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Abstract
The Masing conditions establish a criterion to relate the loading curve of a hysteretic system (e.g.,
systems with friction or plasticity) to its complete hysteresis loop. For the field of joint mechanics, where
hysteretic models are often used to describe the dissipative, tangential behavior within an interface,
the Masing conditions allow for significant computational savings when the normal load is constant.
In practice, though, jointed systems experience time varying normal forces that modify the tangential
behavior of the system. Consequently, the hysteretic behavior of jointed structures do not adhere to the
Masing conditions. In this work, this discrepancy between the Masing conditions and behavior exhibited
by jointed structures is explored, and it is hypothesized that if the Masing conditions accounted for
variations in normal force, then they would more accurately represent jointed structures. A new set of
conditions is introduced to the original set of Masing conditions, yielding a “Masing manifold” that spans
the tangential displacement-tangential force-normal force space. Both a simple harmonic oscillator and
a built-up structure are investigated for the case of elastic dry friction, and the results show that the
hysteresis of both of these systems conforms to the three dimensional Masing manifold exactly, provided
that a set of constraints are satisfied, even though the hysteresis does not conform with the original
Masing conditions.
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1 Introduction and Context

Jointed structures are ubiquitous in modern engineering. As two components are joined together, the resulting
interface exhibits nonlinear, hysteretic behavior. This behavior can change the stiffness and significantly change
the damping characteristics of a system as the excitation of the joint is increased [1, 2, 3]. The added damping of
jointed interfaces can have significant ramifications depending on the application area. For engines and aeroturbines
in particular, damping due to joints can lead to parasitic energy losses that decrease the efficiency of the engine,
increase fuel consumption, and ultimately generate more greenhouse gasses that contribute to climate change
[4, 5, 2]. In this and other contexts, the dissipation at an interface can significantly increase the likelihood of a part
failing due to fretting fatigue [6, 7, 8, 9].

Understanding the exact physics of the frictional interactions within the interface is an open challenge [10, 9].
Recent experiments have shed new light on the physics of the interface that challenge many of the commonly
held assumptions for modeling jointed structures. In particular, high speed digital image correlation experiments
[11, 12, 13, 14] have demonstrated that the interface itself is dynamically active during excitation, exhibiting opening
and closing behavior that invalidates the previous modeling assumption that the interface kinematics can be regularized
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[15]. These observations were followed by direct measurements of the contact pressure within the interface [16],
which showed that areas within the interface that had previously been assumed to be stuck exhibited significant
pressure fluctuations during dynamic excitation (e.g., see the assumptions behind the modeling approaches evaluated
in [17]). The bolts are a dynamic component of the system that fluctuate in the load that they carry during dynamic
excitation [18, 19], leading to the interface exhibiting significant time and position dependent fluctuations in normal
contact pressure, as verified by high fidelity computational models [20, 21, 22].

The fidelity of modeling approaches representing these experimental observations has been mixed. The modeling
of jointed interfaces can be conceptually divided into time domain (e.g., transient) and frequency domain (including
quasi-static) applications. While there are many similarities between the two domains, the modeling of jointed interfaces
in both the frequency domain (e.g., such as by the use of the Harmonic Balance method [23, 24, 25, 26, 27, 17] or
the Extended Periodic Motion Concept [28] to study systems with frictional interfaces) and the quasi-static domain
[29, 30, 31, 32] has mostly exploited the Masing conditions in order to make computations more tractable and
efficient. These simulation methods assume that the system is being driven at a single frequency (usually, excluding
multi-harmonic balance methods [23, 33, 26]), that it is oscillating between two extrema, and that the hysteretic
behavior is symmetric for the forward and backward loading conditions. Higher harmonics and transient effects are
thus neglected. For the most part, these models assume a constant normal force across the interface; however, this
over-simplifies the interfacial physics and leads to erroneous predictions of a system’s response [19, 21]. While more
realistic modeling approaches do exist [34, 35, 36, 21, 37, 22], they tend to be less computationally efficient as they
are incompatible with the assumptions of the Masing conditions.

1.1 The Masing Conditions

The Masing conditions [38, 39, 2, 40] stipulate that, for steady state responses, the hysteretic behavior of a system
can be uniquely determined from the loading curve formed by taking a system at rest and loading it to its maximum
steady state displacement. This loading curve is related to the steady state hysteresis loop via:

1. The forward portion of the hysteresis loop is identical to the initial loading curve except that it is scaled by a
factor of two in both displacement and force such that it begins at the smallest displacement and extends to the
largest displacement (which is typically from −umax to +umax).

2. The reverse portion of the hysteresis loop is identical to the forward portion, only rotated 180◦ with respect to
the center of the hysteresis loop.

3. The hysteretic response is determined from the last point of the loading cycle before a reversal; if the loading
curve crosses a previous loading curve, then it must conform to the previous loading curve.

These conditions are illustrated in Fig. 1.
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Fig. 1: Illustration of the Masing conditions. The curves in steps two and three are scaled (and rotated) versions of the curve in
step one.

The use of the Masing conditions greatly simplifies the calculation of hysteretic behavior as only the initial loading
curve needs to be calculated in order to deduce the entire hysteresis loop. In particular, this is the fundamental

83 | doi:10.25518/2684-6500.154 M. R. W. Brake et. al

http://dx.doi.org/10.25518/2684-6500.154


Journal of Structural Dynamics, 2, (pp. 82-104) 2023
Masing Manifolds: Reconciling the Masing Conditions with Real Hysteresis in Jointed Structures

concept behind the use of quasi-static modal analysis [41, 31] for calculating the hysterestic behavior of a jointed
system. If the Masing conditions cannot be used, then it can be at least five times more expensive to calculate the
hysteretic behavior of a system using a quasi-static solver [32, 37] as the initial loading curve, first unloading curve,
and first reloading curve all need to be calculated. This is the difference between only calculating the curve shown in
step one of Fig. 1 and calculating all of the curves shown in steps one, two, and three of Fig. 1.

