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A Wave-Theoretic Model of Wind-Induced Wheat Field Motion

Amand Lucas

Introduction

Here are a few poetic lines, inspired by Yuri Gagarin’s reported impressions upon returning to
Earth in April 1961.

He spoke not of giant wheeling stars,

nor of Earth’s curved limb,

but murmured low, as one recalling dream:

Not fiery flames, nor the black firmament stirred me so,

but the breath that combs the golden hide of fields—

where wheat sways, slow and sofft,

the sacred undulation of the Earth’s most humble choir.

A sacredness born not of creed, but of motion, resonance, and return —
the wind touching earth, and the Earth responding with a song.

In addition to the above homage to the poetic soul of a cosmonaut, I wish to draw the
reader’s attention to the extraordinary visual interpretations of wheat fields in motion offered
by one of history’s greatest painters, Vincent van Gogh. His series of paintings — freely
available in the public domain! — provides an artistic context that resonates deeply with the
present study. These works capture, with remarkable intuition, both the individual stalk
movement and collective undulations of wheat under wind — precisely the physical dynamics
explored in this paper.

While there is no definitive public record of Gagarin utterances upon egress, various
memoirs and artistic retellings convey his awe not for cosmic spectacles but for the subtle
beauty of terrestrial nature — particularly the rippling fields seen during the late phases of the
descent.

Whether the spectacle Gagarin reported were truly wind-driven oscillations studied here or
their superposition with the soft topographic undulations of the Kazakhstan green fields (see
Fig. 1) is open to interpretation. What matters is that, to the returning space farer, the surface
of Earth — not the cosmos — moved him most. The present work explores the wheat
oscillations in physical terms: as a coherent mechanical wave field shaped by wind. Motivated
by the evocative images of Fig. 12, we explore a simple physical model to reproduce the motion
of undulating wheat fields under wind. The phenomenon has not just biological and ecological
relevance, but a physical and visual beauty worth modeling.
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Fig. 1. Two photographs of wheat field undulations simulated in the present paper, and a photograph provided
by Prof. Giorgio Benedek, showing in more detail the structure, size and distribution of ripe wheat stalks in a
wheat field in Tuscany

Analogies to dynamical phenomena observed in condensed matter physics further enrich
the model. In particular, the waving wheat stalks evoke classical magnons®— collective modes
of precession in spin lattices — or flexural phonons in graphene sheets*°, which also involve
perpendicular displacements in 2-D fields with coupling and restoring forces. These parallels
not only support the model's realism but suggest it may be extended or abstracted toward
broader field-theoretic systems in nature.

In addition to these analogies, the wheat field undulations can also be likened to capillary
or ripple waves on a water surface®: a thin surface sheet lightly disturbed by a breath (or by
water-walking insects) where surface tension (replaced in our model by the bending stiffness
and interactions of the stalks) governs the undulating motion. Moreover, one may draw
parallels with acoustic waves at the surface of solid substrates, considering the field as a
compressible medium, where density fluctuations among wheat ears induce lateral pressure
variations even without explicit mechanical coupling.

8 KITTEL C., Introduction to Solid State Physics, 8th ed., Wiley, 2004.

4 MARIANI E. & VON OPPEN F., Flexural Phonons in Free-Standing Graphene, Physical Review Letters 100,
076801 (2008).

5 JIANG et al., 4 review on the flexural mode of graphene, J. Phys.: Condens. Matter 27, 083001 (2015).

6 LIGHTHILL M. J., Waves in Fluids, Cambridge University Press, 1978. LAMB H., Hydrodynamics, 6th ed.,
1932 : classical reference for surface/capillary wave physics.
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A remarkably early conceptualization of wave-like motion in wheat fields appears in
Leonardo da Vinci’s Codex Leicester (c. 1508), where he draws an analogy between ripples in
water and wind-blown grain fields. Observing that wave patterns do not carry water forward
but rather induce a local, oscillatory disturbance, Leonardo wrote:

“They also noticed that the waves of the sea, or those produced by a stone thrown into a pond,
do not move the water forward, but cause a temporary ripple that then returns, they also
compared them to the undulations of the wind in a field of grain.”
(«Notavano anche che le onde del mare, o quelle che produce una pietra gettata in uno stagno,
non spostano l’acqua in avanti, ma causano una temporanea increspatura che poi ritorna
indietro; le paragonavano anche alle ondulazioni del vento in un campo di grano.»)

This early analogy anticipates the principle behind modern wave theory: that the medium
(water or wheat) undergoes oscillations without net displacement, in striking agreement with
the harmonic model developed here. See also’ for information on the Codex Leicester.

