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Introduction 
 

Here are a few poetic lines, inspired by Yuri Gagarin’s reported impressions upon returning to 

Earth in April 1961. 

 

He spoke not of giant wheeling stars, 

nor of Earth’s curved limb, 

but murmured low, as one recalling dream: 

Not fiery flames, nor the black firmament stirred me so, 

but the breath that combs the golden hide of fields— 

where wheat sways, slow and soft, 

the sacred undulation of the Earth’s most humble choir. 

A sacredness born not of creed, but of motion, resonance, and return — 

the wind touching earth, and the Earth responding with a song. 

 

In addition to the above homage to the poetic soul of a cosmonaut, I wish to draw the 

reader’s attention to the extraordinary visual interpretations of wheat fields in motion offered 

by one of history’s greatest painters, Vincent van Gogh. His series of paintings — freely 

available in the public domain1 — provides an artistic context that resonates deeply with the 

present study. These works capture, with remarkable intuition, both the individual stalk 

movement and collective undulations of wheat under wind — precisely the physical dynamics 

explored in this paper. 

While there is no definitive public record of Gagarin utterances upon egress, various 

memoirs and artistic retellings convey his awe not for cosmic spectacles but for the subtle 

beauty of terrestrial nature — particularly the rippling fields seen during the late phases of the 

descent. 

Whether the spectacle Gagarin reported were truly wind-driven oscillations studied here or 

their superposition with the soft topographic undulations of the Kazakhstan green fields (see 

Fig. 1) is open to interpretation. What matters is that, to the returning space farer, the surface 

of Earth — not the cosmos — moved him most. The present work explores the wheat 

oscillations in physical terms: as a coherent mechanical wave field shaped by wind. Motivated 

by the evocative images of Fig. 12, we explore a simple physical model to reproduce the motion 

of undulating wheat fields under wind. The phenomenon has not just biological and ecological 

relevance, but a physical and visual beauty worth modeling. 

 

 
1  https://commons.wikimedia.org/wiki/Category:Wheat_fields_by_Vincent_van_Gogh. 
2  https://www.shutterstock.com/fr/search/undulating-field. 8+ Thousand Undulating Field Royalty-Free 

Images, Stock Photos & Pictures | Shutterstock 
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Fig. 1. Two photographs of wheat field undulations simulated in the present paper, and a photograph provided 

by Prof. Giorgio Benedek, showing in more detail the structure, size and distribution of ripe wheat stalks in a 

wheat field in Tuscany 

 

Analogies to dynamical phenomena observed in condensed matter physics further enrich 

the model. In particular, the waving wheat stalks evoke classical magnons3— collective modes 

of precession in spin lattices — or flexural phonons in graphene sheets4,5, which also involve 

perpendicular displacements in 2-D fields with coupling and restoring forces. These parallels 

not only support the model's realism but suggest it may be extended or abstracted toward 

broader field-theoretic systems in nature. 

In addition to these analogies, the wheat field undulations can also be likened to capillary 

or ripple waves on a water surface6: a thin surface sheet lightly disturbed by a breath (or by 

water-walking insects) where surface tension (replaced in our model by the bending stiffness 

and interactions of the stalks) governs the undulating motion. Moreover, one may draw 

parallels with acoustic waves at the surface of solid substrates, considering the field as a 

compressible medium, where density fluctuations among wheat ears induce lateral pressure 

variations even without explicit mechanical coupling. 

 
3  KITTEL C., Introduction to Solid State Physics, 8th ed., Wiley, 2004. 
4  MARIANI E. & VON OPPEN F., Flexural Phonons in Free-Standing Graphene, Physical Review Letters 100, 

076801 (2008). 
5  JIANG et al., A review on the flexural mode of graphene, J. Phys.: Condens. Matter 27, 083001 (2015). 
6  LIGHTHILL M. J., Waves in Fluids, Cambridge University Press, 1978. LAMB H., Hydrodynamics, 6th ed., 

1932 : classical reference for surface/capillary wave physics. 
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A remarkably early conceptualization of wave-like motion in wheat fields appears in 

Leonardo da Vinci’s Codex Leicester (c. 1508), where he draws an analogy between ripples in 

water and wind-blown grain fields. Observing that wave patterns do not carry water forward 

but rather induce a local, oscillatory disturbance, Leonardo wrote: 

“They also noticed that the waves of the sea, or those produced by a stone thrown into a pond, 

do not move the water forward, but cause a temporary ripple that then returns; they also 

compared them to the undulations of the wind in a field of grain.” 