1.2 Breakdown of the Masing Conditions

In real jointed structures, the normal force across an interface is known to vary during excitation [16, 20]. Further,
depending on the microscale topology, the interface can even lose contact at its edges [11] (in which case the normal
force goes to zero). As a result, the tangential friction force, which is often conceptualized as being related to the
normal force by a scalar (i.e., Coulomb’s friction coefficient, µ), is modulated during excitation. This can result in
non-symmetric hysteresis loops that violate Masing’s conditions, such as shown in Fig. 2. The hysteresis loops in
Fig. 2 are calculated using a tribomechadynamics model of the interface [19, 37, 42], and further details of how the
system is modeled are found in §4.
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Fig. 2: Hysteresis loops from a tribomechadynamics model of a jointed interface in which the normal load is allowed to vary
throughout the simulation due to the external excitation. The reduced order mesh of the interface is shown in the center, and the
hysteresis loops for six highlighted elements are shown on the periphery. Note that the displacement is relative, and the scales for
each hysteresis loop are different. Labels for each hysteresis loop are provided for reference in §4.

Of the six hysteresis loops shown in Fig. 2, all of the hysteresis loops except B and E clearly violate the Masing
conditions (which give rise to symmetric hysteresis loops, an example of which is shown in Fig. 1). To detail some of
the break-downs in Masing conditions, if any of these curves were to be in compliance with the Masing conditions,
they would need to be parallelograms given the nearly linear loading curves that each exhibits. Likewise, the slip force
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for a Masing condition-congruent elastic dry friction model must be constant, not decreasing as clearly observed for
curves A, D, and F. These discrepancies are further highlighted in Fig. 3.
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Fig. 3: Details of how two of the hysteresis loops from Fig. 2 violate the Masing conditions; the Masing condition-derived hysteresis
loops are shown in red, whereas the true hysteresis loops are shown in blue.

At the elemental level, the hysteretic model for the loops shown in Fig. 2 are described by elastic dry friction
(schematically shown in Fig. 4). Similar to a Jenkins element, elastic dry friction is defined as

f =


kT (u(t) − u0) + f0︸                ︷︷                ︸

fstuck

| fstuck | < µN(t)

µN(t) sign ( fstuck) Otherwise
, (1)

in terms of the tangential stiffness kT , displacement u, time t, normal force N, and having conditions at the previous
time instant indicated by subscript 0. As µN(t) is non-constant, this results in a hysteresis loop that can collapse
(i.e., go to zero as the interface separates), have sudden spikes (e.g., when a pressure wave propagates across the
interface), or even exhibit a slip force that decreases with time for one portion of the loading curve but not the other
(e.g., the bottom left hysteresis loop in Fig. 2). These observations lead to the hypothesis:

Hypothesis: Hysteretic models that satisfy the Masing conditions for constant N will conform to a
three-dimensional manifold in u- f -N space when N is varied.

Fig. 4: Schematic of elastic dry friction model for (a) initial undeformed state of barely in contact and (b) loaded state. In (a)
µ, kT , and kn are the friction coefficient, tangential stiffness, and normal stiffness respectively. In (b), un, u, and uanchor are the
displacements in the normal direction, tangential direction, and for the slider in the tangential direction respectively. The applied
normal force is N and the frictional tangential force is f . The circles denote references points fixed to each surface.

If this hypothesis is supported, then the modified Masing conditions would result in a response manifold that
governed the hysteretic, steady-state behavior of a system. A two-dimensional section of this manifold for a constant
normal force would result in the original Masing conditions. However, once the normal force begins to vary, the
tangential force-displacement response must be extended into the third dimension, normal force. A ramification of this
hypothesis would be a more efficient and accurate method to represent hysteretic behavior in real, jointed structures.

In what follows, the theoretical criteria to construct a Masing manifold are presented in §2. The efficacy of the
Masing manifold is then tested in §3 on a simple one degree of freedom oscillator and then in §4 on the model of a
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built-up structure. Here, the Masing manifold is only considered for elastic dry friction as this research is focused on
defining and demonstrating the concept. Finally, conclusions are presented in §5.

2 Construction of the Masing Manifold

A Masing manifold is defined as the three dimensional surface constructed by calculating the hysteresis observed
for steady state, single harmonic oscillation between two extrema as a function of N, such as shown in Fig. 5. The
specific shape of the Masing manifold is dependent upon the friction model employed. Here, for simplicity, only the
elastic dry friction model is considered. The Masing manifold for the elastic dry friction model is constructed from
hysteresis loops corresponding to fixing every possible value of N as a constant and applying the Masing conditions
independently for each value of N1. After reversal the system is stuck, and thus a portion of the manifold consists of a
plane that projects down to a single line in the u- f plane with slope kT . This plane results from the history variables
for displacement and force (u0 and f0 respectively) in Eq. 1 being able to be rewritten as a single history variable for
any given time instant. Specifically, an anchor position is defined to be the history variable displacement that would
correspond to the same frictional evaluation if the history force was zero. By rearranging Eq. 1, the anchor position for
a given set of history variables is calculated as

uanchor = u0 − f0/kT . (2)

This quantity is visually represented in Fig. 4. The plane intersects zero tangential force at displacement

umax,anchor = u(tmax) − µN(tmax)/kT (3)

or

umin,anchor = u(tmin) + µN(tmin)/kT (4)

for times tmin and tmax corresponding to the time of minimum and maximum displacement2, respectively. Here, different
signs must be introduced for the maximum and minimum cases since the sign of f0 is positive or negative respectively.
Without a loss of generality, the displacements can be offset such that the anchor displacements uanchor,amp are equal
magnitude as defined via

uanchor,amp =

(umax,anchor + umin,anchor)/2 umax,anchor + umin,anchor > 0
0 Otherwise.

