%, such as for CuEDTA or CuCaCl2. Another point to consider is the
unbalanced design of samples which is linked to relative importance of the number of existing
observations plots. The confidence intervals on the means for SHC and SHW could therefore be
overestimated compared to the other sites due to these differences of number of observations.

Significant differences between sites were found for TOC, CuEDTA, CuCaCl2 and CoCaCl2 at p-values
< 0.001, CoEDTA (p< 0.01) and finally PEDTA and MnEDTA (p < 0.05). It should however be noted for
the latter two elements that the Tukey test does not allow to identify one hill significantly different
than another one. As can be seen in table 2 and figure 2, important differences were found between
soil organic content of the sites. Especially, TOC content in SHC and Fu3 were bigger than in Fu1,

Factors of Variation of Soil Chemical Properties in Metalliferous Ecosystems ...

8



Fu8 and Fu9. The pH and the major nutrient status, P excepted, were rather homogenous through
the hills. The Cu and Co contents appeared as relatively discriminating properties of the chemical
characteristics of the sites (Table 2, Figure 2). In particular, SHC, Fu1 and Fu3 show higher mean
Cu content than the three other sites, while Fu9 is clearly the less contaminated of the study sites.
Regarding Co content, Fu3 and Fu8 show the highest levels and SHC and SHW the lowest, which
means that mineralization of rocks with Cu and Co might have differed from one site to another.

Regarding vegetation units (Table 2, Figure 2), eight of eleven parameters considered showed
a significant difference (p < 0.05). Among them, pHKCl, Mg, P, and Cu contents were the most
significant (p < 0.001).

Table 2. Chemical characteristics of soils of quadrats under the main vegetation units and sites:
TOC (%), pH, K, Mg, Ca and P in mg/100 g, Cu, Co and Mn in mg/kg (means ± standard deviations).

Soil
parameters

Main vegetation units (see legend in the text)
p

Sites (see legend in the text)

A
(n = 11)

B
(n = 13)

C
(n = 28)

D
(n = 4)

Fu1
(n = 10)

Fu3
(n = 12)

Fu8
(n = 13)

Fu9
(n = 12)

TOC 2.9±1.8ab 4.3±2.4a 2.2±1.2b 1.6±0.5ab 0.009 2.4±1.6c 4.0±1.8ab 1.6±0.4c 1.5±0.5

pH(KCl) 4.2±0.4b 5.1±0.6a 4.8±0.4a 4.8±0.4ab 0.000 4.8±0.6 4.8±0.6 4.9±0.6 4.7±0.5

K 6.4±0.94b 6.7±0.79b 10±0.56a 11±1.5ab 0.002 7.0±3.1 7.2±3.2 10.2±3.7 9.3±3.5

Mg 6.2±1.75b 6.2±1.49b 13±1.05a 13±2.78ab 0.000 6.7±3.5 10.0±7.3 12.4±6.1 13.3±9.0

Ca 20±18 18±14 28±24 26±6 0.226 20±15 28±27 25±17 27±27

P 2.84±1.62b 6.58±4.02a 1.73±1.76b 1.13±0.21b 0.030 2.72±1.73 4.13±3.26 3.15±4.37 1.25±0.46

Cu(EDTA) 319±503c 4152±2968a 465±599b 368±143bc 0.000 2111±3372abc 1598±1895ab 646±1248cd 149±138

Cu(CaCl2) 16±27b 116±75a 12±19b 13±10b 0.000 63±80ab 53±76a 13±19bc 2.2±2.2

Co(EDTA) 17±18b 41±38a 21±14ab 16±13ab 0.042 20±33ab 33±22a 34±30a 19±11

Co(CaCl2) 11±12 19±21 9.0±6.6 8.2±7.5 0.210 7.5±9.0abc 16±12a 17±19a 11±8.8

Mn(EDTA) 29±16b 44±30ab 52±34a 54±31ab 0.025 29±15 45±20 52±20 37±27

The analysis of variance was performed on log10-transformed data excepted for TOC (square root)
and pH (no transformation). Interactions between factors were not significant. Means that do not
share a letter are significantly different after Tukey at 95%.

Tropicultura 2295-8010 Volume 37 (2019) Numéro 1, 250

9



Figure 2: Variation of soil properties between sites and vegetation units (mean value and standard
error): Total Organic Carbon, pHKCl, available Cu and Co. Legend in text.