(«Notavano anche che le onde del mare, o quelle che produce una pietra gettata in uno stagno, 

non spostano l’acqua in avanti, ma causano una temporanea increspatura che poi ritorna 

indietro; le paragonavano anche alle ondulazioni del vento in un campo di grano.») 

This early analogy anticipates the principle behind modern wave theory: that the medium 

(water or wheat) undergoes oscillations without net displacement, in striking agreement with 

the harmonic model developed here. See also7 for information on the Codex Leicester.  

 

 

Model Formulation 
 

We consider a wheat field as a sheet of vertical stalks; each stalk is modeled as an inverted 

pendulum of length L ~ 1 m with a tip mass m. The stalk resists its angular deflection from the 

vertical by a linear restoring torque characterized by a bending stiffness κ. The field is subjected 

to a force field f(x,y,t) exerted by the wind. 

Using Newton’s law we get an equation  

 

m
∂2z(x, y, t)

∂t2
=  −

κ

L2
𝑧(𝑥, 𝑦, 𝑡) + f(𝑥, 𝑦, 𝑡) 

 

for the vertical component z of pendulum-like motion of each stalk. 

To allow waves to form (rather than incoherent wagging of the stalks), let’s introduce a weak 

nearest-neighbor coupling term. This gives us a Laplacian term ∇2z with a small wave speed 

coefficient v2 (discussed below). The final Partial Differential Equation (PDE) for z(x,y,t) is 

then 

 

 ∂²z/∂t² - v²∇²z + ω₀²z = (1/m) f(x,y,t) (1) 

 

where ω₀² = κ / (m L²) is the natural frequency squared of an individual stalk and v is the wave 

velocity of the coherent spread of motion through the field. 

 

 

Parameters 
 

To place the model on biological footing, we estimate the bending stiffness κ of wheat stalks 

based on mechanical properties of hollow, cylindrical plant tissues. We use the relation κ=EI, 

where E is the Young modulus and I is the second moment of area of a hollow cylinder,  

 

 
7 ISAACSON W., Leonardo da Vinci, Simon & Schuster, 2018; 

Codex Leicester: facsimile edition & commentary: Leonardo da Vinci, Codex Leicester, facsimile edition with 

transcription and commentary. Edited by Carlo Pedretti. Florence: Giunti Barbèra, 1982. 
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 I =
π

64
[(D4 − (D − 2t)4] (2) 

 

which is a standard result from beam theory in mechanical engineering and used in Niklas8. 

We estimate a stalk outer diameter D ≈ 5 mm and wall thickness t ≈ 0.5 mm. E can range from 

1 to 10 GPa reflecting the variable stiffness along the length of the stalk. Literature estimates 

of bending stiffness in cereal stems support this range9. The stalk is composed of cellulose, 

hemicellulose (molecular glue made of polysaccharide), and lignin (a biopolymer that stiffens 

plant cell walls). We adopt the representative value E ∼ 5 GPa consistent with dry, cellulose-

based plant tissue. One obtains κ = EI ∼ 2×10−3 Nm. This value gives a natural frequency ω0 ∼ 

2 rad/s (for L = 1 m stalk) used in our simulation (see below). Note that κ may also vary under 

different conditions (e.g., green vs. dry stalks, etc.). 

Although each stalk responds individually to wind, neighboring wheat plants interact in 

several ways. In dense fields, a dynamical interaction can arise through aerodynamic coupling, 

where the airflow deflected by one moving stalk alters the wind field felt by its neighbors. In 

addition, inter stalk interaction may take place via their extended root system in the soil; 

Moreover, mechanical contact between ears and stalks also transmit forces laterally, 

particularly under high wind. These effects justify the presence of nearest-neighbor coupling 

in our model, explaining how coherent wave motion propagates across the field. An average 

velocity v will result in a collective wavelength-dependent wave frequency ω(k), despite the 

autonomy of individual stalks. In view of the predominant effect of the wind forcing, the 

damping associated with the nearest-neighbor interaction is ignored. 

