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Abstract
Experimental and hybrid substructuring allow the virtual analysis of complex structures that are rather
represented by experimental models than simulations. Coupling the experimental models with other
structures requires adequate driving points — generally described by six degrees of freedom with
three translations and rotations with forces and torques as inputs as well as translational and angular
accelerations as outputs. However, the measurement of these driving points is challenging. In particular,
experimentally acquiring all six inputs causes the main effort. For example, excitation devices that
directly exert a torque are not widely applicable or three translational directions are not accessible.
Therefore, adapter structures are frequently used in practice, which increase the experimental effort or
can be impractical due to a lack of space and reachability. The proposed strategy is the replacement
of active excitation devices, i.e. impulse hammers or shakers, on the driving points, by passive, rigid
bodies, simply referred to as masses. Compared to the existing mass uncoupling method which is
also based on this fundamental idea, the main improvement is a simplified notation that enables the
incorporation of data from multiple masses and parametric state-space systems. The main finding is
that the proposed strategy is suited to estimate driving point dynamics that allow to predict the effect of
assembled structures on channels that were not used in the estimation of the driving point, indicating
the physical relevance of the estimated dynamics.
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Nomenclature

Abbreviations

AMPIE Added Mass Passive Input Estimation

FRF Frequency Response Function

IRLS Iterative Reweighted Least Squares

LES Linear Equation System

MUM Mass Uncoupling Method

NP Non-Parametric

NP-FRF Non-Parametric Frequency Response Func-
tion

VPT Virtual Point Transformation

Matrices, Operators, Indices

i Complex number

Rn×m Real n-by-m matrix

Cn×m Complex n-by-m matrix

0n×m ∈R
n×m n-by-m nullmatrix

In ∈ R
n×n n-by-n identity matrix

: Subscript for all rows
+ Pseudo inverse

˜ Measured quantity
⋆ Predicted quantity

ω Frequency
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i Index for driving points

k Index for frequency ωk

Ω ∈ Rnω×1 Frequency grid

nω Number of frequencies

j Index for masses

Inputs, Outputs, Dimensions

z ∈ Cnz×1 Reference inputs

p ∈ Cnp×1 Reference outputs

ui ∈ C
6×1 Inputs at driving point i

yi ∈ C
6×1 Outputs at driving point i

ũi ∈ C
ni

I×1 Measured inputs at driving point i

ỹi ∈ C
ni

O×1 Measured outputs at driving point i

z+ ∈ Cnz+×1 Additional reference inputs in test-case

nz Number of reference inputs

np Number of reference outputs

ni
I Number of measured inputs at driving point i

ni
O Number of measured outputs at driving point

i

N Number of driving points i

nz+ Number of test-case inputs

Systems, Dimensions, Transformations

G ∈ CnO×nI System for substructuring

nO Number of outputs of G

nI Number of inputs of G

Gpz ∈C
np×nz Reference channels

Gyiui ∈C
6×6 Coupling channels at driving point i

G:z ∈ C
nI×nz Submatrix of G with inputs z

G:ui ∈ C
nI×6 Submatrix of G with inputs ui

G̃ ∈ CñO×ñI System with measured inputs ũi and mea-
sured ouputs ỹi

ñO Number of outputs of G̃

ñI Number of inputs of G̃

T i
I ∈ R

ni
I×6 Transformation from ũi to ui

T i
O ∈ C

6×ni
O Transformation from ỹi to yi

TO ∈R
nO×ñO Output-transformation from G̃ to G

TI ∈R
ñI×nI Input-transformation from G̃ to G

AMPIE - NP-FRF, Single Mass

Gi ∈ CnO×nI G with mass at driving point i

Gi
:z ∈C

nO×nz Submatrix of Gi with inputs z and mass at
driving point i

M ∈ R6×6 Representation of mass

m ∈ R1×1 Translational inertia

J ∈ R3×3 Rotational inertia

Mi ∈ R
nI×nO Force-feedback at driving point i

∆Gi∈CnO×nz Left-hand side of NP-FRF-based LES for
driving point i

Gi
M ∈C

6×nz Right-hand side of NP-FRF-based LES for
driving point i

AMPIE - Multiple Masses

M j ∈ R
6×6 j-th coupled mass

nM Number of masses at each driving point i

Gi j ∈ CnO×nI G with mass j at driving point i

Gi j
:z ∈C

nO×nz Submatrix of Gi j with inputs z and mass j at
driving point i

Mi j ∈R
nI×nO Force-feedback at driving point i of mass j

∆Gi j Left-hand side of NP-FRF-based LES for
driving point i and mass j, ∆Gi j∈CnO×nz

Gi j
M Right-hand side of NP-FRF-based LES for

driving point i and mass j, Gi j
M ∈ C

6×nz

AMPIE - State-Space, Predictions, Test-Case

n Number of states

A ∈ Rn×n State-space state matrix

B ∈ Rn×nI State-space input matrix

C ∈ RnO×n State-space output matrix

D ∈ RnO×nI State-space feedthrough matrix

Λ(ω)∈Cn×n Frequency-dependent part of state-space
FRF

B:z, B:ui Submatrices of input matrix B

⊗ Kronecker product

↓ Vectorization of matrix

bi j∈C
nOnz×1 Right-hand side of state-space-based LES

for driving point i, mass j at freqeuncy ω

Ai j∈C
nOnz×6n Left-hand side of state-space-based LES for

driving point i, mass j at freqeuncy ω

xi∈R
6n×1 Unknown of state-space-based LES for driv-

ing point i

WR
k Weighting matrix for real part at frequency

ωk, WR
k ∈R

nOnz×nOnz

W I
k Weighting matrix for imaginary part at ωk,

W I
k∈R

nOnz×nOnz

A■i j∈R
6n×6n Weighted left-hand side for driving point i

and mass j

b■i j∈R
6n×1 Weighted right-hand side for driving point i

and mass j

A■i ∈R
6n×6n Left-hand side for driving point i and all

masses

b■i ∈R
6n×1 Right-hand side for driving point i and all

masses

Gi j,⋆
:z Predicted system for j-th mass at driving

point i for inputs z, Gi j,⋆
:z ∈C

nO×nz

G+ System G with input z+ for test-case, G+ ∈
CnO×(nI+nz+ )

Gtest Measured reference for test-case, Gtest ∈

CnO×(nz+nz+ )

Gtest,⋆ Prediction for test-case, Gtest,⋆ ∈CnO×(nz+nz+ )
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1 Motivation, Related Work and Contribution

Motivation Experimental or hybrid substructuring allow the virtual analysis of complex structures. The vibroacoustic
analysis and optimization of e.g. a full vehicle cannot be achieved by pure simulation, as the dynamical properties
are too complex to be captured numerically. Instead, the idea of substructuring starts with an experimental model
of the complex structure. Other structures from experiments or simulation can be coupled virtually to the experi-
mentally obtained model. Solely using experimental models is termed as experimental substructuring, adding also
simulation-based models is termed as hybrid substructuring. The virtual prediction of the assembled system allows
for example to find optimized vibroacoustical properties. Such properties could be the vibration at the steering wheel
as output due to road noise on the vehicle’s wheel suspension as input. These quantities are not involved but affected
by the coupling procedure. In this contribution such quantities are referred to as reference inputs and reference outputs.

The coupling of models requires precise information about the driving point dynamics at the interface, which
is in general found to be difficult to measure [1]. The measurement of a structure typically consists of two parts:
acceleration as outputs and forces as inputs. A mechanical connection at a sufficiently rigid location of the specimen
is described by six degrees of freedom, including three translations and three rotations with forces and torques as
inputs and translational and angular accelerations as outputs, which fully describe the rigid body motion. In practice,
this can for example be the vicinity of a screw hole in a car body where other structures can be mounted. In this
contribution, these inputs and outputs are referred to as coupling inputs and coupling outputs which form a 6-by-6
driving point. An illustration for a generic example is given in Figure 1.

Coupling inputs
and outputs

Rigid area described by
rigid body motion

Reference inputs

Reference ouputs

Fig. 1: Generic example of a system for substructuring with two reference inputs in orange, symbolized by shaker devices, nine
reference outputs from three triax accelerometers in green, and two 6-by-6 driving points to couple models of other substructures
symbolized by blue coordinate systems.

However, off-the-shelf devices only allow the recording of translational accelerations and forces. For the case
of outputs, the commonly used triax accelerometers give access to all three translations. In contrast, translational
inputs are mostly recorded in a single direction via impulse hammers or shaker devices. Compared to the outputs,
accessing all translational input forces can already be cumbersome, e.g. for plane structures. Furthermore, torques
are in practice mostly applied using adapter structures as devices that directly exert a torque are not widely applicable.
Therefore, for the described application of experimental substructuring, obtaining the driving point inputs is the main
challenge. This issue is addressed by the AMPIE strategy which is subsequently put into context by a brief overview
of existing approaches for related problems.

Related Work One set of strategies to access unmeasured quantities is based on numerical finite element models
of the experimentally analyzed specimen. Measurements are typically considered to encompass the true structural
properties, whereas finite element models give a fine spatial resolution, including rotations, but require assumptions
which lead to an imperfect representation of the investigated system. Expansion techniques, such as SEREP [2],
VIKING [3], SEMM [4, 5], or the recently proposed method in [6] typically use experimentally obtained information and
enforce it to the numerical model. The experimentally described channels are typically not altered, thereby expanding
the measurement to the numerical resolution. Similarly, model updating [7, 8, 9] combines experimental and numerical
information. However, in case of model updating, the experimental data is typically used to tune parameters in the
numerical model, which will not result in a perfect reproduction of the experimental channels. Since the approach
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outlined in this paper is supposed to remain purely experimental, these methods are not considered further.