The comparison of vegetation units in table 2 showed that sward soils (B) presented the highest
levels for TOC, pHKCl, P, Cu, Co and Mn. This unit presented also the lowest concentrations in K,
Mg, and Ca. Compared to swards, the steppic savannas on slopes (C) and dembo (D) are the most
different. Due to topographical position and nature of soil parent material (RAT), these units showed
lower levels of Cu-Co contamination and higher nutrient content, P excepted. Soils from rocky
steppic savannas (A) were more acidic than those from sward and downslope steppic savannas, due
to siliceous nature of parent material. Similarly, nutrient content is rather poor in A unit.
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The soil properties in metalliferous ecosystems of Katanga are usually significantly correlated and
PCA analysis was used by several authors to identify edaphic factors (14, 43, 44). We performed a
factorial analysis from a PCA with varimax rotation on soil chemical properties. The figure 3 shows
the results of the PCA before rotation. Four factors were kept as they make up more than 85% of
total variance. These factors should be identified as:

1. a Cu-contamination factor,

2. the richness in major nutrients,

3. a Co-contamination factor different from the first one, and finally

4. an acidification factor.

The first factor, not only reflects the direct effect of contamination in Cu due to mineralized rock
but it also shows lithological origin of P and indirect effect on the accumulation of organic matter
probably due to a decrease of biological activity and decomposition processes. The second factor is
clearly under the influence of major nutrients, P excepted, and Mn. Soils downslope developped on
RAT are clearly richer in these elements and lithology seems to be a predominant factor of spatial
distribution, even if downward redistributions with soil water fluxes cannot be discarded at this
stage. The factor 3 constitutes another factor linked to contamination by the parent material, which
also indicates differences of rock elemental composition between sites. Finally, the fourth factor is
driven by pHKCl, Ca and Mg content, which separates the rocky steppic savannas on siliceous rocks
from the three other vegetation units, or SHW from the other hills, as they are more acidic.
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Figure 3: Principal component analysis (PCA) of the soil chemical
characteristics (transformed data). Unrotated factors.

Short-distance transitions between vegetation units

The chemical properties of soils sampled in the various transects are summarized in table 3. Each
transect should be analyzed for itself first.

The transect Fu3T on the small flat summit of Fungurume 3 concerned the transition between a
rocky steppic savanna and a natural sward with Xerophyta sp. (Table 1). Each vegetation unit is
associated to a different rock outcrop, RSC and RSF respectively. The results (Table 3) show that
average soil properties are clearly different between these two units as pH, TOC and every element
content are higher on the RSF. Only the Co content difference, when expressed in log is at the limit
of the significance (p = 0.051). The most significant differences between the two vegetation units
are due to Cu content but at this stage none of the other elements/properties could be dismissed of
being a factor of differenciation.

In the transect Fu5T1, across the slope of Fungurume 5, three vegetation units were sampled from
the natural sward on RAT, contaminated by colluviating particles from the upslope RSF, to a steppic
savanna and a grove with small trees of Uapaca robynsii. Both savanna and grove were on slopes
over SDB shales. Excepted K and Fe contents, every soil properties showed significant differences
beween at least two vegetation units. The C and I units were developped on the same type of rocks,
that is SDB, and the B unit on RAT. The total Al content confirmed the influence of lithology on soil
properties (Table 3) as Al in soil over RAT is almost 1/3 lower than over SDB. The B unit is clearly
differing from the other units by chemical properties as TOC, P, Cu and Co were far higher than
in the two other vegetation units (Figure 4). Regarding the differences between C and I units, it
appeared that they were significant for pH, Mg and Ca higher in the I unit, as well as for CuCaCl2,
lower in I unit. The difference for CuCaCl2 and not for the other Cu content may be linked to pH which
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is less acidic under the Uapaca grove. Excepted for pH, P, Al and Fe content, the C unit seemed as
a transition between sward and grove.

The transect Fu5T2 in the upper part of the slope on the RSF/RAT boundary crossed three
vegetation units along a supposed colluviation gradient. Significant differences between the various
vegetation units were found for pH, Mg and Ca lower in central sward (Table 3), for P, Cu and Co
lower in the steppic savanna and for Al and Fe, lower in the Xerophyta sward on RSF, compared
to RAT. As a general rule, the level of p-values was higher than for the two previous transects and
no difference was significant for TOC, K and total Cu, Co and Mn. This should be related to the
longitudinal nature of the transect as can be seen in figure 4. However, the CuCaCl2 content appeared
to differentiate significantly the three vegetation units because it reflects both the influence of total
Cu and acidity level. There is in this transect evidence of gradual transition between units rather
than abrupt changes.