 

 

Klein Gordon Equation (KGE) 
 

The PDE (1) is a Klein-Gordon-type wave equation (KGE). Before quantum mechanics, such 

equations did not have a specific name, but its form was already well known in classical 

physics, particularly as a wave equation with a mass-like term. Such an equation arises as a 

universal description of wave-like dynamics in many systems with local inertia, lateral 

coupling, and restoring forces — of which the present wheat field is just one vivid and 

illustrative instance. In particular, a KGE can describe elastic membranes and plates (transverse 

displacements), coupled pendula chains, acoustic fields at the surface of 3-D media with 

restoring forces, lattice models with nearest-neighbor coupling, etc. 

The reader may be interested in how the name KGE arose historically in quantum theory. 

Schrödinger’s equation is not consistent with relativity because the equation does not treat time 

on the same footing as space coordinates. Klein10 and Gordon11 original works were early 

attempts to correct that by formulating a relativistic invariant quantum equation. In relativity, 

energy E and momentum p are related by: 

 

 E2=p2c2+m2c4 (3) 

 

where c is here the velocity of light. 

 
8  NIKLAS K. J., Plant Biomechanics, University of Chicago Press, 1992. 
9  NIKLAS K. J., ibid. 
10  KLEIN O., The Atomicity of Electricity as a Quantum Theory Law, Nature 118 (1926): 516. 

https://doi.org/10.1038/118516a0 
11  GORDON W., Der Comptoneffekt nach der Schrödingerschen Theorie, Zeitschrift für Physik 40 (1926): 117–

133. 

https://doi.org/10.1038/118516a0
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In quantum mechanics, energy and momentum are operators given by (in units ℏ = 1, c = 1): 

E → i/∂t, and p = −i∇. Substituting these into the energy-momentum relation (3), gives the 

KGE for the free-field scalar wave function ψ 

 

 ∂2ψ/∂t2−∇2ψ+m2ψ=0 (4) 

 

which has an identical form to (1) for f = 0. The quantum mechanical KGE had two main 

drawbacks: i) for the electron, it did not include spin and ii) the solutions in a central field did 

not agree with the observed spectrum of the hydrogen atom. It was Dirac, in 1928, who 

famously discovered the correct quantum equation for the electron. Dirac’s equation, besides 

several other virtues, gave the electron a spin (showing its relativistic origin) and produced 

solutions in a Coulomb in near-perfect agreement with the existing experiments. Further 

experiments, performed later, led to the discovery of the Lamb shift and the hyperfine structures 

of the hydrogen spectrum (caused by the coupling between the electron and the proton spins) 

which launched quantum electrodynamics (QED). In quantum field theory the KGE was 

reinstated to represent -mesons12 of zero spin and charge 0 or ±1, after the discovery of these 

particles. 

 

 

Free Field Dynamics and Analogies 
 

Consider first the homogeneous KGE for a free wheat field:  

 

 ∂2z/∂t2−v2∇2z+ω02z = 0 (5) 
 

Plane waves  

 

 z(x,y,t) = A cos (k⋅r − ωt) (6) 
 

are solutions provided a parabolic dispersion relation is satisfied: 

 

 ω2= ω02 + v2k2 (7) 
 

or, for small k, 

 

 ω = ω0 + v2k2/2ω0 (8) 
 

This behavior is entirely similar to that of classical spin waves (whose quanta are called 

magnons) in ferromagnetic materials. In the long-wavelength limit, the magnon dispersion 

relation is also quadratic in k: 

 

 ℏω(k)= ω0 + zJSa2k2 (9) 
 

where S is the spin, a is the lattice constant, J is the exchange interaction constant in 

Heisenberg’s model of ferromagnetism13., z is the number of nearest neighbors. The value of the 

 
12  PESKIN Michael E. and SCHROEDER Daniel V., An Introduction to Quantum Field Theory, Reading, MA: 

Addison-Wesley, 1995. ISBN: 978-0201503975. 
13  ASHCROFT Neil W. and MERMIN N. David, Solid State Physics, Holt, Rinehart and Winston, 1976. 
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frequency gap ω0 = Heff involves the spin gyromagnetic ratio  and the local magnetic field Heff 
(external + anisotropic).  