A purely experimental approach to access driving point outputs and in particular inputs is based on adapter
structures. Early on, the application of rigid masses was put forward in [10] where the acceleration information on
the rigid mass is fitted to the required six degrees of freedom via least-squares. The undesired mass is numerically
removed, but inputs, i.e. forces and torques, are not considered. Still, this method can be seen as precursor of
subsequently introduced adapter-based approaches. In [11], the mass uncoupling method (MUM) is used to access
torque inputs based on the moment of inertia of an attached T-block where specific sensor and excitation positions on
the T-block are used. Similar to other approaches [12], the feedback equation is solved in a scalar fashion which is an
important difference to the proposed AMPIE scheme. In [13], the T-block method is extended to an arbitrary number
of inputs and outputs on the T-block which is numerically considered as a finite element model. The idea is similar
to the method described by Allen et al. in [14] which is known as the transmission simulator [15]. The approaches
have in common that an adapter structure is mounted on the system and used to access output rotations [10] , torque
inputs [11, 13], or a generalized interface force and displacement [14, 15]. However, the excitation of that adapter
structure is still required in all cases [11, 13, 14, 15].

Regardless of the application of an adapter structure, experimental approaches require methods to estimate
rotations from translational information. The previously discussed approach [10] uses a rigid mass to fit translational
accelerations on six rigid body modes, giving rotation information. The finite difference approach, for example dis-
cussed in [16, 17], provides information for rotations or torques based on a set of output or input locations. Depending
on the number of sensors, this method allows to use higher orders of the underling finite difference, however, the
interpolation requires the sensors to be in line. In contrast, the virtual point transformation (VPT) [18, p. 57] blends the
entire geometrical information, locations and directions, of given outputs and inputs together in one transformation.
As its application is straightforward, the VPT is also used in the present strategy. In this context, it is worth to mention
that the VPT was recently extended to include data from rotational accelerometers [19], yielding improved results.
Note that this extension is limited to rotation outputs. The direct measurement of rotation inputs, i.e torques, was
investigated, see e.g. [20, 21, 22]. However, no currently used approach of direct torque excitation with practical
relevance is known to the authors.

The fundamental idea of the present contribution is that attaching a mass and observing the resulting change
in the dynamical properties of the structure allow the replacement of an active excitation at the driving point. The
same idea is the basis for MUM which was used in different scenarios, such as estimating torque inputs based
on a T-block in [11], to determine unmeasured columns of the FRF (Frequency-Response Function) in [23], or for
the compensation of sensor mass-loading in [12]. The most important difference to the present approach is the
mathematical formulation. In [23, 11, 12], the equations of the coupled systems are treated in a scalar fashion and
solved one after another, not in a matrix-based formulation that is put forward in this contribution. The flexibility that is
obtained by the proposed, matrix-based rearrangement yields the possibility to deal in a straightforward manner with
a full 6-by-6 driving point, multiple attached masses, and to use capabilities of system identification and parametric
systems. In the present case, the parametric systems are denoted as first order state-space models that essentially
consist of modal parameters. In order to better grasp the differences in the proposed and previous formulations, a
brief comparison of both calculations for a scalar driving point is given in Appendix B.

Among others, the MUM approach was used to cancel sensor mass-loading [12]. In the area of sensor mass-
loading, further ideas related to the present contribution were proposed in the literature. For example, in [24] multiple
masses are considered. In [25], uncertainty is considered for the estimation of auto-FRFs using a maximum likelihood
estimator. Both aspects are combined in this contribution, as uncertainty is tackled by the intentional use of multiple
masses to further overdetermine the set of equations and to, thereby, reduce the impact of noise.

Contribution The proposed strategy is denoted as Added Mass Passive Input Estimation (AMPIE), where the term
passive refers to the absence of active excitation devices at the driving points of interest. In summary, the main
features of this contribution are

• a simple feedback-based derivation,

• the possibility to accommodate multiple masses, increasing the available information,

• the seamless consideration of a 6-by-6 driving point,
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• the extension to parametric systems, decreasing the number of unknowns.

It must be noted that there are further approaches that seek to estimate unmeasured data based on a given set
of measurements. A comprehensive overview is not the purpose of this work. Still, some approaches that do not
entirely fit in the above categorization are mentioned. For example, [26] shows that, theoretically, the orthogonality
of normal modes would be sufficient to reconstruct the entire FRF matrix from one row or column. The round trip
theory [27] can be used to reconstruct the auto FRF at a passive interface, given excitation on both sides and output
measurements on one side of that interface.

From a practical point of view, the proposed strategy can exhibit several benefits in an actual experimental
procedure. The envisaged example is the experimental, vibroacoustic optimization of a vehicle where several
6-by-6 driving points over and within the specimen are to be determined to tune the dynamic behavior by adding
subcomponents. The possible drawbacks of standard, adapter-based strategies can be

• the application of an impulse hammer is limited, e.g. due to reachability issues, or a possible lack of space for
the impact motion, or not possible, e.g. inside a passenger compartment where required closed doors make the
application infeasible,

• the application of an inertial shaker inside the passenger compartment will generate spurious acoustic sources
and deteriorate acoustic measurements,

• the experimental (de)mounting effort for adapter structures and inertial shakers becomes large for multiple
driving points; for arbitrary positions on the specimen it is physically demanding and potentially not possible,

• the assembly of adapter and shaker can become voluminous, potentially resulting in reach- and accessibility
issues,

• a numerical decoupling procedure is required since the adapter alters the specimen.

In addition, once the driving points are experimentally determined, the reliability of the obtained data and the
accuracy of subsequent predictions remain questionable. The easiest way to test this is the coupling of a mass,
experimentally and numerically, and to compare the results. This validation procedure alone provides the minimum
information that is required to perform the AMPIE procedure in the first place.

Outline The mathematical formalism for the AMPIE scheme is derived in Section 2. At first, the required system
representations and quantities are introduced. Based on this overview, the mathematical details of the AMPIE
procedure are outlined. In order to increase the amount of experimentally obtained data and to mitigate the impact
of noise, the application of multiple masses per driving points is discussed. For the same reason, the strategy is
derived for parametric systems along with required weighting techniques. Parametric and non-parametric strategies
are compared, and the concept of predictions and test-cases which are used to assess the AMPIE strategy are
outlined. In Section 3, an experimental example is introduced that is used to show the applicability of the outlined
scheme. The results are discussed in Section 4. A conclusion and outlook on further work is given in Section 5.

2 Theoretical Derivation

The theoretical derivation is separated into several steps. The generic example from Figure 1 is used to illustrate the
most important quantities. First, in Section 2.1, the basic system representation for substructuring G is introduced
along with the system G̃ which is the outcome of the typical measurement strategy. With both systems introduced, the
difference of the standard measurement approach to the AMPIE strategy is explained using the generic example.
The mathematical details of the AMPIE strategy are subsequently explained in Section 2.2 where the fundamental,
mass-induced feedback equation is rearranged and the unknown, required quantities are isolated. The idea to use
multiple masses is put forward and derived for the case of non-parametric FRF (NP-FRF). Third, in Section 2.3,
the solution process for parametric systems is described. In Section 2.4, a summary is given and the concepts of
predictions and test-cases are introduced. These concepts are subsequently used to assess the proposed strategy.
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2.1 Structural Measurement and Quantities of Interest

Representation for Substructuring At first, the motivating idea for experimental or hybrid substructuring from
Section 1 is re-examined and extended by the required formal notation. In order to identify a complex structure
experimentally, such that other experimental- or simulation-based models can be coupled, reference in- and outputs
as well as coupling in- and outputs are required. Considering vehicle-vibroacoustics as example, the analysis typically
takes place in frequency domain. Accordingly, the fundamental system representation is the FRF G(ω) ∈ CnO×nI

where CnO×nI is the space of complex matrices, ω is the frequency, nI and nO are the number of all in- and outputs,
respectively. However, note that the frequency-dependency will mostly be omitted, particularly within equations, to
avoid unnecessary long terms. Taking into account the outlined model structure, the FRF G can be denoted as

p
y1
...

yN

 =


Gpz Gpu1 . . . GpuN

Gy1z Gy1u1 . . . Gy1uN

...
...

. . .
...

GyN z GyN u1 . . . GyN uN

︸                              ︷︷                              ︸
=G


z

u1
...

uN

 (1)

where the described quantities are the reference outputs p(ω) ∈ CnP×1 and inputs z(ω) ∈ CnZ×1 as well as the coupling
outputs and inputs y1(ω), u1(ω), ..., yN(ω), uN(ω) ∈ C6×1. The number of driving points is N. The frequency-dependency
will again be omitted for compactness.

Each pair yi =
(
yx

i yy
i yz

i yαi yβi yγi
)T

, ui =
(
ux

i uy
i uz

i uαi uβi uγi
)T

fully describes the rigid body motion
of driving point i where the superscripts x, y, and z denote translational, the superscripts α, β, and γ rotational
quantities in the chosen coordinate system for driving point i. The defined quantities are illustrated in Figure 2 for the
generic example introduced in Figure 1.

G =


Gpz Gpu1Gpu2

Gy1zGy1u1Gy1u2

Gy2zGy2u1Gy2u2

 yx

α

γ

z

β

y1, u1

y2, u2

Reference
outputs p

Reference inputs z

Fig. 2: Generic example of system G with two reference inputs z, nine reference outputs p, and two 6-by-6 driving points, y1, u1

and y2, u2 with three translations x, y, and z as well as three rotations α, β, and γ, to couple models of other structures.

The submatrices Gpz ∈ C
np×nz from Equation (1) form the reference channels, which are an important indicator for

the outlined substructuring application: other structures can be coupled virtually on yi and ui, however, this coupling
is only useful if the influence on Gpz is predicted correctly which strongly depends on the experimentally obtained
quantities for yi, ui which form the coupling channels Gyiui ∈ C

6×6. The effect of a coupled structure at Gyiui on Gpz and
on all other driving points of the system is described by the remaining cross-channels, for example Gpu1 , Gy2z or Gy2u1 .
All these quantities are involved to come to a useful prediction of Gpz when a structure is coupled. The reference
channels are the most suited channels to assess the outlined strategy, since

• they are by definition the quantities of interest and typically not involved in the coupling procedure,

• accurate predictions for the reference channels requires accurate estimates for the entire system – coupling
and cross-channels – and therefore allow the assessment of all involved quantities.