The Fungurume 8 transects were both perpendicular to northern slope and installed on one given
rock type, RAT for Fu8T1 and footslope colluvium for Fu8T2. The Fu8T1 was a short transect across
two steppic savanna surrounding a sward developed on an area affected by ore-digging works. Few
significant differences between the three vegetation units were found. As indicated by Al and Fe
content, the lithology of the parent material was rather homogenous. The TOC, P, total Cu and Mn,
CuEDTA and CoCaCl2 contents were higher in the central sward compared to steppic savannas, and
the p-values were generally rather high. It should be noted that the variability of soil properties
in the sward was big, probably due to the artificial and chaotic nature of backfill disposal. This
high variability hindered the ANOVA and Tukey tests, although the average values of some soil
properties might appear as very different according to vegetation units. We can also notice that
there were no differences between recently-burned and unburned steppic savannas.

In Fu8T2 transect located at the foot of Fungurume 8, four vegetation units were crossed, with
two dembo steppic savannas alternating with a sward and a grove. No significant differences were
found for TOC and total Al contents. The pH were found lower in the Di unit. The nutrient status
was clearly higher in the Uapaca grove and lower in the sward, to the exception of P. The Cu and Co
content were the highest in the sward soil and the lowest under the Uapaca grove. The burned (Di)
and unburned (D) steppic savannas should be considered as different vegetation units for pHKCl and
total Fe only (Table 3). Regarding pH, it is not possible to evaluate whether the differences are due
to effect of fire but the observations are in contradiction with the usually admitted rise of pH after
burning. Regarding the other chemical properties, they showed intermediate levels between sward
and grove and the transition with sward appeared more abrupt than with the grove (Figure 4).

Table 3. Chemical characteristics of topsoil under vegetation units across the transects on three
metalliferous hills of the Tenke Fungurume complex (means ± standard deviations) and p-values
associated to ANOVA. (continued).
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Soil Fu8T1 p Fu8T2 p
parameter Ci (n=3) B (n=3) C (n=3) D (n=3) B (n=3) Di (n=3) I (n=3)

TOC (%) 3.3±0.4ab 3.5±0.16a 2.8±0.06b 0.035 3.7±0.28 2.8±0.45 2.65±0.1 2.96±0.47 0.070

pHH2O 5.4±0.08 5.6±0.4 5.8±0.05 0.371 5.4±0.14ab 5.2±0.14ab 5.2±0.02b 5.7±0.21a 0.015

pHKCl 5.1±0.14 5.6±0.4 5.4±0.26 0.259 5.2±0.01a 4.99±0.21ab 4.7±0.1b 5.14±0.18a 0.011
K (mg/
100g) 12±2.9a 6.2±1.6a 13±4.4a 0.048 12±1.45b 6.1±0.34c 18±0.99ab 21±5.2a 0.000
Mg (mg/
100g) 18±4.3 11±7.8 13±2.0 0.280 20±5.3b 6.1±1.66c 25±5.1ab 52±14a 0.000
Ca (mg/
100g) 53±11 58±62 50±16 0.859 71±28a 20±7.9b 32±3.01ab 73±22a 0.002
P (mg/
100g) 1.1±0.24b 7.7±5.0a 1.1±0.1b 0.010 1.15±0.55ab 1.74±0.9a 0.63±0.06ab 0.6±0.2b 0.026
Cu (mg/
kg) 752±164b 10642±8392a 1403±1188b 0.020 1409±440b 4765±2298a 1472±302b 664±44c 0.000
CuEDTA

(mg/g) 263±62b 3188±2287a 498±494b 0.031 638±268ab 1958±1358a 343±90bc 144±13b 0.001
CuCaCl2

(mg/kg) 1.6±0.9a 86±73a 1.8±1.4a 0.058 5.3±4.6bc 95±49a 7.8±4.4b 0.62±0.34c 0.001
Co (mg/
kg) 1101±36b 1675±271 994±398 0.150 473±160b 972±220a 373±108b 330±30b 0.003
CoCaCl2

(mg/kg) 22±4.1ab 51±37a 12±2.8b 0.053 21±11ab 39±7.1a 5.6±0.8bc 4.63±3.8c 0.001
Mn (mg/
kg) 534±107ab 703±52a 399±116b 0.022 728±190 728±108 789±161 591±49 0.400
Al (%) 3.3±0.6 3.1±0.6 2.4±0.8 0.318 4.9±0.41 4,6±0.46 5.12±0.34 4.13±0.29 0.051

Fe (%) 2.21±0.3 3.1±0.8 2.5±0.5 0.260 2.9±0.2b 3,6±0.48b 4.49±0.19a 3.62±0.08b 0.001

ANOVA were performed on transformed data except for pH, Mn, Al and Fe. Means that do not share
a letter are significantly different after Tukey at 95%.
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Figure 4: Evolution of Cu content along the transects: Fu3T1, Fu5T1, and Fu5T2.