It is interesting to note that the magnons dispersion relation in antiferromagnetic (AFM) 

materials, by contract to the ferromagnetic (FM) case of Eq. (9), has a magnon branch linear 

at small k: ω = ω0 + bk, where b  JSa is yet another constant. The presence of two coupled 

sublattices of counter-oriented spins in AFM is what gives the linear, acoustic-like magnon 

branch. In addition, AFM materials have a magnon “optical” branch as well, displaying a 

quadratic dispersion above a gap, similar to (9). In FM materials the absence of counterbalance 

between opposite spins leads to a single, quadratic, “free-particle-like” dispersion. 

Another analogy is provided by the transverse (flexural) phonons in an overlayer graphene 

sheet14 (a graphite monolayer over a substrate), share this quadratic form in the small k limit: 

 

 ω(k) = ω0 + αk2 (10) 

 

where ω0 represents the binding rigidity to the substrate and where the coefficient α is related 

to the bending resistance and mass density of the overlayer sheet.  

In all three cases (8)-(10), the quadratic form is in fact imposed by reflection and rotational 

symmetry for out-of-plane motions in a free-standing 2-D sheet. 

This quadratic behavior contrasts with the linear dispersion  

 

 ω = kv (11) 
 

of acoustic phonons of any polarization in elastic materials, where v is the mode velocity. These 

materials also possess “optical” branches of quadratic dispersion for small k, as well as families 

of localized phonon modes15 associated with the symmetry breaking at surfaces, edges and 

corners.  

 

 

Wind Forcing Function 
 

We model the wind forcing as a superposition of a few traveling wave modes: 

 

  f(x, y, z)   = ∑ Aₙ cos (kₙ · r − ωₙt +  φₙ)                      

𝑛

(12) 

 

where kₙ = (kₓₙ, kyₙ) are 2-D wave vectors, Aₙ amplitudes, ωₙ frequencies, and φₙ phases. This 

non-random forcing is meant to mimic the effect of coherent gusts and atmospheric travelling 

waves sweeping over the field. All parameters defining the wind forcing used here (see 

appendix) are randomized at the beginning of the simulation but remain fixed throughout. The 

time dependence enters only through oscillatory terms ωnt producing a structured and coherent 

field evolution rather than turbulent or stochastic motion. 

The forcing function f(x,y,t), while harmonic in time and space, does not itself satisfy the 

KGE. Rather, it acts as a structured external driver. The field z(x,y,t) responds according to its 

own modal structure — governed by the above dispersion relation — and resonates selectively 

 
14  OSHIMA, S., ITOH A., ROKUTA E., TANAKA N. and YAMASHITA K., Hetero-Epitaxial Double-Atomic-Layer 

System of Monolayer Graphene/Monolayer h-BN on Ni(111) Studied by HREELS, In: Studies of Surface 

Science and Catalysis, Vol. 132, 2000. 
15  BENEDEK G.  and TØNNIES J. P., Atomic Scale Dynamics at Surfaces: Theory and Experimental Studies with 

Helium Atom Scattering, Springer Series in Surface Sciences, Vol. 63, Springer, Berlin, Heidelberg, 2018. 
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when the driving overlaps with natural modes. This driving term leads to the structured 

wavefield seen in the simulations below, despite the non-resonant origin of the input. 

 

 

Simulation 
 

We use the realistic parameters: 

• Tip mass: m = 0.005 kg 

• Natural frequency: ω₀ = 2 rad/s 

• 2-D domain: x, y ∈ [0, 50] m 

For simplicity, we have not included a damping term like ∂z/∂t in the KGE (1) whose effect 

would be to dissipate any intrinsic field motion, independent of the force-field. In the 

simulation, we focus on the late-time behavior of the system, where transient waves arising 

from initial conditions have decayed or dispersed. The steady-state displacement is then 

approximated as: 

 

 z(x,y,t) = f(x,y,t)/mω02 (13) 
 

The resulting pattern represents the particular solution to the inhomogeneous KGE under 

structured wind forcing — capturing the field’s dynamic response as it synchronizes with the 

driving modes. For intuition and visualization, we consider the quasi-static approximation z ≈ 

f/mω0
2 valid at long time, when the field response is dominated by the local restoring force and 

the inertial and spatial coupling terms have become small. The quasi-static approximation 

captures the large-scale undulation pattern shaped by the wind field. A more complete treatment 

would involve time-resolved integration of the field’s wave response. 