Model Formulation

We consider a wheat field as a sheet of vertical stalks; each stalk is modeled as an inverted
pendulum of length L ~ 1 m with a tip mass m. The stalk resists its angular deflection from the
vertical by a linear restoring torque characterized by a bending stiffness k. The field is subjected
to a force field f(x,y,t) exerted by the wind.

Using Newton’s law we get an equation

2%z(x,y, 1) K
m—s = —Ez(x,y, t) +1f(x,y,t)
for the vertical component z of pendulum-like motion of each stalk.

To allow waves to form (rather than incoherent wagging of the stalks), let’s introduce a weak
nearest-neighbor coupling term. This gives us a Laplacian term V?z with a small wave speed
coefficient v (discussed below). The final Partial Differential Equation (PDE) for z(x,y,t) is
then

0?z/0t* - v*V?z + wo’z = (1/m) f(x,y,t) (D)
where wo® =k / (m L?) is the natural frequency squared of an individual stalk and v is the wave
velocity of the coherent spread of motion through the field.
Parameters
To place the model on biological footing, we estimate the bending stiffness k of wheat stalks

based on mechanical properties of hollow, cylindrical plant tissues. We use the relation x=EI,
where E is the Young modulus and I is the second moment of area of a hollow cylinder,

" ISAACSON W., Leonardo da Vinci, Simon & Schuster, 2018;
Codex Leicester: facsimile edition & commentary: Leonardo da Vinci, Codex Leicester, facsimile edition with
transcription and commentary. Edited by Carlo Pedretti. Florence: Giunti Barbéra, 1982.
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which is a standard result from beam theory in mechanical engineering and used in Niklas®.
We estimate a stalk outer diameter D =~ 5 mm and wall thickness t = 0.5 mm. E can range from
1 to 10 GPa reflecting the variable stiffness along the length of the stalk. Literature estimates
of bending stiffness in cereal stems support this range®. The stalk is composed of cellulose,
hemicellulose (molecular glue made of polysaccharide), and lignin (a biopolymer that stiffens
plant cell walls). We adopt the representative value E ~ 5 GPa consistent with dry, cellulose-
based plant tissue. One obtains k = EI ~ 2x1073Nm. This value gives a natural frequency wo ~
2 rad/s (for L = 1 m stalk) used in our simulation (see below). Note that k may also vary under
different conditions (e.g., green vs. dry stalks, etc.).

Although each stalk responds individually to wind, neighboring wheat plants interact in
several ways. In dense fields, a dynamical interaction can arise through aerodynamic coupling,
where the airflow deflected by one moving stalk alters the wind field felt by its neighbors. In
addition, inter stalk interaction may take place via their extended root system in the soil;
Moreover, mechanical contact between ears and stalks also transmit forces laterally,
particularly under high wind. These effects justify the presence of nearest-neighbor coupling
in our model, explaining how coherent wave motion propagates across the field. An average
velocity v will result in a collective wavelength-dependent wave frequency w(k), despite the
autonomy of individual stalks. In view of the predominant effect of the wind forcing, the
damping associated with the nearest-neighbor interaction is ignored.

Klein Gordon Equation (KGE)

The PDE (1) is a Klein-Gordon-type wave equation (KGE). Before quantum mechanics, such
equations did not have a specific name, but its form was already well known in classical
physics, particularly as a wave equation with a mass-like term. Such an equation arises as a
universal description of wave-like dynamics in many systems with local inertia, lateral
coupling, and restoring forces — of which the present wheat field is just one vivid and
illustrative instance. In particular, a KGE can describe elastic membranes and plates (transverse
displacements), coupled pendula chains, acoustic fields at the surface of 3-D media with
restoring forces, lattice models with nearest-neighbor coupling, etc.

The reader may be interested in how the name KGE arose historically in quantum theory.
Schrodinger’s equation is not consistent with relativity because the equation does not treat time
on the same footing as space coordinates. Klein!® and Gordon!! original works were early
attempts to correct that by formulating a relativistic invariant quantum equation. In relativity,
energy E and momentum p are related by:

E2:p2c2+m2c4 (3)

where c is here the velocity of light.

8 NikLas K. J., Plant Biomechanics, University of Chicago Press, 1992.

9 NIKLAS K. J., ibid.

© KLEIN O., The Atomicity of Electricity as a Quantum Theory Law, Nature 118 (1926): 516.
https://doi.org/10.1038/118516a0

11 GORDON W., Der Comptoneffekt nach der Schrédingerschen Theorie, Zeitschrift fiir Physik 40 (1926): 117—
133.
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In quantum mechanics, energy and momentum are operators given by (inunits 2= 1,c = 1):
E — i/0t, and p = —iV. Substituting these into the energy-momentum relation (3), gives the
KGE for the free-field scalar wave function y