Therefore, the assessment of the AMPIE strategy will focus on the reference channels and the adequate prediction of
the effect of coupled structures on these channels.
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For the AMPIE strategy, G from Equation (1) is partitioned column-wise, namely

G =
[
G:z G:u1 . . . G:uN

]
, G:z =


Gpz

Gy1z
...

GyN z

 , G:ui =


Gpui

Gy1ui

...
GyN ui

 (2)

where the submatrices G:z ∈ C
nO×nz and G:u1 , ...,G:uN ∈ C

nO×6 contain all outputs which is indicated by the colon-
operator while the reference and coupling inputs are denoted separately. This notation already shows that AMPIE
takes into account all measured outputs while z and ui are treated separately. This is similar to the standard approach
of structural measurements where one input is excited while all outputs are measured. The typical approach to these
standard measurements is outlined subsequently to further highlight the differences and also benefits of the AMPIE
strategy.

Standard Measurement Scenario As described in the introduction, in most practical applications ui and yi are
not measured directly. Instead, outputs are obtained by triax acceleration sensors and inputs by shaker devices or
impulse hammers exerting a force in a single direction. In order to reflect their close relation to ui and yi, the directly
measured quantities associated with driving point i are denoted as ỹi ∈ C

ni
O×1 and ũi ∈ C

ni
I×1, where ni

I and ni
O are the

numbers of measured in- and outputs. In order to fully capture the rigid body motion, the forces ỹi are applied to an
adapter structure. The generic example is adapted to this scenario in Figure 3 where the described quantities are
included.

Inputs in ũi

for driving point i

Outputs in ỹi

for driving point i

Adapter structure
ỹ1, ũ1

ỹ2, ũ2

Fig. 3: Generic example of system G̃ with two reference inputs z, nine reference outputs p, two adapter structures at driving point
1 and 2 with three accelerometers, resulting in ỹ1 and ỹ2, and six force inputs on the adapter structure, resulting in ũ1 and ũ2, for
each driving point.

As the driving point is described by a rigid body motion, the measured quantities ỹi and ũi can be transformed
into the required quantities ui and yi. In this contribution, the VPT is the method of choice to represent this step.
Based on the location and orientation of sensors and exerted forces at driving point i, a transformation T i

O ∈ R
6×ni

O

and T i
I ∈ R

ni
I×6 can be defined such that yi = T i

Oỹi and ũi = T i
Iui, see [18, p. 57]. In practice, sufficient conditions

to fully define this transformation are at least three triax accelerometers that are not located on a line, and at least
two excitations in each spatial direction that are exerted at different locations. Therefore, excitations that are solely
perpendicular to a plane are not sufficient which further explains the requirement of adapter structures. Using this
transformation, the system G̃ based on ũi and ỹi can be transformed into G:

p
ỹ1
...

ỹN

 =


Gpz G̃pũ1 . . . G̃pũN

G̃ỹ1z G̃ỹ1ũ1 . . . G̃ỹ1ũN

...
...

. . .
...

G̃ỹN z G̃ỹN ũ1 . . . G̃ỹN ũN

︸                              ︷︷                              ︸
=G̃


p
ũ1
...

ũN

⇒ G =


Inp 0 . . . 0
0 T 1

O . . . 0
...

...
. . .

...
0 0 . . . T N

O

︸                    ︷︷                    ︸
TO

G̃


Inz 0 . . . 0
0 T 1

I . . . 0
...

...
. . .

...
0 0 . . . T N

I

︸                    ︷︷                    ︸
TI

(3)

The matrices TO and TI are obtained by stacking the transformations for each driving point in block-diagonal manner
and by accounting for the reference channels with appropriate identity matrices Inp ∈ R

np×np and Inz ∈ R
nz×nz which are
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of size np and nz, respectively. Similar to Equation (2), the system G̃ can be partitioned according to

G̃ =
[
G̃:z G̃:ũ1 . . . G̃:ũN

]
, with: G:z = TOG̃:z (4)

which will also be required in Section 2.2.

In order to further motivate the idea of AMPIE, the qualitative difference between in- and outputs is once more
highlighted. First, the sensors to record the outputs are typically mounted to the specimen in a preparation step.
The actual measurement procedure then consists of mounting a shaker device successively to all input locations
in z, ũ1, ..., ũN which poses the main experimental effort — in particular when a large number of inputs must be
measured to determine driving points for substructuring. Second, using standard triax accelerometers that are
comparatively small to excitation devices, an adapter structure is mostly required for a well-defined VPT for the inputs.
Considering this reasoning, the main experimental effort can be rephrased to obtaining G:ui from Equation (1) which is
ultimately obtained from G̃:ũi for each driving point according to G:ui = TOG̃:ũi T

i
I . This is the very quantity that results

from the AMPIE strategy, which can simplify the required measurement procedure as explained next.

AMPIE As mentioned in Section 1, one drawback of the described adapter-based scenarios is the potential need for
a numerical decoupling step as the mounted adapter structure alters the specimen. This alteration is the very effect
that is used within the AMPIE strategy which is sketched in Figure 4 for the same generic example that was already
outlined in Figures 2 and 3.

No mass −→ G:z Mass at 1 −→ G1
:z

G = [G:z G:u1 G:u2 ]

Mass at 2 −→ G2
:z

AMPIE

Excitation at z

Fig. 4: Generic example of an experimental setting for substructuring approached with the AMPIE strategy where a mass is
coupled to the driving points 1 and 2.

The decisive difference is that the specimen is only excited at the reference inputs z. An adapter structure with
various excitation locations is not required at the driving points. Instead, the excitation at the reference inputs is applied
to different systems. The difference between these systems is that a mass is coupled successively at the driving
points of interest. Without any mass, the part G:z of the required system in Equation (1) is obtained. The systems G1

:z
and G2

:z result from mounting a mass at driving point 1 and 2, respectively. In general, Gi
:z is obtained when a mass is

added at driving point i. Note that all these quantities are measured for the same inputs z and all outputs. The location
of all used acceleration sensors is the same in all scenarios, therefore the dimension of the obtained quantities is the
same: G:z,Gi

:z ∈ C
nO×nz . Without loss of generality, the notation focuses on the system G. Note that all quantities in Fig-

ure 4 can be obtained from the measured outputs with the transformations G:z = TOG̃:z and Gi
:z = TOG̃i

:z ∀i ∈ {1, ...,N}.

For the given example, only G:z from System (1) was actually measured, whereas G:u1 and G:u2 , or more general
G:ui , are not yet determined. The subsequently outlined formalism for the AMPIE approach shows that the given
information is sufficient to determine the entire system G.

Summary Before the mathematical details are explained, a summary of the quantities that were discussed above is
given below:

• The system representation for substructuring is given by G with reference outputs p and inputs z, and the
coupling outputs yi and inputs ui that form 6-by6 driving points.
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• The result of a standard measurement is given by G̃ with reference outputs p and inputs z, and the measured
coupling outputs ỹi and inputs ũi, which can be transformed into G according to G = TOG̃TI . The main
experimental effort is the excitation of coupling inputs and to obtain the submatrices G:ui = TOG̃:ũi T

i
I .

• In the AMPIE strategy, the quantities G:ui are obtained mathematically based on the excitation of the reference
channels z, i.e. G:z, and by adding masses to the i-th driving point, resulting in Gi

:z.

2.2 Constant Feedback and Isolation of Unknowns

The goal of the standard measurement procedure in Figure 3 and the AMPIE strategy is to obtain the system G. As
outlined above, the main idea of the AMPIE strategy is to replace the direct excitation at the driving point by attaching
masses at the driving points of interest and only excite the resulting different systems at the reference inputs z. The
mathematical formalism to calculate G:u1 , ...,G:uN from the given information G:z and G1

:z, ...,G
N
:z is derived in this section.

Starting with system G, a mass M at driving point i induces a constant feedback in the system. The added internal
forces and torques are ui = Myi where the mass is defined as constant matrix M ∈ R6×6, that can be defined for
example according to Equation (30). The established feedback can be described by the well-known closed-loop
equation for a constant feedback, see for example [28]. In order to capture that M only exerts a force ui at driving
point i and only depends on the acceleration yi at driving point i, the corresponding channels must be selected by
introducing the quantity Mi ∈ R

nI×nO . The notation 0nz×np ∈ R
nz×np defines a nullmatrix of the indicated dimension.

Using this definition, the feedback can be written as

Gi = (I −GMi)−1G, Mi =

Driving Point index:
1 → i → N



0nz×np 0nz×6 . . . 0nz×6 . . . 0nz×6
06×np 06×6 . . . 06×6 . . . 06×6 1
...

...
. . .

...
...

... ↓

06×np 06×6 . . . M . . . 06×6 i
...

...
...

...
. . .

... ↓

06×np 06×6 . . . 06×6 . . . 06×6 N

(5)

which the basis to obtain G:ui . Recall that the systems G and Gi can be written as G =
[
G:z G:u1 . . . G:uN

]
and Gi =

[
Gi

:z Gi
:u1
. . . Gi

:uN

]
which contain the submatrices G:ui and Gi

:ui
. In the proposed method, only the

submatrices G:z and Gi
:z are obtained experimentally, whereas G:ui and Gi

:ui
are not known at this point. The main goal

of the AMPIE scheme is to exploit Equation (5) to find G:ui .