(5)

In Fig. 5, ±uanchor,amp are points A and B. The stuck planes (ACE and BDF) are defined by

f = kT (u ± uanchor,amp). (6)

The rest of the manifold then connects the two stuck planes with two planes defined by the slip limits in the positive
and negative directions. Six points connected by planes define the manifold:

• The first two points (A and B) are located in the N = 0 plane along the line for f = 0 at displacements ±uanchor,amp;

• The second two points (C and D) are the limits of macroslip, located at the extremes of displacement
(±(uanchor,amp + µNmax/kT )), the maximum normal force (Nmax), and the slip force (±µNmax);

• The last two points (E and F) are defined by the onset of macroslip, located at a displacements ±(uanchor,amp −

µNmax/kT ), maximum normal force (Nmax), and slip force (∓µNmax).

For the elastic case, uanchor = 0 and the last two sets of points become identical resulting in a triangle on a plane for
the manifold. The surface defined here describes possible relationships between the displacement, u, tangential
force f , and normal force N. The tangential force is constrained to lie on this surface when the Masing manifold
is valid. The surface is defined for a specific periodic history of the displacement u and implicitly incorporates the
history variables without needing to explicitly include them in calculations. This is one of the key contributions of the
Masing manifold for calculating the hysteretic response of a friction element. Because the manifold establishes a set
of constraints for how f can change with u and N, it removes the need for a state variable that records the history of
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Fig. 5: Example of the construction of a Masing manifold for elastic dry friction with the six points labeled as A through F. Note that
the top surface of the manifold, the quadrilateral DECF, is not part of the manifold itself, but rather a surface made by cutting the
manifold at some maximum N for visualization purposes.

the system. Consequently, this opens several new opportunities for how frictional responses can be calculated more
efficiently, as discussed in subsequent sections.

The Masing manifold is a distinct concept from the Coulomb friction cone. Here, the Coulomb friction cone could
be conceptualized as the stuck face (i.e., faces BDF or ACE) of the Masing manifold, and would indicate the set of all
possible friction force vectors that can exist before slip. By contrast, the Masing manifold prescribes the hysteretic
relationship for a friction element undergoing steady-state oscillation with, potentially, time varying normal force.

Because there are linear relationships between N, u, and f in each of the regions for an elastic dry friction
model, the Masing manifold is able to be constructed using straight lines to connect the points identified above. If the
relationship was nonlinear, then the connection between points would have to be modified accordingly. Likewise, there
is also a piece-wise linear relationship between u and f . For hysteresis models that do not have linear or piece-wise
linear relationships between u and f , it is expected that the Masing manifold would no longer be a prism, but rather a
curved shape that reflects the transition from linear elastic behavior to macroslip (i.e., similar to the curves of Fig. 1).
The present section has described how to construct a Masing manifold and the equations can be directly applied
given a displacement history, thus the Masing manifold exists for any set of displacements.

From preliminary inspection of the Masing manifold, there are two special cases that must be considered for
understanding if a frictional response with N varying would stay on the Masing manifold. Inspired by [43], different
regimes of relative loading rates for the normal and tangential directions are considered. Both of these cases involve
state changes for the friction model (i.e., when the model transitions from stick to slip and vice versa):

• If N decreases during the portion of the hysteresis loop before sliding begins (i.e., the stuck phase), then the
threshold for sliding decreases and the transition from sticking to sliding needs to be assessed.

• If N increases during the sliding portion of the hysteresis loop (i.e., the slip phase), then the threshold for sliding
increases and the transition from sliding to sticking needs to be assessed.

For the other scenarios (N increasing during the stuck phase or decreasing during the slipping phase), this does not
result in a change in the state of the friction model, and thus stays on the Masing manifold by definition.

1In practice, this is able to be calculated more efficiently based off of the structure of the friction model. For elastic dry friction, analytical
expressions for each of the surfaces of the Masing manifold are readily derived

2The displacement of the anchor corresponds to maximizing and minimizing Eqs. 3 and 4, respectively, which may be different than the maximum
or minimum tangential displacements.
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2.1 Normal Load Decreasing During the Stuck Phase

Upon the response entering the stuck phase, the equation of the friction force from elastic dry friction, before macroslip
is achieved, is expressed in terms of the displacement u0 and friction force f0 at the start of sticking (lines BD and AC
in Fig. 5)

fstuck = kT (u(t) − u0) + f0. (7)

In terms of the Masing manifold, the stuck phase is described by responses that are on the triangles formed by either
points ACE or BDF. If the response enters slip before passing zero tangential force, then the tangential force will be
slipping opposite the velocity and thus not be on the manifold. This occurs when

fstucksign(u(t) − u0) < −µN(t). (8)

Physically, this constraint is interpreted as the spring in the elastic dry friction model relaxing as N is removed, allowing
f to decrease as N decreases when the tangential displacement has not sufficiently unloaded the spring since load
reversal. The constraint can be interpreted as limiting how fast, on average, N can decrease for any time period
that starts when the slider first sticks and ends while the slider is still stuck with f sign(u(t) − u0) < 0. Note that if N
decreases to zero, the response will be on the manifold at that point since the slip force is equal regardless of sign or
direction of motion.