The analysis of semivariance is summarized in table 4. Transitions were evaluated for all
neighbouring units and also specifically for borders between swards (B, E) and steppic savannas
(A, C, D). The variation between the hills is not taken into consideration in the semivariance. The
global variance is largely bigger than semi-variance for Co, Mn, Al and Fe content (Table 4), which
expresses significant differences between sites.

Regarding transitions, semivariances between two neighbour vegetation units are 2 to 6 times
higher than semivariances within vegetation units, to the exception of Co content for which both
semivariances are similar. The less pronounced differences concern the total Al, Fe and Mn which
reflect the nature of the soil parent material and variations occur mainly between siliceous rocks
(RSC) and rocks with clay minerals (RSF, RAT, SDB, colluviums). The pH and nutrient status vary
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strongly between two vegetation units, mainly between the Uapaca groves (I) and steppic savannas
(C, D) and with less strength between swards (B, E) and neighbours. The most abrupt transitions
between vegetation units is due to Cu content and organic matter and they concern dominantly the
swards as can be seen by comparing the specific g-swards given at table 4.

Table 4. Analysis of transitions between adjacent vegetation units: Global variance (σ2), proportion

of variance in the variation between studied vegetation units (%σ2), residual mean square (MSr) of
ANOVA, semivariances (γ) of neighbours points between two adjacent units and within one unit.

Variable Unit Variance ANOVA γ - all units γ - swards

σ2 %σ2 MSr between within between within

TOC g/100g 0,1622 74 0,0427 0,1549 0,0284 0,1487 0,0224

pHH2O
0,2144 72 0,0609 0,2475 0,0475 0,1400 0,0524

pHKCl
0,2591 68 0,0833 0,2473 0,0626 0,1285 0,0672

K mg/100g 0,0454 67 0,0149 0,0456 0,0107 0,0550 0,0118
Mg 0,1538 81 0,0297 0,1180 0,0259 0,1155 0,0288
Ca 0,1400 66 0,0477 0,1535 0,0440 0,1353 0,0497
P 0,2526 75 0,0630 0,2041 0,0446 0,2184 0,0473
Cu mg/kg 0,2348 80 0,0459 0,2578 0,0483 0,3182 0,0553

CuEDTA
0,3170 85 0,0488 0,2975 0,0498 0,3685 0,0570

CuCaCl2
0,8220 79 0,1694 0,7019 0,1743 0,8578 0,1834

Co 0,1256 57 0,0538 0,0501 0,0406 0,0602 0,0465

CoCaCl2
0,2397 73 0,0642 0,1259 0,0887 0,1335 0,0526

Mn 99930 85 14807 28984 11726 24970 12823
Al g/100g 2,127 78 0,4686 0,3923 0,1891 0,4226 0,1892
Fe 1,135 81 0,2139 0,2734 0,1212 0,3128 0,1380

Discussion

Variability of soil properties in metalliferous ecosystems

With following ranges of variation, pHKCl 3.9-6.0, TOC 0.8-10.3 g/100 g, CaEDTA 2.3-409 mg/100 g,
MgEDTA 1.5-73 mg/100 g, KEDTA 2.7-26 mg/100 g, PEDTA 0.3-31 mg/100 g, CuEDTA 25-10,000 mg/kg,
CoEDTA 1.5-114 mg/kg, our study concerned soils similar to those of Faucon et al. (14), Saad et al.
(43), Séleck et al. (44), Ilunga wa Ilunga et al. (19) and Boisson et al. (3, 4). Within these works,
only Fu3 and Fu5 (3, 44) were common to our study. This is a first indication that the entire soil
conditions at regional scale (> 20 different hills) can be encountered within smaller areas. Ilunga
wa Ilunga et al. (19) also found broad range of soil properties within one single-site (Kinsevere)
which is not included within the Tenke-Fungurume complex.