An explicit expression of Equation (5) can be found for a one-dimensional coupling as discussed in Appendix B.
However, if the additional mass introduces translational and rotational inertia in several directions, then Equation (5),
in particular the inverse (I −GMi)−1, cannot be solved in a straightforward fashion. Instead of solving the inverse in
Equation (5), the formula is rearranged to isolate the unknown quantities and such that it can be solved for G:ui , based
on the known quantities G:z and Gi

:z. This is achieved by the following steps:

Gi = (I −GMi)−1G

(I −GMi)Gi = G

Gi −GMiGi = G

Gi −G = GMiGi (6)

The resulting Equation (6) allows two main steps to exclude unknown quantities and to isolate G:ui . First, systems G
and Gi are separated in submatrices according to Equation (2) and (4). By multiplying an appropriate selection matrix
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from the right, unknown quantities are eliminated:

Gi − G =GMi Gi (7)

[
Gi

:z Gi
:u1
. . . Gi

:uN

]
−
[
G:z G:u1 . . . G:uN

]
=GMi

[
Gi

:z Gi
:u1
. . . Gi

:uN

] ∣∣∣∣∣∣ ·

Iz

0
...
0


Gi

:z − G:z =GMi Gi
:z

In this expression, only the term GMi still contains G:ui . To further isolate the items of interest, the second step
exploits the structure of Mi and the row-wise partitioning of Gi

:z according to Equation (2):

GMiGi
:z =
[
G:z G:u1 . . . G:ui . . . G:uN

]


0nz×np 0nz×6 . . . 0nz×6 . . . 0nz×6
06×np 06×6 . . . 06×6 . . . 06×6
...

...
. . .

...
...
...

06×np 06×6 . . . M . . . 06×6
...

...
...
...

. . .
...

06×np 06×6 . . . 06×6 . . . 06×6





Gi
pz

Gi
y1z
...

Gi
yiz
...

Gi
yN z


(8)

GMiGi
:z = G:ui MGi

yiz. (9)

The resulting equation

Gi
:z −G:z = G:ui MGi

yiz (10)

is still formulated for system G which is not directly obtained from experiment. The outputs ui can be determined from
the actually measured outputs ũi by e.g. the VPT. The next step is to substitute these quantities by their experimentally
obtained counterparts. The required transformations are Gi

:z = TOG̃i
:z, G:z = TOG̃:z, and Gi

yiz = T i
OG̃i

ỹiz, also see
Equations (3) and (4), which results in

TO

[
G̃i

:z − G̃:z

]︸           ︷︷           ︸
∆Gi

=G:ui MT i
OG̃i

ỹiz︸    ︷︷    ︸
Gi

M

∆Gi =G:ui Gi
M (11)

where no input transformation is required for the reference inputs, and ∆Gi ∈ CnO×nz and Gi
M ∈ C6×nz . Equation

(11) can be solved for the required quantity G:ui . The standard non-parametric estimate of an FRF is defined on a
frequency grid Ω = {ω1, ..., ωnω }. For such estimates, Equation (11) can be solved for each frequency separately.
Explicitly including the frequency-dependency, the equation can be solved at ωk ∈ Ω by

G:ui (ωk) = ∆Gi(ωk)Gi+
M(ωk) (12)

where Gi+
M(ωk) is the pseudo-inverse of Gi

M at frequency ωk.

The main issue of this procedure is the number of unknowns. A necessary condition for an over-determined
pseudo-inverse Gi+

M is that the number of reference inputs nz ≥ 6 as Gi
M ∈ C6×nz which allows to calculate G:ui (ωk)

based on a minimal error. As one main benefit of AMPIE is supposed to be the limited number of excitation points
and mounting operations, increasing nz contrasts this benefit. Another way to counteract this issue is to repeat the
procedure for different masses M j ∈ {M1, ...,MnM } at driving point i, i.e. to use multiple masses. To distinguish the
individual masses, the index j ∈ {1, ..., nM} is introduced. Without loss of generality, the number of masses nM is
chosen to be the same for all driving points to avoid unnecessary indices. Note that a different number of masses
could be used in practice, but only complicates the notation. Consequently, the measurement procedure results in G:z
and Gi j

:z where the particular mass is addressed by the superscript j. Furthermore, the matrix Mi is also formulated
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as

Mi j =

Driving Point index:
1 → i → N



0nz×np 0nz×6 . . . 0nz×6 . . . 0nz×6
06×np 06×6 . . . 06×6 . . . 06×6 1
...

...
. . .

...
...

... ↓

06×np 06×6 . . . M j . . . 06×6 i
...

...
...

...
. . .

... ↓

06×np 06×6 . . . 06×6 . . . 06×6 N

(13)

The application of multiple masses can be achieved directly based on Equation (11). Notice that G:ui does not depend
on the specific mass that is coupled. In contrast, the items ∆Gi and Gi

M change with different values of M j and must
be distinguished if multiple masses are used. This is also achieved by a second superscript j that accounts for M j

which leads to the adapted quantities from Equation (11):

∆Gi j = TO

[
G̃i j

:z − G̃:z

]
(14)

Gi j
M = M jT i

OG̃i j
ỹiz. (15)

For all masses M j ∈ {M1, ...,MnM }, Equation (11) is obtained nM times which results in

∆Gi1 = G:uiG
i1
M

...

∆Gi j = G:uiG
i j
M

...

∆GinM = G:uiG
inM
M


⇒
[
∆Gi1 ... ∆Gi j ... ∆GinM

]
= G:ui

[
Gi1

M ... Gi j
M ... GinM

M

]
.

The resulting equation to obtain G:ui is

G:ui (ωk) =
[
∆Gi1(ωk) . . . ∆GinM (ωk)

] [
Gi1

M(ωk) . . . GinM
M (ωk)

]+
. (16)

where the pseudo-inverse condition is nznM ≥ 6. Still, as shown in Section 4 and C.2, this approach may not yield
acceptable results.

Using multiple masses increases the available amount of data, which manifests in additional columns for the
pseudo-inverse in Equation (16). A second possibility to improve the obtained results is to use parametric, linear
systems which reduces the total number of unknowns. For the studied example, this combination of multiple masses
and parametric systems was required to obtain acceptable results. Therefore, the application of parametric, linear
systems in the present scheme is subsequently described.

2.3 Application of Parametric Systems

Based on system identification [29, 30, 31] in the field of system and control theory or modal analysis [32, 33] in
the field of structural dynamics, parametric systems can be obtained from measurement data. In substructuring,
the application of parametric state-spaces systems was mainly driven by Sjövall, Gibanica, and Abrahamsson,
for example in [34, 35]. The FRF of a parametric, linear state-space system with acceleration outputs is given
by G(ω) = C(iωI − A)−1B + D [28], where A ∈ Rn×n is the state, B ∈ Rn×nI is the input, C ∈ RnO×n is the output,
and D ∈ RnO×nI is the feedthrough matrix. For a mechanical system, the state-matrix A can be associated with
eigenfrequencies and their corresponding damping, the input- and output-matrix B and C can be associated with
mode-shapes, whereas the feedthrough D depends on the chosen outputs. In addition to a given number of outputs
and inputs, a user-defined number of n states is required for such models. The state can be transformed arbitrarily
and is chosen such that all matrices are real-valued. The bold symbol i denotes the imaginary part, in contrast to the
index i that addresses particular driving points. Since the system describes a mechanical structure that is in theory
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described by a second order model [36, p. 153, 480], the equation D = CA−1B can be put forward for the feedthrough
matrix, resulting in

G = C(iωI − A)−1B +CA−1B = C
[
(iωI − A)−1 + A−1

]
B = CΛ(ω)B (17)

where Λ(ω) =
[
(iωI − A)−1 + A−1

]
∈ Cn×n accounts for frequency-dependencies and the matrices B and C are constant.

The constraint D = CA−1B is not fulfilled by default and must, therefore, be enforced after the identification. One way
to enforce the constraint is discussed in Appendix D. It is important to notice, that the identification procedure of the
parametric system requires additional effort. Note that the partitioning from Equation (2) is achieved column-wise by
separating the matrix B according to

G =
[
G:z G:u1 . . . G:uN

]
= CΛ(ω)

[
B:z B:u1 . . . B:uN

]
(18)

⇒ G:z = CΛ(ω)B:z, B:z ∈ R
n×nz (19)

⇒ G:ui = CΛ(ω)B:ui , B:ui ∈ R
n×6. (20)

The separation makes clear that in case of the AMPIE scheme, the parametric system which is fitted to the measured
data is G:z = CΛ(ω)B:z. Similar to the FRF-based approach, the missing inputs at driving point i are expressed by
G:ui = CΛ(ω)B:ui , where the remaining unknown quantity is B:ui . Before the solution process for B:ui is described, it is
worth to take a closer look at the involved quantities and their implications.

The basis for the estimation of B:ui via the AMPIE strategy is G:z = CΛ(ω)B:z. This identified system G:z = CΛ(ω)B:z
offers a modal basis solely by the excitation of z. When z is excited, dynamics at the coupling points are only detected
by the outputs y1, ..., yN as u1, ..., uN is not excited during the measurement of G:z and throughout the entire AMPIE
procedure. Concluding, in the presented form, the approach requires that all eigenmodes that are excited by an
excitation at ui are also excited by z. Otherwise, the coupling of a mass at driving point i would excite dynamics, that
cannot be described by G:z = CΛ(ω)B:z. Note that this limitation is also present in the FRF-based formulation but
does not emerge this clearly.

Assuming that all dynamics can be described by the identified system, for driving point i and mass j, Equation
(11) becomes

∆Gi j(ω) = G:uiG
i j
M(ω) = CΛ(ω)B:uiG

i j
M(ω). (21)

The decisive difference between Equation (21) and Equation (11) is that the unknown quantity B:ui is a frequency-
independent matrix. This changes the mathematical foregoing to solve the equation for B:ui . It is worth noting that this
problem is mathematically similar to several joint identification approaches, e.g. proposed by Ren and Beards [37].