Pattern snapshots of the field are shown in Fig. 2 in two states of maturation. 
 

 

 
Fig.2. Simulated wheat field undulations (left: immature; right: mature). 

The color scales are the same (both from 0 to 1 dm). 

 

 

Discussion 
 

The model presented here offers a simple yet powerful lens into natural wave phenomena in 

plant fields. Inspired by Gagarin’s as well as Van Gogh’s poetic visions, it bridges mechanics, 
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aesthetics, and nature. The visual realism of the simulated undulations demonstrates the 

expressiveness of basic physical models when thoughtfully parameterized. 

By tuning the wavevector distribution in the forcing field, we can simulate different scales 

of atmospheric modulation. Lower k components lead to slower, broader undulations — 

resembling the kilometer-scale patterns seen from above — while higher k components 

produce more rapidly varying wavefronts on the scale of individual crop densities. 

Although analogies to phonons, magnons, or ripplons help conceptually frame the wheat 

field as a wave-supporting medium, any notion of discrete excitations—agrons, say—remains 

poetic. The energy scale of a single field mode, ℏω0∼10−34 J is vanishingly small — well below 

thermal or vibrational noise. No physical experiment could detect such quanta. In a similar 

way, a bended arc may be conceived as a macroscopic “mechanical laser,” but the elementary 

excitations are so tiny that one can hardly speak of arcons. These terms are used here by 

analogy, to emphasize the layered structure of response: from individual motion to collective 

waves. 

 

 

Appendix 
 

Parameter Symbol Value / Range Notes 

Number of modes N 50 Total superposed wave components 

Domain size Lx×Ly 50 m × 50 m Horizontal simulation area 

Grid resolution Nx×Ny 300 × 300 For spatial fidelity 

Wavevector magnitude kn [0.63, 6.28] m⁻¹ Corresponds to wavelengths of 1–10 m 

Wavevector direction 

range 
θn 

[120°, 150°] or 

[2π/3,5π/6] 
Reflecting wind from SE toward NW 

Amplitude scaling An ∼ kn
−2 

Inverse-square decay with wavevector 

magnitude 

Phase offset ϕn Uniform in [0, 2π] Random for visual variety 
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Résumé 

 

Nous présentons un modèle physique minimal pour décrire le mouvement ondulatoire des 

champs de blé sous l’influence d’un forçage éolien structuré. Inspirés par un souvenir poétique 

attribué à Youri Gagarine et inspirés par les peintures de Van Gogh représentant des champs de 

blé, nous modélisons le déplacement des extrémités des tiges comme un champ scalaire régi 

par une équation d'onde bidimensionnelle de type Klein-Gordon avec forçage externe. La 

fonction de forçage est une superposition de modes harmoniques d’ondes induits par le vent. 

Malgré la simplicité du modèle, les motifs spatiaux simulés présentent une résonance visuelle 

et structurelle avec la dynamique de champ observée. Nous abordons également des 

phénomènes d'ondulation analogues dans plusieurs domaines de la physique de la matière 

condensée. 

 

 

 

Abstract 

 

We present a minimal physical model to describe the undulating motion of wheat fields under 

the influence of structured wind forcing. Inspired by a poetic recollection attributed to Yuri 

Gagarin and spurred by van Gogh paintings of wheat fields, we model the tip displacement of 

stalks as a scalar field governed by a two-dimensional wave equation of the Klein-Gordon-type 

with external forcing. The forcing function is a superposition of wind-induced wave harmonic 

modes. Despite the simplicity of the model, the simulated spatial patterns exhibit visual and 

structural resonance with observed field dynamics. We also discuss analogous undulation 

phenomena in several areas of condensed matter physics. 