Under constant N, the response enters the stuck face when the sign of the velocity changes. If N is increasing,
then the response enters the stuck face when the velocity reverses or before, as addressed in the next section. Under
decreasing N, the response will continue to slip on the same face while

µ
dN
dt
≤ kT

du
dt

sign( f ) ≤ 0, (9)

corresponding to N decreasing more rapidly than the spring can elastically unload. The condition of Eq. 8 can only
be applied once the response has entered the stuck face, not starting from the point of velocity reversal. Cases
discussed in §3 illustrate the different distinctions.

2.2 Normal Load Increasing During the Slip Phase

Once the response transitions into slip, the second special case to consider is when N increases, thus also increasing
the macroslip force µN. The potential concern is for N to increase faster than the linear elastic spring can stretch
and thus the spring would be unable to maintain the slip condition of f = µN. Thus, as N increases, the stretching of
the linear elastic spring must proportionally increase at the same rate to remain slipping; otherwise, the system will
transition to the stuck state, which would manifest as the trajectory leaving the manifold. This establishes a second
constraint for remaining on the manifold: N cannot increase faster than kT urel (where urel is the stretching of the linear
elastic spring). Since the spring is linear, the slipping regime must maintain that

µN(t)sign(urel) = kT urel(t) (10)

for

urel = u(t) − uanchor(t). (11)

The quantity u(t) − u0 is inappropriate here once the system starts slipping, so the displacement of the spring is
calculated based on the position of the anchor. The constraint on the rate of change of N (and urel) in the slipping
regime thus becomes

µ
dN
dt
= kT

durel

dt
sign (urel) = kT

[
du(t)

dt
−

duanchor(t)
dt

]
sign (urel) . (12)

Here, it is noted that on the manifold,

sign( f ) = sign(u(t) − u0) = sign(urel(t)) (13)

for the slipping regime, since N is increasing. Based on the anchor interpretation of the friction model when N is
increasing,

sign
[
duanchor(t)

dt

]
=

sign( f ) S lipping
0 S tuck.

(14)
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Therefore,

duanchor(t)
dt

sign (urel(t)) ≥ 0, (15)

leading to the constraint

µ
dN
dt
≤ kT

du
dt

sign (u(t) − u0) . (16)

One interpretation is that these two constraints (Eqs. 8 and 16) impose a limit on the rate of change3 for N if the
hysteretic response of the system is to stay on the Masing manifold. A second interpretation is that these constraints
establish the limits for how u must change in the presence of a time varying N.

In some cases, a violation of Eq. 16 corresponds to the system entering the stuck phase rather than the response
leaving the manifold. Specifically, if Eq. 16 is violated at time t1 and the velocity changes sign at t2, then the response
will stay on the manifold if

kT (u(t) − u(t1)) + f (t1) ≤ µN(t) ∀t ∈ [t1, t2]. (17)

This is physically interpreted as the response entering the stuck face at t1 and staying stuck until at least the velocity
reverses. Examples violating Eq. 16, which correspond to leaving the manifold or entering the stuck phase before
velocity reversal, are shown in §3.

2.3 The Degenerate Case of No Hysteresis

For hysteretic models that remain in the linear elastic portion of the response (i.e., when Eq. 1 simplifies to f = kT u(t)
for all u in the response, which is the case of hysteresis loops B and E in Fig. 2), the Masing manifold condenses to a
two-dimensional triangle in the displacement-hysteresis force-normal force space. This is captured by the anchor
remaining fixed in one place and the second case of Eq. 5. Even with N changing, the response can still conform to
the Masing manifold provided that |kT u(t)| ≤ µN, as will be observed in §4. If N decreases such that |kT u(t)| > µN, this
would mark the inception of slip and would no longer qualify as a degenerate case. As such, the full Masing manifold
should be used instead.

2.4 Uniqueness of Masing Manifold

For a given periodic displacement history, the Masing manifold is uniquely defined in § 2. However, under some
conditions alternative manifolds exist. First, the case where slip occurs in the steady-state response is considered.
Any manifold to describe the true frictional force should match the proportional slip limit planes of f = µN. Therefore,
the manifold is unique if and only if the stuck planes are uniquely defined. Under the conditions defined in § 2.1 and
§ 2.2, there are two unique regions where the slider is stuck in the truth friction model defined by Eq. 1. Within a given
stuck regime, if a single point is matched by the manifold, the entire stuck regime is matched by the manifold since the
manifold captures the tangential stiffness correctly and there is no relationship other than Eq. 6 that would capture the
tangential stiffness. Therefore, the manifold is unique and matches the friction force if the calculation of uanchor,amp is
unique and matches the friction evaluations.

With regards to the stuck planes, the contact is in the stuck state when the velocity of the anchor is zero, which
only occurs during the two transitions from slipping in the positive and negative directions given that the conditions
defined in § 2.1 and § 2.2 are met. During this transition, the anchor must be in the extreme maximum and minimum
locations since it is the reversal of the direction of the anchor. The extrema of the anchor positions correspond to the
calculations given by Eqs. 3 and 4. These extrema correspond to maximizing (or minimizing, respectively) Eq. (2)
under the conditions of positive (negative) slipping forces corresponding to reversal from positive to negative (negative
to positive) slipping direction. Eq. (2) is derived by rearranging the expression for the history variables in stuck regime
and thus results in the manifold matching the full stuck regime. As long as the normal force is greater than zero at the
reversal of the anchor, then a finite time period is required for the spring to unload and reload in the opposite direction.
Thus the friction force is evaluated in the stuck regime and the stuck plane must be defined to match the frictional
evaluation as is done in the present construction.