OPy/ot—VAy+mAy=0 4)

which has an identical form to (1) for f = 0. The quantum mechanical KGE had two main
drawbacks: 1) for the electron, it did not include spin and ii) the solutions in a central field did
not agree with the observed spectrum of the hydrogen atom. It was Dirac, in 1928, who
famously discovered the correct quantum equation for the electron. Dirac’s equation, besides
several other virtues, gave the electron a spin (showing its relativistic origin) and produced
solutions in a Coulomb in near-perfect agreement with the existing experiments. Further
experiments, performed later, led to the discovery of the Lamb shift and the hyperfine structures
of the hydrogen spectrum (caused by the coupling between the electron and the proton spins)
which launched quantum electrodynamics (QED). In quantum field theory the KGE was
reinstated to represent t-mesons'? of zero spin and charge 0 or +1, after the discovery of these
particles.

Free Field Dynamics and Analogies
Consider first the homogeneous KGE for a free wheat field:
0%z/0t2—v2V2z+wo?z = 0 (5)
Plane waves
z(x,y,t) = A cos (k'r — wt) (6)
are solutions provided a parabolic dispersion relation is satisfied:
w?= wo? + v2k? (7
or, for small k,
W = wo + vZ2k?/2wo (8)

This behavior is entirely similar to that of classical spin waves (whose quanta are called
magnons) in ferromagnetic materials. In the long-wavelength limit, the magnon dispersion
relation is also quadratic in k:

hw (k)= wo + zJSazk? 9

where S is the spin, a is the lattice constant, J is the exchange interaction constant in
Heisenberg’s model of ferromagnetism®?., z is the number of nearest neighbors. The value of the

12" PESKIN Michael E. and SCHROEDER Daniel V., An Introduction to Quantum Field Theory, Reading, MA:
Addison-Wesley, 1995. ISBN: 978-0201503975.
13 ASHCROFT Neil W. and MERMIN N. David, Solid State Physics, Holt, Rinehart and Winston, 1976.
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frequency gap wo = YHer involves the spin gyromagnetic ratio y and the local magnetic field Hes
(external + anisotropic).

It is interesting to note that the magnons dispersion relation in antiferromagnetic (AFM)
materials, by contract to the ferromagnetic (FM) case of Eq. (9), has a magnon branch /linear
at small k: ® = wo + bk, where b ~ JSa is yet another constant. The presence of two coupled
sublattices of counter-oriented spins in AFM is what gives the linear, acoustic-like magnon
branch. In addition, AFM materials have a magnon “optical” branch as well, displaying a
quadratic dispersion above a gap, similar to (9). In FM materials the absence of counterbalance
between opposite spins leads to a single, quadratic, “free-particle-like” dispersion.

Another analogy is provided by the transverse (flexural) phonons in an overlayer graphene
sheet'* (a graphite monolayer over a substrate), share this quadratic form in the small k limit:

o(k) = wo + ak? (10)

where mo represents the binding rigidity to the substrate and where the coefficient a is related
to the bending resistance and mass density of the overlayer sheet.

In all three cases (8)-(10), the quadratic form is in fact imposed by reflection and rotational
symmetry for out-of-plane motions in a free-standing 2-D sheet.

This quadratic behavior contrasts with the linear dispersion

w = kv (11)

of acoustic phonons of any polarization in elastic materials, where v is the mode velocity. These
materials also possess “optical” branches of quadratic dispersion for small k, as well as families
of localized phonon modes®™® associated with the symmetry breaking at surfaces, edges and
corners.

Wind Forcing Function

We model the wind forcing as a superposition of a few traveling wave modes:

f(x,y,z) = ZAH cos (ky ' r— wpt + @p) (12)
n

where k, = (ku, kyn) are 2-D wave vectors, A, amplitudes, o, frequencies, and ¢, phases. This
non-random forcing is meant to mimic the effect of coherent gusts and atmospheric travelling
waves sweeping over the field. All parameters defining the wind forcing used here (see
appendix) are randomized at the beginning of the simulation but remain fixed throughout. The
time dependence enters only through oscillatory terms mnt producing a structured and coherent
field evolution rather than turbulent or stochastic motion.

The forcing function f(x,y,t), while harmonic in time and space, does not itself satisfy the
KGE. Rather, it acts as a structured external driver. The field z(x,y,t) responds according to its
own modal structure — governed by the above dispersion relation — and resonates selectively

14 OsHIMA, S., ITOH A., ROKUTA E., TANAKA N. and YAMASHITA K., Hetero-Epitaxial Double-Atomic-Layer
System of Monolayer Graphene/Monolayer h-BN on Ni(111) Studied by HREELS, In: Studies of Surface
Science and Catalysis, Vol. 132, 2000.