In order to obtain the unknown quantity B:ui , the equation can be manipulated using the Kronecker-product. The
unknown quantity X in the matrix-valued equation AXB = C can be obtained from the Linear Equation System (LES)

(BT ⊗ A) ↓X =↓C where ↓ denotes the column-wise vectorization of a matrix, i.e. ↓
[
x1 . . . xn

]
=
[
xT

1 . . . xT
n

]T
and

⊗ is the Kronecker-product. For mass j at driving point i, the obtained equation is a complex-valued, linear equation
system with a frequency-independent, real-valued unknown x, allowing the separation of real and imaginary parts

↓∆Gi j(ω)︸    ︷︷    ︸
bi j(ω)

= [Gi j,T
M (ω) ⊗CΛ(ω)]︸                  ︷︷                  ︸

Ai j(ω)

↓B:ui︸︷︷︸
xi

→

[
AR

i j(ω)
AI

i j(ω)

]
xi =

[
bR

i j(ω)
bI

i j(ω)

]
, (22)

where xi ∈ R
6n×1 is the real-valued unknown quantity, and the complex-valued quantities bi j(ω) ∈ CnOnz×1 and

Ai j(ω) ∈ CnOnz×6n are separated into their real and imaginary parts bR
i j(ω) ∈ RnOnz×1, bI

i j(ω) ∈ RnOnz×1, AR
i j(ω) ∈ RnOnz×6n,

and AI
i j(ω) ∈ RnOnz×6n to form a real-valued LES. Except for xi, the quantities in this equation are frequency-dependent.

However, apart from Λ(ω), the quantities are not assumed to be available in a frequency-continuous but a frequency-
discrete from, i.e. on a frequency grid ωk ∈ Ω = {ω1, ..., ωnω }, such as the typical, non-parametric estimate of a
frequency-response function. Multiple frequencies are included in Equation (22) by stacking the quantities accordingly:
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

AR
i j(ω1)

AI
i j(ω1)
...

AR
i j(ωnω )

AI
i j(ωnω )


xi =



bR
i j(ω1)

bI
i j(ω1)
...

bR
i j(ωnω )

bI
i j(ωnω )


⇒ ARI

i j xi = bRI
i j . (23)

The number of used frequencies leads to ARI
i j ∈ R

2nωnOnz×6n and bRI
i j ∈ R

2nωnOnz×1 where the number of unknowns 6n is
typically smaller than the number of equations 2nωnOnz. This can be approached by a minimization of the least-squares
error which results in a quadratic equation system (ATWA)x = ATWb with a weighting matrix W. Formulated for the
present case, the weighting is defined frequency-wise. Therefore, the equation can be re-formulated as sum

A■i jxi = b■i j with: (24)

A■i j =

nω∑
k=1

AR,T
i j (ωk)WR

k AR
i j(ωk) + AI,T

i j (ωk)W I
k AI

i j(ωk)︸                                                ︷︷                                                ︸
∆A■i j(ωk)

(25)

b■i j =

nω∑
k=1

AR,T
i j (ωk)WR

k bR
i j(ωk) + AI,T

i j (ωk)W I
kbI

i j(ωk)︸                                               ︷︷                                               ︸
∆b■i j(ωk)

(26)

where A■i j ∈ R
6n×6n, b■i j ∈ R

6n×1. The matrices WR
k ∈ R

nOnz×nOnz and W I
k ∈ R

nOnz×nOnz are weighting matrices at frequency
ωk, defined for the real and imaginary quantities separately. As FRFs typically span several orders of magnitude, this
is also true for the values in the sums (25) and (26). The application in the scope of this work shows that a relative
weighting WR

k = diag(bR
i j(ωk))−1 and W I

k = diag(bI
i j(ωk))−1 is beneficial.

Similar to the previous NP-FRF-based discussion, the application of more than one mass is beneficial. As for
Equation (23), where all frequencies are stacked, nM masses are included by further stacking, which ultimately results
in further summation:

ARI
i1
...

ARI
inM

 xi =


bRI

i1
...

bRI
inM

⇒ A■i =
nM∑
j=1

A■i j, b■i =
nM∑
j=1

b■i j. (27)

The quantity B:ui is then obtained by reshaping xi that is the solution of the LES

A■i xi = b■i ⇒ xi =
(
A■i
)−1 b■i . (28)

2.4 Summary, Comparison, and Practical Considerations

Summary At first, the main steps that were outlined in the previous section are briefly summarized:

• The overall goal is to obtain a system G that is suited for substructuring by offering 6-by-6 driving points for
coupling other systems.

• In a standard measurement scenario, the system G̃ is obtained, where the main experimental effort is found to
obtain the submatrices G:ui = TOG̃:ũi which are frequently obtained by using adapter structures.

• The dynamic modification of the structure resulting from an added mass, similar to an adapter structure, is
exploited in the AMPIE strategy, where the matrices G:z = TOG̃:z without mass and Gi j

:z = TOG̃i
:z with mass j at

driving point i are used as input to obtain G:ui based on the observed difference.

• The basis for the derivation is to formulate the effect of the coupled mass as constant feedback in Equation (5).
The difference in the solution process between AMPIE and MUM are pointed out in Appendix B.

• The NP-FRF-based derivation to obtain G:ui ultimately leads to a LES (11) that can be solved by a pseudo-
inverse, which is formulated for a single mass in Equation (12) and for multiple masses in Equation (16).
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• Based on the LES (11) and the FRF of a parametric state-space system G(ω) = CΛ(ω)B the problem can be
reformulated in calculating the frequency-independent matrix B:ui from Equation (28) instead of the frequency-
dependent quantity G:ui . The required constraint and its application to the state-space system is discussed in
Appendix D.

Furthermore, the procedure can conveniently be denoted as algorithm, see Appendix A. For a scenario with

• nO outputs, and nz reference inputs,

• N driving points, a constant number of nM masses per coupling point,

• a parametric system with n states,

• that is evaluated on nω frequencies,

the AMPIE scheme is given in Procedure 1 for the measurements, as well as Procedure 2 and Procedure 3 for the
non-parametric and parametric data-processing, respectively. Note that the number of masses could vary, but is
chosen to be constant for a clear notation. In addition to the algorithmic summary, the comparison of the parametric
versus the non-parametric approach are addressed subsequently.

Parametric and Non-Parametric The strategies are compared using pseudo-code in Procedure 2 and 3. Apart
from the procedures, the ratio ρ of the number of unknowns and available equations is of interest as ρ > 1 is a
necessary condition that the LES from Equation (16) or Equation (28) can be solved uniquely which was already
discussed for Equation (16). This ratio is listed in Table 1:

Procedure Unknowns Equations Ratio ρ
Non-Parametric (16) 2 · 6 · nO 2 · nOnznM

nznM
6

Parametric (28) 6n 2nOnznMnω
nOnznMnω

3n

Table 1: Overview of equations, unknowns, and ratio ρ.

The number of equations for the parametric case is increased based on two effects. First, the required quantity
is real-valued, which is not the case for the non-parametric calculation. Real and imaginary part can be split into
two sets of equations, adding the factor 2. That same factor is found in the non-parametric case for equations and
unknowns, leading to its cancellation. Second, all frequencies are used for the parametric approach, adding the
coefficient nω. However, for the parametric case, the number of states n determines the number of unknowns. This
highlights the importance of the used, identified system. Accuracy and number of states have a decisive influence
and must be carefully traded off in the identification process. A concept for assessing the AMPIE procedure based on
predictions and test-cases is introduced subsequently.

Prediction and Test-Case The outlined approach is based on the minimization of the least-squares errors in
Equation (12), for the NP-FRF-based approach, and Equation (23) for the state-space-based approach. It is clear that
this error will be smaller, the more variables are available. Due to this overfitting effect, the minimized least-squares
error is not suited to measure the quality of the obtained quantities. Instead, the initially stated feedback from Equation
(5) can be used. An entire overview of the subsequently discussed concepts is given in Figure 5.

The results of the described procedure is G:ui . Therefore, the coupling operation (5) can be computed based on
the now known system G =

[
G:z G:u1 . . . G:uN

]
, resulting in a prediction for the system with coupled mass Mi j

from Equation (13)

Gi j,⋆ = (I −GMi j)−1G. (29)

The resulting submatrix Gi j,⋆
:z can be compared to the values Gi j

:z = TOG̃i j
:z that were experimentally obtained. It is

important to notice, that the obtained prediction-error Gi j,⋆
:z −Gi j

:z and the least-square error in Equation (12) or (23)
are vastly different. For example, increasing the number of states n would continuously reduce the least-square error,
but would at some point start to increase the deviation in the obtained predictions Gi j,⋆. Further, it is important to
notice that the concept to predict the quantity Gi j,⋆ does not depend on whether the information Gi j was used in the
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estimation process, i.e. in Equation (12) or Equation (23). This observation and the need to validate the obtained
quantities leads to the concept of a test-case.

G:z

G:z+

Gtest = [Gtest
:z Gtest

:z+ ]

Gtest,⋆ = [Gtest,⋆
:z Gtest,⋆

:z+ ]

Comparison

Comparison

Prediction

Test-Case

AMPIE

Testinput z+

Testconfiguration

G11
:z

G = [G:z G:u1 G:u2 ]

G+ = [G:z G:z+ G:u1 G:u2 ]

(16) for NP-FRF

(28) for state-spaces
AMPIE

Mtest =


0nz×np 0nz×6 0nz×6

0nz+×np 0nz+×6 0nz+×6

06×np M 06×6

06×np 06×6 M



G11,⋆
:z

(I −GM11)−1G

(29)

(I −GM21)−1G

G21,⋆
:zG21

:z

Excitation at z

(I −G+Mtest)−1G+

(29)

Fig. 5: Generic example illustrating the relation between AMPIE, predictions and test-cases.