The multivariate analysis has allowed to identify four major factors of soil variation. Factors 1 and
3 are linked to soil contamination by Cu and Co, respectively. The two other factors are driven by
major nutrient and pHKCl levels. Investigating the relationships between the floristic composition
of vegetation quadrats and soil properties, Saad et al. (43) found that 40% of the floristic variability
was correlated to the first two soil factors which were a trace metal contamination factor (Cu, Co,
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Cd, Pb and Zn) on the one side and a gradient of total elements linked to clay content (Mg, Fe) on
the other side. In our study, we can estimate that respectively 44, 21, 2.5 and 10% of the variance
of factors 1 to 4 are linked with differences of vegetation units, based on one-way anova.

Regarding the variability of single soil properties associated with the vegetation units (Table 2 and
Figure 2), a significant proportion of residual variance is not directly associated to discrimination
between the four vegetation units, especially for acido-basic and organic status and other potential
contaminants than Cu (Co and Mn). This suggests that there is a natural variation within all
vegetation units and that soil chemical properties can overlap. The question of the relevance of the
vegetation units used might be raised. We used the same as Saad et al. (43) plus the dembo steppic
savanna. Indeed, Saad et al. (43) defined 3 plant communities by Detrented Correspondance
Analysis (DCA) of 145 taxa observed in 62 plots over 6 different hills from Tenke-Fungurume. Later,
on three other hills, Seleck et al. (44) proposed 2 partitions of the slope vegetation (no rocky steppe
studied), one in two groups and another one in seven groups. The first classification distinguishes
only “steppes” and “steppic savannas”, which are equivalent to groups B (what we called sward)
and C in our study. The distinction of 7 communities within the latter two was linked to differences
between the study sites, which does not question our classification. From Kinsevere copper outcrop,
Ilunga wa Ilunga et al. (19) used an unweighted pair group method with arithmetic mean (UPGMA)
to classify their plant species survey into 5 groups, of which two were swards and three were
steppic savannas. Results also showed that differenciating the steppic savannas according to their
position within the relief (Dembo versus slope) was consistent. Other approaches were used by
Boisson et al. (3) or Delhaye et al. (8), which worked over slope gradients rather than vegetation
units to define edaphic niche species or community variation of plant traits, respectively. However,
their results also suggest that there is a significant variability in both the spatial distribution of soil
properties at short distances (decametric scale) and of the plant performance (niche and traits).

The sites are significantly different for soil TOC, Cu and Co contents (table 2). SHC appears as
specifically rich in organic matter and in Cu, which is partly due to the highest proportion of swards
in the sample (50%) compared to Fu1, Fu3 and Fu8 (25%) and especially Fu9 (no sward). It is also
interesting to notice that the sites which are richer in Co (Fu3 and Fu8) are not the same as for
Cu content. This should be attributed to differences in the Cu-Co mineralisation processes between
the hills (15). The analysis of transects on Fu3, Fu5 and Fu8 confirmed the importance of site effect
for Co but not for Cu and TOC. Significant differences were found for TOC in the steppic savannas
with less organic matter in the topsoil in Fu8 and Fu9 compared to the others. The toxicity of the
metals for soil microorganisms cannot be argued to differentiate between sites. The accumulation
of organic matter can be linked to the vegetation development and inputs made through the death
of leaves and roots wich are proportionnal to the biomass on the one side and to the passage of fires
during the dry seasons. Different history of fire burning might explain the variations observed.

Steppic savannas are located on slopes and foot slopes on RAT rock. The soil enrichment in Cu
or Co may be due to inheritage and we should question about the natural variability of parent
material from one side to another. Or the top soil may be contaminated by surface or subsurface
transportation of metals and the characteristics of the relief (intensity and length of the slope,
distance to the summit, microrelief…) and the vegetation cover should be considered as factor of
variability. The vegetation units are heterogeneous (3, 8) and affected by the occurrence of the
natural contamination at the bottom of RSF outcrop and gradual decrease of contamination with
the topography. The analysis of transect Fu5T2 (Table 3 and Figure 4) suggests that there might
effectively be surface transportation from RSF outcrops to soils downstream in the upper part of
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the slope as suggested by previous authors (3, 4, 8, 9, 28, 30, 31). However, the results found by
Kaya Muyumba et al (25) from the study of 42 soil profiles in Tenke-Fungurume hills show that
most subsurface horizons are also contaminated and evidences of topsoil contamination by surface
processes were only present for some swards. This suggests us that the main source of variability
for soil properties within the other vegetation units should be linked to inheritage rather than
surface transportation.