15 BENEDEK G. and TONNIES J. P., Atomic Scale Dynamics at Surfaces: Theory and Experimental Studies with
Helium Atom Scattering, Springer Series in Surface Sciences, Vol. 63, Springer, Berlin, Heidelberg, 2018.
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when the driving overlaps with natural modes. This driving term leads to the structured
wavefield seen in the simulations below, despite the non-resonant origin of the input.

Simulation

We use the realistic parameters:
* Tip mass: m = 0.005 kg
* Natural frequency: wo = 2 rad/s
* 2-D domain: x, y € [0, 50] m

For simplicity, we have not included a damping term like y0z/0t in the KGE (1) whose effect
would be to dissipate any intrinsic field motion, independent of the force-field. In the
simulation, we focus on the late-time behavior of the system, where transient waves arising
from initial conditions have decayed or dispersed. The steady-state displacement is then
approximated as:

z(x,y,t) = f(x,y,t) /mwo? (13)

The resulting pattern represents the particular solution to the inhomogeneous KGE under
structured wind forcing — capturing the field’s dynamic response as it synchronizes with the
driving modes. For intuition and visualization, we consider the quasi-static approximation z =
f/mwo? valid at long time, when the field response is dominated by the local restoring force and
the inertial and spatial coupling terms have become small. The quasi-static approximation
captures the large-scale undulation pattern shaped by the wind field. A more complete treatment
would involve time-resolved integration of the field’s wave response.

Pattern snapshots of the field are shown in Fig. 2 in two states of maturation.
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Fig.2. Simulated wheat field undulations (left: immature; right: mature).
The color scales are the same (both from 0 to 1 dm).
Discussion

The model presented here offers a simple yet powerful lens into natural wave phenomena in
plant fields. Inspired by Gagarin’s as well as Van Gogh’s poetic visions, it bridges mechanics,
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aesthetics, and nature. The visual realism of the simulated undulations demonstrates the
expressiveness of basic physical models when thoughtfully parameterized.

By tuning the wavevector distribution in the forcing field, we can simulate different scales
of atmospheric modulation. Lower k components lead to slower, broader undulations —
resembling the kilometer-scale patterns seen from above — while higher k components
produce more rapidly varying wavefronts on the scale of individual crop densities.

Although analogies to phonons, magnons, or ripplons help conceptually frame the wheat
field as a wave-supporting medium, any notion of discrete excitations—agrons, say—remains
poetic. The energy scale of a single field mode, Zwo~1073*J is vanishingly small — well below
thermal or vibrational noise. No physical experiment could detect such quanta. In a similar
way, a bended arc may be conceived as a macroscopic “mechanical laser,” but the elementary
excitations are so tiny that one can hardly speak of arcons. These terms are used here by
analogy, to emphasize the layered structure of response: from individual motion to collective
waves.

Appendix

Parameter Symbol Value / Range Notes
Number of modes N 50 Total superposed wave components
Domain size LxxLy 50 m x 50 m Horizontal simulation area
Grid resolution NxxNy 300 x 300 For spatial fidelity
Wavevector magnitude Kkn [0.63,6.28] m™  Corresponds to wavelengths of 1-10 m
Wavevector direction On [120%, 150°] or Reflecting wind from SE toward NW
range [27/3,57/6]
Amplitude scaling AL k2 Invers.e—square decay with wavevector

magnitude

Phase offset ®n Uniform in [0, 2x] Random for visual variety
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Résumé

Nous présentons un modele physique minimal pour décrire le mouvement ondulatoire des
champs de blé sous I’influence d’un forgage €¢olien structuré. Inspirés par un souvenir poétique
attribué a Youri Gagarine et inspirés par les peintures de Van Gogh représentant des champs de
blé, nous modélisons le déplacement des extrémités des tiges comme un champ scalaire régi
par une équation d'onde bidimensionnelle de type Klein-Gordon avec forgage externe. La
fonction de forgage est une superposition de modes harmoniques d’ondes induits par le vent.
Malgré la simplicité du modéle, les motifs spatiaux simulés présentent une résonance visuelle
et structurelle avec la dynamique de champ observée. Nous abordons également des
phénomenes d'ondulation analogues dans plusieurs domaines de la physique de la maticre
condensée.

Abstract

We present a minimal physical model to describe the undulating motion of wheat fields under
the influence of structured wind forcing. Inspired by a poetic recollection attributed to Yuri
Gagarin and spurred by van Gogh paintings of wheat fields, we model the tip displacement of
stalks as a scalar field governed by a two-dimensional wave equation of the Klein-Gordon-type
with external forcing. The forcing function is a superposition of wind-induced wave harmonic
modes. Despite the simplicity of the model, the simulated spatial patterns exhibit visual and
structural resonance with observed field dynamics. We also discuss analogous undulation
phenomena in several areas of condensed matter physics.