In order to obtain the required input quantities, a set of reference inputs was combined with a set of masses. The
resulting quantities Gi j

:z were used in the estimation of G:ui . In order to validate the obtained results further, beyond
the concept of predictions Gi j,⋆

:z , a test-case is constructed that includes further unknowns. There are two possible
ingredients for such a test-case. First, the attachment of arbitrary mass or substructure configurations can be tested.
Here, the main question is, if the obtained results are only suited to reproduce the input data, i.e. the coupling of one
mass at one position, or more complex scenarios as well, for example two masses which are attached simultaneously
at two positions. Second, the test can involve reference inputs z+ ∈ Cnz+×1 that were not included in the computation
procedure. The motivation for the latter case is straightforward: Procedure 1 makes clear, that the experimental effort
rises with the number of reference inputs nz that are included in the AMPIE procedure. The idea of a test-case is,
that the quantities G:z and G:z+ ∈ C

nO×nz+ as well as all Gi j
:z are recorded whereas the quantities Gi j

:z+ are not recorded.
For the AMPIE procedure, only G:z and Gi j

:z are used to estimate
[
G:u1 . . . G:uN

]
via Equation (16) or Equation (28).

Then, the entire system G+ =
[
G:z G:z+ G:u1 . . . G:uN

]
∈ CnO×(nI+nz+ ) is used in Equation (29) which results in
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Gtest,⋆ =
[
Gtest,⋆

:z Gtest,⋆
:z+
]
. This prediction is then compared to Gtest =

[
Gtest

:z Gtest
:z+
]

which is the measured reference for
the arbitrary configuration of coupled substructures with additional reference inputs z+. An example is given in Figure 5.

Figure 5 summarizes the discussed concepts – AMPIE, prediction, and test-case – using the generic example that
was already used in the introduction. For the illustrated AMPIE procedure, the only difference to Figure 4 is the formula-
tion of the involved quantities with superscript j. Note that the example is not extended to multiple masses to avoid an
overloaded illustration. In addition, the main equations are given which result in the system G. Based on this system,
the concept of a prediction is shown in the upper right part of Figure 5. The feedback equation is solved for M11 and
M21. The concept for a test-case is illustrated in the lower part of the figure. It makes clear that G:z+ must be measured
and is inserted in G to form G+. The illustrated test-configuration is defined by two masses, which result in the
matrix Mtest for Equation (29) and ultimately in Gtest,⋆ which is compared to the experimentally obtained quantities Gtest.

3 Experimental Example

Figure 6 shows the scenario that is used to analyze the outlined scheme. The specimen consists of a welded
steel frame with bolt-on steel and acrylic glass plates. The measurement set-up is defined by six reference outputs
and three reference inputs. Two of these inputs are used to generate the input data for the AMPIE procedure, i.e.
z =
[
z1 z2

]
, the third is used within the test-case, i.e. z+ = z3 which was explained in detail in Figure 5. Two coupling

points are analyzed. To establish a virtual point transformation for the measured output accelerations, three triax
accelerometers are mounted at each coupling point. This results in ỹ1 and ỹ2 for the first and second coupling point,
respectively. Two additional triax accelerometers are placed at different locations and represent the reference outputs
p1 − p6. In summary, the recorded systems have two input and 24 output signals. The entire system is fixed in the
middle of the lower part of the frame, the support is symbolized by hatched lines.

p1 − p3

z1

z2

z3

p4 − p6

ỹ1 ỹ2

Fig. 6: Channel set-up for the analysis of the AMPIE approach and used added masses.

On both coupling points, a total of four masses is attached successively which results in Gi j
:z. The mass is increased

by stacking equivalent discs. This set-up has two advantages: first, the mounting operation is straightforward and can
be tracked and documented easily, and, second, the incremental definition based on the index j allows a convenient
implementation in the subsequent analysis. The VPT is defined such that the acceleration outputs on both coupling
points are transformed to a local coordinate system, that corresponds to Figure 7. Both, the aluminum block of driving
point 1 and the area of driving point 2 that is defined by the three accelerometers in approximately 20mm radius, are
considered to be sufficiently stiff to allow a VPT in the frequency range to 200Hz. The resulting values for M j can be
obtained from Equation (30).
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j

r

h

m

xy
β

γ z

α

Fig. 7: Disc increments.

M j = −



m 0 0 0 − m̄h̄
2 0

0 m 0 m̄h̄
2 0 0

0 0 m 0 0 0
0 m̄h̄

2 0 Jαα 0 0
− m̄h̄

2 0 0 0 Jββ 0
0 0 0 0 0 Jγγ


with:


h̄ = jh, m̄ = jm

Jαα = Jββ = J0 + Js

J0 =
1
4 m̄(r2 + 1

3 h̄2)
Js = m̄(0.5h̄)2

Jγγ = 0.5m̄r2

(30)

The total mass is defined by m̄ = jm, the total height of the resulting cylinder by h̄ = jh. As the coordinate system
matches the rotational axes of the resulting cylinder, the obtained moment of inertia is diagonal. The visualization in
Figure 7 and formula in Equation (30) show in detail, that the attached mass gives a force-feedback for translations
and rotations which is used by the AMPIE strategy to determine the three input forces and three input torques in G:ui .
The incremental definition (30) can be conveniently used in the implementation, see Procedure 2 and Procedure 3.

4 Results

In this section, results obtained from the proposed methods are discussed. First, the methods and algorithms used
for system identification and AMPIE input data are summarized. Second, the results of the AMPIE procedure are
investigated. Third, a test-case is outlined and evaluated.

System Identification and AMPIE Input All system identification steps for this publication were performed in MAT-
LAB based on raw time-data that was recorded a sample rate of 2048Hz. The recorded outputs are accelerations, the
recorded inputs are forces exerted by a shaker device. For the excitation band-limited noise was used. Consequently,
all FRFs of analyzed reference channels Gpz have the units m/s2

N . Channels associated with coupling have different

units associated with translations and rotations, e.g. m/s2

Nm , rad/s2

N , or rad/s2

Nm . However, as described in the introduction in
Section 2.1, the assessment focuses on the reference channels.

The parametric system identification for G:z which is required to enable the state-space-based procedure outlined
in Section 2.3 was conducted using the N4SID routine with the CVA-method [38] that is offered in the MATLAB
System Identification Toolbox [39]. The constraint D = CA−1B is enforced subsequently, as described in Appendix D.
The identified model consists of 150 states, which were manually chosen by comparing the parametric FRF with the
non-parametric one, and is found to accurately describe the frequency range from 10 to 200Hz. The assessment of the
accuracy is based on the visual comparison of the FRFs, for example on the channels shown in Figure 8. One finds,
that there is no significant deviation between the FRFs. Several out-of-band modes are required to accurately describe
the frequency range. Compared to the NP-FRF G:z, the identified model will be more accurate, the more states are
used. However, as discussed earlier, an arbitrary high number of states is not recommended as the increased number
of variables will eventually deteriorate the obtained results from the AMPIE procedure. The channels [p6]← [z1, z2, z3]
from the NP-FRF G:z, and state-space G:z with and without constraint are shown in Figure 8. The arrow-notation is
used to highlight that the FRF describes the effect of the set of inputs on the outputs. The arrow points to the left in
accordance with the standard notation of the underlying matrix multiplication. Compared to an index-based notation,
e.g. Gpz, the arrow-notation offers the advantage that channels can be addressed without specifying a system. This is
exploited in the layout of the subsequently discussed plots where the channels are specified in the caption using the
arrow notation. The systems are specified in the legend, which makes the Figures clearer.

All non-parametric FRF were estimated using the SPAFDR routine from the MATLAB System Identification
Toolbox [39] which uses the Blackman-Tukey algorithm [40] based on a given frequency grid Ω. In this contribution,
two different resolutions were used:

• Steps of 0.1Hz are used for all NP-FRFs in the AMPIE algorithm, i.e. Gi j
:z∀i ∈ 1, ...,N, j ∈ 1, ..., nM, and for the

evaluation of the term G:z = CΛ(ω)Bz,

• Steps of 1Hz are used for all NP-FRFs associated with the test-case in Gtest.
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This difference is also clearly visible in the subsequently discussed graphs. A higher frequency resolution,
increases the variance and noise in the graphs — particular at low amplitudes — as the used Hann windows are
narrowed. The main idea behind the finer resolution in one set of NP-FRFs is the increased number of equations in
the parametric AMPIE procedure, as shown in Table 1, Equation (27) and Section 2.4.
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Default State-Space G = C(iωI − A)−1B + D
Constrained State-Space G = CΛ(ω)B
NP-FRF G

Fig. 8: AMPIE systems: default and constrained state-space systems that are used in the AMPIE procedure, along with the
NP-FRF for comparison. The channels [p6]← [z1, z2, z3] from test set-up 6 are visualized.

Figure 8 clearly shows, that the FRF of the default and constrained state-space system match. Therefore, enforcing
the constraint according to Appendix D, does not alter the identified state-space system in an undesired way. Both
FRF also match with their non-parametric counterpart, no significant deviation can be detected.
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Fig. 9: Non-parametric AMPIE input data: shows the effect
of an increasing mass coupled on position 1 for channel
[p6]← [z1] from the test set-up in Figure 6.
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Fig. 10: Non-parametric AMPIE input data: shows the
effect of an increasing mass coupled on position 2 for
channel [p6]← [z1] from the test set-up in Figure 6.

Besides the system G, the specimen must be analyzed with attached masses. As illustrated in Figure 6, four
masses are used at each coupling point, resulting in the systems G11

:z −G14
:z and G21

:z −G24
:z . The channel [p6]← [z1] is

plotted in Figure 9 for G11
:z −G14

:z and in Figure 10 for G21
:z −G24

:z where increasing opacity indicates a higher mass.

18 | doi:10.25518/2684-6500.234 Benjamin Kammermeier et. al

http://dx.doi.org/10.25518/2684-6500.234


Journal of Structural Dynamics, 3, (pp. 1-29) 2024
AMPIE: Added Mass Passive Input Estimation - Acquiring Driving Points without Direct Excitation

In most parts, the NP-FRFs plotted in Figure 9 and 10 meet the expectation: the transition between the incremen-
tally altered systems is smooth and a gradual shift can be observed. However, there are regions that would intuitively
be classified as outliers, for example G14

:z above 180Hz or G24
:z at 60Hz. This points to a decisive issue in the outlined

schemes: the imperfection of recorded data due to random and systematic errors. The idea to use multiple masses is
a first step to lower the sensitivity to deviations in single measurement results, however, the observation also suggest
that systematic deviations become more likely, the higher the attached mass is, as the most significant outliers are
present in G14

:z and G24
:z , i.e. when four masses are coupled. There are several possible sources that can explain the

systematic outliers, e.g.