3While Eq. 8 does not impose a limit on the differential rate of change of N at a specific time, it can be interpreted as placing limits on the
average rate of change.
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If there is no contact when the velocity reverses (i.e., N = 0), then the frictional response immediately goes from
one slipping face to the slipping face for the opposite direction. In this case, the stuck plane does not need to be
defined for the manifold to match the frictional force. Therefore, there is not a unique definition of the Masing manifold
when the reversal occurs while the contact is separated. Rather for transition from positive to negative (respectively
negative to positive) velocity, any value of umax,anchor greater (umin,anchor less) than the value given by Eq. (3) (Eq. (4))
is valid. The construction defined in § 2 generates a unique manifold by choosing the smallest possible slip region
planes in this case.

The next situaiton to consider is the case where the steady-state response includes slipping, but the conditions of
§ 2.1 and § 2.2 are not satisfied. Here, one could define different Masing manifolds using different stuck regimes (e.g.,
before versus after the condition is violated). In that case, each manifold would exactly match the frictional response
over different regimes, and the manifold would not be unique. Throughout the rest of this paper, the construction
presented in § 2 is used to select a single manifold when the conditions of § 2.1 and § 2.2 are not satisfied.

In the degenerate case, the manifold is not uniquely defined because multiple different history variables could
result in frictional forces in the stuck regime for all time. In simulations, this issue is not unique to the Masing manifold,
but rather inherent to the friction model. One can add additional constraints to make the friction evaluations unique.
Such additional constraints can be applied either to the Masing manifold or the original friction evaluations from Eq. 1.
The previous construction yields a unique Masing manifold for the degenerate case, but the equations could be altered
to give a different valid manifold.

3 Demonstration on a Simple Harmonic Oscillator

To test the Masing manifold hypothesis, a simple harmonic oscillator is first considered. In the following simulations, a
single degree of freedom mass spring oscillator is studied with prescribed displacement (u = 50 sin(2πt) nm). The
oscillator is in frictional contact with ground via an elastic dry friction element (Eq. 1). Using the properties4 µ = 0.9627
and kT = 5.26 × 1014 N/m, the Masing manifold is constructed using the procedure outlined above, and the hysteretic
response is calculated for a number of different functions describing N. With the responses shown in Fig. 6, these
include a constant normal force (N = 5 MN, Fig. 6(a)-(b)), and sinusoidally varying normal forces of N = 2.5 sin(2πt)+5
MN (Fig. 6(c)-(d)), N = 2.5 sin(2πt − π/4) + 5 MN (Fig. 6(e)-(f)), and N = max(0, 2.5 sin(4πt) + 1) MN (Fig. 6(g)-(h)).

The hysteresis loops shown in Fig. 6(a), (c), (e), and (g) each fall upon the corresponding Masing manifolds exactly.
Only the case of constant N conforms to the original Masing conditions, while the second and third cases are clearly
asymmetric. As the form for N(t) becomes more complicated, the deviation of the hysteresis loops from the one
formed by the traditional Masing conditions (i.e., N = 5, Fig. 6(a)-(b)) increases; however, each of the four hysteresis
loops still conform to the Masing manifold. For the response in Fig. 6(e) and (f), the transition from positive velocity
to negative velocity occurs after the transition from slipping to sticking. This is manifested on the Masing manifold
as the response lying on the line between the slip face and stuck face until the velocity changes direction, at which
time it transitions to the stuck face, and is further highlighted in Fig. 7. This behavior occurs since N increases too
quickly near the reversal point, violating the condition of Eq. 16, but still satisfies Eq. 17, resulting in it remaining on
the manifold. In the fourth case (Fig. 6(g) and (h)), the velocity changes sign before the response leaves the slip face.
This occurs because N decreases too quickly near the reversal point and results in reverse slipping as discussed in
§2.1. However, since this occurs continuously at the reversal point and satisfies Eq. 9, the response does not leave
the manifold. Consequently, none of these examples violate the constraint conditions of §2.

3.1 Violations of the Constraint Conditions

In order to investigate regimes where the constraint conditions of §2 are clearly violated, resulting in a significant
deviation between the Masing manifold and the actual hysteresis loop, two further examples in which N suddenly
increases and decreases during the steady-state oscillation are investigated. For the first example, N is modeled as

N(t) = 2 × 106 + 3 × 106 (H(t − 0.5)) (1 − H(t − 0.6))
(
1 − cos2

(
2π
0.2

(t − 0.5)
))
, (18)

using the Heaviside step function H(τ), which is defined as 0 for τ < 0 and 1 otherwise, and is plotted in Fig. 8(a).
As shown in Fig. 9(a) and (b), the rate of change of N is sufficiently high that the constraint condition is violated
and the hysteresis no longer conforms to the Masing manifold. The response is shown to penetrate the Masing

4These values are chosen for consistency with the next section.
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Fig. 6: Hysteresis loops and Masing manifolds for (a)-(b) constant normal force, (c)-(d) sinusoidally varying normal force in phase
with the displacement, (e)-(f) sinusoidally varying normal force that is π/4 rad out of phase with the displacement, and (g)-(h)
sinusoidally varying normal force that goes to zero. All results are from the elastic dry friction model. The black curves on the right
plots are the projections of the hysteresis loops onto the N = 0 plane for visualization purposes.
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manifold in Fig. 9(b); whereas, if the response was constrained to lie on the Masing manifold, the red curve would be
generated instead. As discussed in §2, one interpretation of the constraint is that it relates how quickly f must change
as N changes. Here, the tangential stiffness limits the rate of increase of f with changes in N, and as such the true
response of f is lower in magnitude than if f was constrained to stay on the Masing manifold (i.e., the red curves in
Fig. 9).
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Fig. 8: Normal force as a function of time for the violation examples, showing (a) Eq. 18 and (b) Eq. 19.