Metric variations of soil chemical characteristics in transects

As a general rule, the swards (B, E) show higher levels of TOC, P, Cu and Co contents and lower
levels in nutrients than the steppic savannas. At the opposite, the groves (I) are characterized by
more favourable pH and nutrient conditions. The steppic savannas (A, C, D) present intermediate
soil chemical properties. Regarding the transitions between the vegetation units, the transects
perpendicular to the slopes show that they were abrupt between swards and steppic savannas and
more gradual between the latter and the Uapaca groves. Soil properties can be affected by burning
of vegetation but effects are not completely understood (40). We found no effect (Fu8T1) or lower
pH in burned steppic savanna compared to unburned, which does not seem to be an expected result
of burning (40). Moreover, it is not realistic that the burning of the vegetation could affect the soil
iron content. Hence, we cannot consider that burning is a real factor of variation in the studied
transects.

Significant differences of soil properties from successive vegetation units located are observed
along the mini transects. The transitions are abrupt between swards and steppic savannas for TOC,
Cu and nutrient (K, P, Mg) content (Table 4). However, among these elements only the Cu content
appears to be a limitation factor for vegetation due to phytotoxicity. Nutrients are clearly linked
to geochemical composition of soil parent material and swards present higher content in P due
to presence of phosphates (pseudomalachite, Cu5(PO4)2(OH)4) in RSF and SDB (41). Higher TOC
content can be associated to organic matter accumulation through reduced microbial activity or
increased root development. Soil P and TOC levels cannot however be considered as limiting factors
but as correlated variables. The transition between steppic savannas and Uapaca groves were
gradual (Figure 4). However, the only common factor between both studied transitions (Fu5T1 and
Fu8T2) was the increase of pH and decrease of CuCaCl2 from steppic savanna to grove. The levels
of Mg and Ca also tend to be higher under the grove. At this point, we don’t know if the pH and
nutrient status are the result, the factor or only correlated variables of the vegetation differentiation
but the reduction of toxicity seems to be a crucial factor (7, 10, 11, 32, 41, 42, 50). Most studies so
far used total Cu or CuEDTA to analyse soil-vegetation relationships in the metalliferousecosystems of
Katanga. However, it seems from our results that the use of CuCaCl2 might be better to discriminate
vegetation units because it is linked to a potential reserve (total Cu) and effective conditions of
solubility such as acido-basic status (32). Assessment of chemical fractionation by geochemical
modelling is another alternative (41).

Conclusion
Our study aimed at deepen our understanding of relationships between soil properties and vegetation
distribution in copper/cobaltiferous ecosystems of Tenke-Fungurme. Physiognomic changes of
vegetation observed in Katanga copper hills were first considered as the expression of the variation
of the soil Cu and Co content. However, if soluble and available forms of Cu contribute to exert
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a strong selection pressure for plants due to phytotoxicity, other properties, such as topographic
position, soil parent material, soil nutrient status, soil depth… also vary within the landscape.

Four factors of variation of soil properties were summarized by multivariate analysis, two are linked
to Cu or Co contamination, one to nutrient status and one to pHKCl. The four of them can be linked
to lithology and they contribute to explain a significant part of the distribution of vegetation units.
However, the residual variability of soil properties within each vegetation unit remains significant.

The lithological factor is important in hilly landscapes even under tropical climate because soils
are rejuvenated by erosion processes. The distribution of swards and various steppic savannas in
the landscape is clearly the result of an adaptation of species to the phytotoxic effect of metals
originating from rocks. Our result suggest that the variation of soil properties which is observed
within the various vegetation units should partially be attributed to differences of geochemical
composition of rocks between sites for Cu and Co contents. These differences however do not
concern the pH nor the nutrient status for which the main source of variability is to be found inside
each metalliferous hill. The distribution of pHKCl and nutrients in the hill follows the mineralogical
composition of rocks: acidic reaction and low nutrient content over siliceous rocks at the top, less
acidic reaction and enrichment in P over mineralized outcrops, intermediate soil reaction, lower P
content and higher K and Mg content over RAT. The soil contamination in Cu and Co also originates
from rock weathering and we think that besides the above-mentioned site effect and topographic
distribution of the rocks, the variability of soil properties within one vegetation unit may be due to
spatial variability of soil parent material and not only due to erosion processes.

A deeper insight was put on the transition between vegetation units at metric scale, which had
never been done so far in the copper ecosystems of Katanga. The abrupt changes of vegetation
units which were clearly identified on the field were all truly explained by the variations of one or
more properties linked to lithology. The key point seem to be the Cu-phytotoxicity which depends on
total reserve in Cu and acidity level and was estimated by 0,01 N CaCl2 extraction in our study.
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