• non-linear behavior that is gradually introduced by higher forces and torques, and thus higher displacements
and rotations,

• static pretension that is not captured by the underlying system representation that only considers inert mass,
not heavy mass,

• a higher likelihood for internal dynamics and in a larger stack of the attached discs,

• and their combination.

The precise analysis of the underlying physical mechanism is beyond the scope of this contribution. Rather, the list of
different possible sources is intended to come to the important conclusion that methods that treat such systematic
deviations and reduce their impact must be investigated further. Some ideas to approach this issue are discussed in
Section 5.

AMPIE Results Given the systems G:z, G11
:z , ...,G

14
:z and G21

:z , ..,G
24
:z , the Procedures 2 and 3 can be conducted. In

case of the state-space-based Procedure 3, the resolution of the frequency grid was set to 0.1Hz. As discussed earlier,
Equation (29) and the resulting system

[
G:z G:u1 G:u2

]
can be used to compute the predictions G11,⋆

:z , ...,G
14,⋆
:z

and G21,⋆
:z , ...,G

24,⋆
:z . The comparison to the input quantities G11

:z , ...,G
14
:z and G21

:z , ...,G
24
:z gives a first indication of the

achieved accuracy. For the present scenario, the channel [p6]← [z1] from G13
:z and G13,⋆

:z , as well as G22
:z and G22,⋆

:z ,
are compared in Figure 11 and Figure 12, respectively. Note that this comparison only includes the state-space-based
results.
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Fig. 11: AMPIE prediction for channel [p6] ← [z1]: mea-
sured and predicted result when three discs are coupled at
position 1.
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Fig. 12: AMPIE prediction for channel [p6] ← [z1]: mea-
sured and predicted result when two discs are coupled at
position 2.

In summary, the predictions show a reasonable, but not a perfect reproduction of the measured data. For G13,⋆
:z , a

mismatch above 180Hz is clearly visible. In case of G22,⋆
:z , the results show deviations between 140 and 160Hz as well

as above 180Hz. Still, Figures 11 and 12 also show that the input data is affected by noise, in particular in regions
with low amplitude, e.g. below 40Hz. Similar to possible systematic deviations in Figure 9 and 10, this emphasizes
the need to deal with errors of random and systematic nature.

In order to asses if the obtained results can be used for further predictions, test-cases were discussed in Section
2.4. The main goal is to extend the assessment beyond the input data that has already been used in the AMPIE
procedure. For the present example, the combination of masses is used instead of a single mass. This test-case is
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still close to the used input data, however, it is chosen intentionally to avoid any further sources of uncertainty that
would be introduced by a more complicated test-configuration. In addition, z+ = z3 is added in order to assess the
ability to predict the effects of the test-case on an additional reference channel. This test-case is illustrated in Figure
13. The difference between the input and test data is shown in Figure 14 for channel [p6]← [z1].

2 discs at
position 1

2 discs at
position 2

z3

Fig. 13: Test-case: combina-
tion of masses at both posi-
tions and test-channel z+ =
z3.
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Fig. 14: Non-parametric AMPIE input and test-data for channel [p6] ← [z1]: the figure
illustrates the difference between a mass combination Gtest — realized by two discs simulta-
neously on both positions — and the used AMPIE data G14 and G24 obtained from coupling
four discs on one of both positions as well es the default system G.

Figure 14 is used to show the difference between the default system, the AMPIE input data and the test-case.
Since the test case is only based on attached masses, it is still close to the AMPIE input data. However, this figure is
intended to show that the resulting dynamics are decisively different. This becomes particularly clear when the peaks
of the FRFs are mutually compared. As an example, the low frequent-peaks of the default system G at approximately
50Hz and 65 Hz are briefly analyzed. In case of the system G14 the peaks are shifted to lower frequencies by
approximately 10Hz. Instead, for G24 one peak vanishes, while the other is not significantly altered. For the two
peaks the behavior of Gtest is similar G14 as they are lowered by approximately 10Hz. A similar comparison can
be put forward for several intervals of the shown FRF. In summary, the FRF of the test-case Gtest show dynam-
ics different from the default system, that cannot be attributed to the effect of one driving point. Therefore, it is
considered as a suited test to assess if the estimated quantities of the AMPIE procedure can be used to predict the dy-
namics of such a combined configuration as the effect of both masses and their mutual influence must be incorporated.

The test prediction is shown in Figure 15 for channel [p2] ← [z3], including the added reference input z3. The
same result is shown for channels [p2, p6]← [z1, z2, z3] in Figure C.1. Similar to the prediction in Figures 11 and 12,
the test-prediction Gtest,⋆ shows a reasonable match to the recorded reference Gtest. In this case, reasonable means,
that Gtest,⋆ comes close to Gtest, in particular compared to the default system G which is the basis for the prediction
according ot equation (29). Still, deviations similar to the above discussions can be observed. In the shown example,
the accuracy significantly deteriorates above 180Hz, comparable to the case from Figure 11. Peaks that do not match
the reference and may originate from overfitting can be observed, for example at roughly 75 and 160Hz. For the latter
case at 160Hz, mismatches can also be found in Figure 11 and Figure 12. Besides the prediction that is obtained by
using all 4 masses in Figure 15, Figure C.3 shows the results for one, two, and three masses as well. Using more
masses clearly improves the results as one would expect. The outcome also underlines that, in the present example,
at least one to three masses in the used configuration were required for usable results which emphasizes the possible
benefits of the outlined approach.
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Fig. 15: AMPIE test-prediction for channel [p2] ← [z3]: default system as well as measured and predicted test-combination
including the added test-channel z3.

Example for Uncertainties Uncertainties were addressed in the paper, as they play an important role for an
experiment-based approach like AMPIE. Some of the most relevant steps concerning uncertainty, e.g. quantification
for parametric and non-parametric systems, the efficient propagation through the AMPIE calculations, approaches to
counteract systematic and random deviations based on AMPIE-internal checks via Equation (29) and methods such
as the Iterative Reweighted Least Squares (IRLS) [41, 42], require further research and an in-depth discussion on
their own. This in-depth discussion is, to the authors’ opinion, beyond the scope of this contribution. Rather than a
comprehensive discussion of uncertainties, a limited example to provide an outlook on the effects of noise on the
presented AMPIE strategy is given. The details of the chosen approach are briefly described. One limitation is, that
uncertainties in the parametric system are not considered, i.e. for G = CΛ(ω)B:z one sample is identified. For the
remaining AMPIE inputs Gi j, 50 samples are generated for each system. The duration of the entire recorded data for
each input z is 60 seconds. Samples are generated based on time frames with a duration of 10 seconds. In total 50
samples are generated for each system by shifting the sampled time frames by one second. Based on these samples,
the AMPIE procedure is repeated 50 times. The resulting samples of Gtest,⋆ and the corresponding mean value are
shown in Figure 16.

The main finding is, that the influence on uncertainties strongly depends on the frequency. For most parts of the
analyzed frequency interval from 10 to 200 Hz, the samples are close to each other with little qualitative difference.
In other words, considering one or the other sample would lead to a similar conclusion if the analyzed combination
would be studied in order to tune the system G. For example, the peak at approximately 65Hz of system G is
shifted to approximately 60Hz for the mean value of Gtest,⋆. Considering all samples, one finds that this shift is
present in all samples within a 1Hz-interval which leads to the same qualitative conclusion in terms of the shifted
frequency. In contrast, considering the amplitude of the shifted peak, the samples clearly show that its height can
vary in a relevant interval. Concluding, in terms of amplitude, considering all samples leads to a different qualitative
conclusion: the amplitude of the shifted peak can increase or decrease compared to the peak of G. If this height was
of particular interest, the analyzed configuration would not be considered robust for system G. For other peaks, e.g.
at approximately 105Hz, a different conclusion would be made. The discussed example, therefore, once more shows,
that uncertainties are important to consider, albeit in a non-comprehensive approach.
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Fig. 16: AMPIE test-prediction for channel [p2]← [z3]: default system as well as measured and predicted test-combination for the
added test-channel z3. for the predicted test-case Gtest,⋆, 50 samples are included.

The similarity of all samples cannot be confirmed for low amplitudes at anti-resonances, and for frequencies above
180Hz. The first finding can be expected as the noise to signal ratio is high at anti-resonances as the measured signals
approach low values per definition at an anti-resonance. For the deviations above 180Hz, a possible explanation is
the parametric system G. In order to accurately describe the frequency interval to 200Hz, out-of-band modes over
200Hz are required which do not represent physical behavior. Attaching masses can lower these peak which then
introduce a higher uncertainty at the boundary of the studied frequency range of interest. Based on this reasoning,
an important additional finding is, that a buffer interval should be included to avoid spurious effects in the frequency
interval of interest.

In summary, these observations show that the outlined approach is capable to provide reasonable predictions
beyond the used input data, while high attention must be payed to random and systematic deviations and imperfections
in the input systems. This becomes particularly clear when results that are obtained from the NP-FRF-based Procedure
2 are included. For the present example, these results are shown in Figure C.2 for channels [p2, p6]← [z1, z2, z3]. It is
clearly visible that the obtained prediction cannot be used. The noise in the input data is drastically amplified, yielding
a completely perturbed result. Still, also a lower frequency resolution does not improve the significant bias. However,
there are several further steps that can be used to tackle these issues, for parametric and non-parametric systems,
which are part of further work on this strategy.