The second type of violation, discussed in §2.1, requires a sudden decrease in N while in the stuck regime. To
investigate this violation, after velocity reversal while the response at constant N would be in the stuck regime, an
impulse is applied to the system. In this case, N is modeled as

N(t) = 8 × 106 − 5 × 106 (H(t − 0.3)) (1 − H(t − 0.4))
(
sin2

(
2π
0.2

(t − 0.3)
))
, (19)
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Fig. 9: Hysteresis loops (left) and Masing manifolds (right) for normal loads that violate the constraint conditions laid out in §2, with
N described by Eq. 18 in (a) and (b), and Eq. 19 in (c)-(f) (with (e) and (f) being a zoomed in highlight to better show the violation).
The blue curves indicate the true tangential forces, the red curves indicate the tangential forces if they are constrained to stay on
the Masing manifolds, and the black curves in the right subplots are the true tangential forces projected onto the N = 0 plane.

which is plotted in Fig. 8(b). The true response starts to unload elastically and penetrate the manifold from 0.3 to 0.35
s (with a small drop in f ) before the large drop in f that returns it to the manifold surface is observed; the manifold
response, by contrast, maintains a constant f as u decreases before the large drop in f is observed, as shown in
Fig. 9(c)-(f). When N decreases, both the manifold response and the true response decrease rapidly on the slip face
before eventually following the stuck phase. Thus, violations of the conditions set forth in §2 will result in the Masing
manifold deviating from the actual hysteresis of the system.

4 Applicability to Built-Up Structures

In order to assess the applicability of the Masing manifold to multi-degree of freedom systems (in particular, jointed
structures), the steady-state response of the Brake-Reuß beam [3], the geometry of which is shown in Fig. 10,
is studied. The Brake-Reuß beam, which is a prismatic beam with a three-bolt lap joint, is modeled using a

93 | doi:10.25518/2684-6500.154 M. R. W. Brake et. al

http://dx.doi.org/10.25518/2684-6500.154


Journal of Structural Dynamics, 2, (pp. 82-104) 2023
Masing Manifolds: Reconciling the Masing Conditions with Real Hysteresis in Jointed Structures

tribomechadynamic modeling approach that is described in detail in [19, 21, 37] and briefly summarized here.

72 cm

2.54 cm

12 cm30 cm

3 cm

2.54 cm0.85 cm

Fig. 10: Geometry of the Brake-Reuß beam [3].

4.1 System Model

The initial finite element model of the Brake-Reuß beam is first reduced with a Hurty/Craig Bampton Component Mode
Synthesis [44, 45] to the interface degrees of freedom plus 19 additional fixed interface modes. The resulting model is
then further reduced to the final 122 zero thickness elements (ZTEs) with 156 nodes (each with three translational
degrees of freedom (DOFs)) [21]. The ZTEs are used to model the interface accurately in a hyper-reduced framework5

that facilitates implementation of different friction and wear models [37] and simplifies calculations by eliminating the
need for contact searches. The mesh of the ZTEs is superimposed on top of the original mesh of the interface, and is
shown in the center of Fig. 2. Six of the original 19 fixed interface modes correspond to rigid body modes and are
eliminated at the second reduction [19], leaving 13 fixed interface modes in the final ROM.

The response of the Brake-Reuß beam to steady-state excitation is simulated using the extended periodic motion
concept (EPMC) [28]. EPMC solves for a periodic modal response (parameterized with both the zeroth order and
the first three harmonic coefficients of each DOF), a mass proportional forcing amount (applied by EPMC in order to
balance the damping in the nonconservative system), and a modal frequency. For the EPMC simulations, mass and
frequency proportional damping are applied to the model to yield modal damping levels of 8.7e-4 and 3.4e-2 for the
first two bending modes of the linearized system, respectively, in order to match the low amplitude experimentally
measured damping of the system. Such damping is necessary since friction models are generally unable to reproduce
low amplitude damping [37, 22], which is generally referred to as material damping.

The nonlinear forces are evaluated in the time domain with the alternating frequency-time (AFT) approach
[46, 47, 48]. For the AFT scheme, harmonic coefficients are converted to time domain displacements at the nonlinear
DOFs. Frictional tractions are then evaluated in the time domain using an elastic dry friction model described both
with a Masing manifold (following the procedure of §2; only one Masing manifold is calculated for all ZTEs, with
the frictional response of each ZTE being determined by that specific element’s tn and uq) and directly without any
assumptions related to the Masing conditions. The Fourier transform of the forces in the time domain is evaluated to
apply the forces in the frequency domain. The forces in the time domain are evaluated for 128 equally spaced time
intervals of length ∆t over the interval [0,T − ∆t] for a fundamental period of T . If the given DOF slips, the friction
forces are evaluated for two cycles to converge the hysteresis loops, and the Fourier transform of only the second
cycle is evaluated.

The elastic dry friction model uses a penalty normal contact model with zero normal tractions when the interface is
separated. For a given normal displacement un, the normal traction tn is

tn =

knun(t) un(t) > 0 (contact)
0 Otherwise (separation),

(20)

where kn is the normal stiffness of the contact. The tangential tractions are parameterized by a tangential stiffness kt

as well as µ (note that since the model is formulated using tractions, kt has units of N/m3). The tangential traction tq
5Here, hyper-reduced refers to a ROM in which no transformation between reduced and full coordinates is needed in order to evaluate the

interfacial forces at each step of the simulation.
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generated by a tangential displacement uq is

tq =


kt(uq(t) − uq,0) + tq,0︸                   ︷︷                   ︸

tstuck

|tstuck | < µtn(t)

µtn(t)sign(tstuck) Otherwise.
(21)

Here, uq,0 and tq,0 are the displacement and tangential traction respectively at the previous instant and q can denote
either the x or y tangential direction. Equation 21 is equivalent to Eq. 1 except that it is formulated in terms of tractions
instead of forces. Following the procedure of §2, a Masing manifold for this friction model is constructed a prior for use
in the simulations. As the interface is considered two-dimensional, the friction model (Eq. 21) is applied independently
in the x and y directions. While this is not completely physical, this decoupling significantly reduces the computation
complexity of the gradients for the solution and has minimal effect on the overall dynamics of the structure given the
primary direction of motion is aligned with the xy-coordinate system of the mesh [22].

The parameters for the elastic dry friction model are curve-fit to the experimental results reported in [37], yielding
µ = 0.9627, kt = 5.261 × 1014 N/m3, and kn = 5.765 × 1011 N/m3. The resulting amplitude-dependent frequency and
damping of the first bending mode are shown in Fig. 11. A relatively large response amplitude is chosen for what
follows in order to investigate highly dissipative responses that would best test the validity of the Masing manifold
hypothesis. The hysteresis loops of several points along the interface at the amplitude indicated in Fig. 11 are shown
in Fig. 2.
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Fig. 11: System level response of the Brake-Reuß beam, in terms of frequency and damping factor of the first bending mode, as a
function of mass normalized response amplitude. Black circles indicate the amplitude at which the hysteresis curves are reported.

4.2 Hysteretic Responses

Each ZTE included in the Brake-Reuß beam ROM has its own hysteretic response. Six of these responses are shown
in Fig. 2, and are further investigated here. These responses are chosen because they represent the variety of
hysteretic responses observed across all elements. As the responses of the outermost elements (e.g., A and F in
Fig. 2) shown are similar, only one is detailed in what follows. Likewise, as most of the inner elements exhibit linear
elastic responses (e.g., B and E in Fig. 2), only one is discussed below as well.

The outermost elements (e.g., A and F in Fig. 2) experience a clapping response in which the surfaces come in
and out of contact periodically. The Masing manifold for hysteresis loop F of Fig. 2 is shown in Fig. 12. As tn goes
to zero, the response on the Masing manifold traces to the line in uq for (tq, tn) = (0, 0)6. At the load reversal (near

6Recall, tq is the tangential traction that is related to f , and tn is the normal traction that is related to N.
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a normalized time of 0.35), the sudden increase of frictional traction is due to movement across the stuck face (as
kt = 5.261 × 1014 N/m3, large tractions result for small displacements). The reduction in the magnitude of tq just before
the load reversal (near a normalized time of 0.25) is due to tn decreasing while the slider is still in the slip regime.
Throughout all of these dynamic events, the hysteretic response stays on the Masing manifold exactly.

One row of elements more internal to the interface, such as element D (from Fig. 2), experience tn that approach,
but do not achieve, a value of zero, as shown in Fig. 13. At both load reversals, there is a significant change in tq;
however, for the first load reversal (near a normalized time of 0.28), the change in tq is significantly smaller as tn is
close to zero at this point. The change in slope of tq just before the load reversal is due to tn changing from decreasing
to increasing again just before the friction model begins to unload. At the second load reversal, near a normalized
time of 0.93, tn is near its maximum resulting in a significantly larger change in tq as the friction model transitions
from sliding before the load reversal, to stuck immediately after, then to sliding shortly later. An important observation
for element D is that even though uq is not sinusoidal (and is multi-harmonic), the loading portion of the response is
monotonically increasing in uq and the unloading portion of the response is monotonically decreasing in uq. Thus,
even though the response is not sinusoidal, because it is monotonically increasing then monotonically decreasing,
the fundamental assumption of the Masing conditions is not violated (i.e., that the response oscillates between two
extrema).

Most of the internal elements exhibit linear elastic responses as they never progress out of the stuck state, such
as elements B and E in Fig. 2. The Masing manifold for element E is presented in Fig. 14. As the hysteresis loop is
degenerate (i.e., exhibits no hysteresis), the Masing manifold is compressed into a two-dimensional triangle. As tn
and uq vary, tq is constrained such that the response curve is exactly on the Masing manifold. Similar to element D,
the response has slight contributions from higher harmonics; however, the loading portion is strictly monotonically
increasing in uq and the unloading portion is strictly monotonically decreasing in uq.

As a last example, element C from Fig. 2 is an internal element that exhibits dissipative behavior. The Masing
manifold for element C is shown in Fig. 15. Due to the high value of tn and relatively large changes in uq (compared to
element E, Fig. 14), the element exhibits both stuck and slipping behavior. As with all of the other elements within the
interface, this hysteretic response of this element exactly conforms to the Masing manifold.

4.3 Accuracy and Computational Time

The hysteretic responses of Figs. 12-15 are calculated with two different approaches: using the present Masing
manifold approach and using the traditional approach of representing friction via Eq. 21 without any assumptions
related to the Masing conditions. In the first approach, the Masing manifolds are calculated a priori, as descried in
§4.1. For the second approach, the response is post-processed to determine if it falls upon the Masing manifold. No
differences are able to be observed between the two methods. This gives confidence that friction can be represented
accurately with a Masing manifold, provided that none of the fundamental constraints discussed in §2 are violated.

The use of Masing manifolds offers a tremendous opportunity to reduce computational time, much like the original
Masing conditions did. While the present simulations were not developed to consider computational time, several
observations can still be made. First, the results presented in §3 were found analytically; no direct time integration was
needed. Comparison of computational time for this example thus has little value due to the simplicity of the system
not requiring a simulation. For the results presented in §4, numerical simulations were necessitated to calculate the
dynamic response of the structure. The representation of the friction elements, however, was found analytically instead
of through a series of differential or integral equations. With the current implementation of the Masing manifolds, only a
modest improvement of computational time was demonstrated (approximately a 10% reduction) as optimizing the code
for efficiency was not the focus of the present research. In ongoing work, though, it is possible to incorporate Masing
manifolds into harmonic balance simulations such that the alternating time frequency analysis may be by-passed in
favor of a purely frequency domain computation (with the nonlinear hysteresis forces being analytically evaluated via
the Masing manifold), resulting in a computational savings of up to 50%. Thus, this promises a new approach for the
treatment of nonlinear forces in harmonic balance calculations, and is the subject of subsequent investigations.

5 Conclusions

Based on the work shown here, in which the fundamental hypothesis relating the Masing conditions to the normal
force cannot be rejected, a revision to the Masing conditions, collectively referred to as the Masing manifold, is
proposed. For the steady-state oscillation of a system between two extrema, the resulting hysteretic behavior is
described by the manifold in the tangential displacement-tangential force-normal force space constructed according
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Fig. 12: Hysteretic response of element F (as indicated in Fig. 2) of the Brake-Reuß beam showing the (a) hysteresis loop, (b)
original displacement as a function of time normalized by the period of the response, (c) Masing manifold in the displacement-
traction-normal force space, (d) traction as a function of normalized time, (e) view of the Masing manifold rotated 180◦ about the
tn axis, and (f) normal force as a function of normalized time. For the Masing manifolds, the traction-displacement response is
projected on the tn = 0 plane as a black line. The response itself is indicated as the blue loop.

to the method established in §2. In short, the Masing manifold is the locus of points generated by independently
constructing hysteresis loops across a range of normal forces, resulting in a three-dimensional manifold in the
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Fig. 13: Hysteretic response of element D (as indicated in Fig. 2) of the Brake-Reuß beam showing the (a) hysteresis loop, (b)
original displacement as a function of time normalized by the period of the response, (c) Masing manifold in the displacement-
traction-normal force space, (d) traction as a function of normalized time, (e) view of the Masing manifold rotated 180◦ about the
tn axis, and (f) normal force as a function of normalized time. For the Masing manifolds, the traction-displacement response is
projected on the tn = 0 plane as a black line. The response itself is indicated as the blue loop.

tangential displacement-tangential force-normal force space. Whether a response conforms to the manifold is subject
to a condition imposed on the rate of change of the normal force relative to the tangential displacement.
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Fig. 14: Hysteretic response of element E (as indicated in Fig. 2) of the Brake-Reuß beam showing the (a) hysteresis loop, (b)
original displacement as a function of time normalized by the period of the response, (c) Masing manifold in the displacement-
traction-normal force space, (d) traction as a function of normalized time, (e) view of the Masing manifold aligned to show
that the response never deviates from it, and (f) normal force as a function of normalized time. For the Masing manifolds, the
traction-displacement response is projected on the tn = 0 plane as a black line. The response itself is indicated as the blue loop.

The Masing manifold concept has been demonstrated here both for a simple harmonic oscillator as well as a built-
up structure with hundreds of degrees of freedom and many discrete hysteretic elements, showing its effectiveness
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Fig. 15: Hysteretic response of element C (as indicated in Fig. 2) of the Brake-Reuß beam showing the (a) hysteresis loop, (b)
original displacement as a function of time normalized by the period of the response, (c) Masing manifold in the displacement-
traction-normal force space, (d) traction as a function of normalized time, (e) view of the Masing manifold rotated 180◦ about the
tn axis, and (f) normal force as a function of normalized time. For the Masing manifolds, the traction-displacement response is
projected on the tn = 0 plane as a black line. The response itself is indicated as the blue loop.

to represent hysteresis in jointed structures more realistically than the original Masing conditions. As this work has
focused on the simple, elastic dry friction hysteresis model, it must next be generalized to other friction models. Thus,
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future work must seek to assess the validity of the Masing manifold for studying more complex hysteresis models
(such as normal force dependent Iwan models). Not investigated here is whether the concept of a Masing manifold
can be applied to non-Masing hysteretic models (such as a general Bouc-Wen model). It is expected that the Masing
manifold concept can be applied to other Masing models, such as the four parameter Iwan model [39]; however, the
generalizability of the concept is unknown.

The concept of the Masing manifold has several significant consequences. First, because it establishes a constraint
relationship for how the tangential force must behave for a given displacement and normal load, it negates the need
for a state variable that records the history of the system. Second, the Masing manifold reduces the set of equations
governing the hysteretic behavior of a system to an analytical surface. The exploitation of these two advances has the
potential for significant computational savings, and is being pursued in subsequent work.
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