5 Summary, Conclusion and Further Work

Summary and Conclusion One of the main issues for substructuring is that driving points, in particular all 6-by-6
driving points, are hard to determine experimentally. Adapter structures are one of the most practical, purely ex-
perimental approaches, but require high mounting effort and numerical post-processing to eliminate the adapter’s
dynamics from the measurement. The idea that the effects of an attached structure, ideally a mass, on a specimen do
not have to be eliminated but can be used to determine the input quantities of interest was introduced in the MUM
[23, 11, 12], but mathematically limited to scalar input quantities and single masses. In this work, the AMPIE strategy
is proposed, giving a straightforward notation and extending the basic idea from MUM to multiple masses, 6-by-6
driving points, and a formulation for parametric and non-parametric systems.
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The assessment of the proposed schemes is based on the concept of predictions and test-cases. For the analyzed,
simple test-case, promising results for the state-space-based approach can be obtained. Beyond the given input data,
the effects of mass-combinations on an additional reference input can be predicted in most parts. However, deviations
can clearly be detected. The main source for these deviations are random and systematic errors in the used data. As
the AMPIE strategy can potentially reduce the measurement effort in certain scenarios, further work to tackle these
issues is required.

Further Work The main source of error in the outlined schemes are random and systematic deviations in the input
data. Therefore, the inclusion and treatment of these uncertainties beyond the given, non-comprehensive example is
the most important next step. There are several possibilities to approach that issue.

First, the available experimental data can be used to quantify the uncertainty in the input systems. Based on such a
representation, the uncertainty in the obtained results can be assessed. Further, based on the concept of the predicted
quantities in Equation (29), optimization under uncertainty can be approached. Second, as Figure 9 and 10 show,
the input data may lack consistency, that is expected due to the gradual increase of the attached mass. Automated
approaches to exclude outliers are a further option. One possibility is the weighting. For example, Iterative Reweighted
Least Squares (IRLS) [41, 42] can be an option in this context. Third, the proposed schemes allow to establish a
6-by-6 coupling point, however, not necessarily all entries are required in all cases or are free-to-choose. Constraints
such as symmetry, or a diagonal shape may be enforced a priori, before the AMPIE procedure is conducted, resulting
in a smaller set of unknowns. Fourth, a higher number of states yields a more accurate identified model, but will at
some point deteriorate the estimation results. In further work, an automated selection of the number of states must be
investigated.

Apart from extensions which further improve the used algorithm, additional experimental investigations are certainly
required. In particular, the application to more complex substructuring scenarios is a key part of the further work. As
this contribution shows the very basic capabilities and applicability of the proposed scheme, further investigations
must include the comparison to the standard measurement procedure and compare them in terms of accuracy and
experimental effort.

Appendix

A AMPIE Procedures

Procedure 1 AMPIE Measurements
Input: Measurement set-up
Output: G:z and Gi j

:z ∀i ∈ {1, ...,N}, j ∈ {1, ..., nM}

1: for l ∈ {1, ..., nz} ▷ iterate reference inputs
2: Mount shaker at l, measure G:zl , append G:z ← G:zl

3: for i ∈ {1, ...,N} ▷ iterate driving points
4: for j ∈ {1, ..., nM} ▷ iterate added masses
5: Add M j at i, measure Gi j

:zl , append Gi j
:z ← Gi j

:zl

6: end for
7: end for
8: end for
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Procedure 2 AMPIE Non-Parametric

Input: G:z and Gi j
:z∀i ∈ {1, ...,N}, j ∈ {1, ..., nM}

Output: G with G:ui∀i ∈ {1, ...,N}
1: for i ∈ {1, ...,N} ▷ iterate driving points
2: for j ∈ {1, ..., nM} ▷ iterate added masses
3: ∆Gi j ← TO

[
G̃i j

:z − G̃:z

]
4: Gi j

M ← M jT i
OG̃i j

yiz
5: end for
6: G:ui ←

[
∆Gi1 . . . ∆GinM

] [
Gi1

M . . . GinM
M

]+
▷ Equation (16)

7: end for
8: G ←

[
G:z G:u1 . . . G:uN

]

Procedure 3 AMPIE Parametric

Input: G:z, Gi j
:z∀i ∈ {1, ...,N}, j ∈ {1, ..., nM}, and order n

Output: G with G:ui∀i ∈ {1, ...,N}
1: Identify {A, B:z,C,D:z} ← G:z, enforce D:z = CA−1B:z
2: for i ∈ {1, ...,N} ▷ iterate coupling points
3: for j ∈ {1, ..., nM} ▷ iterate added masses
4: for ωk ∈ Ω

5: A■i j ← A■i j + ∆A■i j(ωk) ▷ Equation (25)
6: b■i j ← b■i j + ∆b■i j(ωk) ▷ Equation (26)
7: end for
8: A■i ← A■i + A■i j, b■i ← b■i + b■i j ▷ Equation (27)
9: end for

10: B:ui ←
(
A■i
)−1

b■i ▷ Equation (28)
11: G:ui ← CΛ(ω)B:ui

12: end for
13: B←

[
B:z B:u1 . . . B:uN

]
14: D← CA−1B
15: G ← {A, B,C,D}

B AMPIE and MUM

In the previously proposed methods [23, 11, 12], the mass uncoupling method is formulated on a scalar basis. In
order to clarify the basic steps, the items in Equation (5) are chosen to yield the simplest scenario where only scalar
channels are considered. The key assumption for the mathematical steps is that one mass is assumed to solely act in
one translational direction:

G1 =

[
G1

pz G1
pu

G1
yz G1

yu

]
∈ C2×2,G =

[
Gpz Gpu

Gyz Gyu

]
∈ C2×2 (B.1)

M1 =

[
0 0
0 m

]
∈ R2×2,TI =

[
0
1

]
,TO =

[
0 1

]
. (B.2)

Then, Equation (5) becomes[
G1

pz G1
pu

G1
yz G1

yu

]
=

[[
1 0
0 1

]
−

[
0 Gpum
0 Gyum

]]−1 [Gpz Gpu

Gyz Gyu

]
. (B.3)

where Gpu and Gyu are unknown. The scalar formulation allows the inverse to be calculated:[
G1

pz G1
pu

G1
yz G1

yu

]
=

1 Gpum
1−Gyum

0 1
1−Gyum

 [Gpz Gpu

Gyz Gyu

]
=

Gpz +
GpumGyz

1−Gyum Gpu +
GpumGyu

1−Gyum
Gyz

1−Gyum
Gyu

1−Gyum

 , (B.4)
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and the equations

G1
yz =

Gyz

1 −Gyum
⇒ Gyu =

1 − Gyz

G1
yz

m
=

G1
yz −Gyz

mG1
yz

(B.5)

G1
pz = Gpz +

Gpumgyz

1 −Gyum
= Gpz +GpumG1

yz ⇒ Gpu =
G1

pz −Gpz

mG1
yz

(B.6)

are obtained. Using the same assumptions and Equation (6) one finds:

G1 −G = GM1G1 (B.7)[
G1

pz G1
pu

G1
yz G1

yu

]
−

[
Gpz Gpu

Gyz Gyu

]
=

[
Gpz Gpu

Gyz Gyu

] [
0 0
0 m

] [
G1

pz G1
pu

G1
yz G1

yu

]
(B.8)

[
G1

pz
G1

yz

]
−

[
Gpz

Gyz

]
=

[
Gpu

Gyu

]
mG1

yz ⇒

[
Gpu

Gyu

]
=


G1

pz−Gpz

mG1
yz

G1
yz−Gyz

mG1
yz

 (B.9)

Naturally, both procedures yield the same results. However, the steps (B.4) - (B.6) are arguably more cumbersome
than the steps (B.7) - (B.9). Still, the main benefit of Equations (B.7) - (B.9) becomes apparent when the assumption

of a scalar mass is dropped. In that case, the inverse in Equation (B.3) becomes
[[

I 0
0 I

]
−

[
0 GpuM
0 GyuM

]]−1

where

Gyu ∈ C
6×6 accommodates a six dimensional coupling point. Note that the quantities Gpu and Gyu are the unknown

quantities that are supposed to be calculated. A straightforward, numerical matrix-inversion is, therefore, not possible.
As the dimension increases, the required symbolic inversion would result in far more complex expressions which are
not as conveniently solvable as (B.4) - (B.6). In addition, no such formulation is known to the author. As these hurdles
are entirely avoided in the expression (B.7) - (B.9) the formalism is considered to be more flexible as arbitrary interface
dimensions and constraints can be applied, and multiple masses can be considered due to the LES-based solution.

C Results

-4

0

-6

-2

2

-6

0

50 100 150 200
-10

-5

0

5

50 100 150 200
Frequency [Hz]

-5

0

5

50 100 150 200

-5

0

5

A
m

pl
itu

de
,l

og
10

[m
/
s2

N
]

G Gtest (NP-FRF)Gtest,⋆

Fig. C.1: AMPIE test prediction for channel [p2, p6] ← [z1, z2, z3]: default system as well as measured and predicted test-
combination including the added test-channel z3.
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Fig. C.2: Shows the same information as Figure C.1, including the results from the NP-FRF-based AMPIE procedure. Note
that Gtest,⋆

State-Space refers to the state-space-based AMPIE approach in Equation (27), whereas Gtest,⋆
NP-FRF refers to the non-parametric

approach (16) and Gtest (NP-FRF) emphasizes that the data is a non-parametric FRF.
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Fig. C.3: AMPIE test-prediction for channel [p2] ← [z3]: default system as well as measured and predicted test-combination
including the added test-channel z3 based on estimated systems with one to four added masses.
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D Constraint

System identification in structural mechanics mostly uses accelerations as outputs, i.e. Ga = CaΛ(ω)B + Da with
Da , 0, but where Da = CaA−1B is not automatically fulfilled for standard identification algorithms. However, to derive
a method to ensure the feedthrough-constraint Da = CaA−1B for acceleration outputs, starting from displacements
is more suitable. If a state-space system Gd = CdΛ(ω)B + Dd describes displacements or velocities as outputs,
described by index d or v respectively, the feedthrough Dd or Dv is supposed to be zero, whereas Da is non-zero.
This can be observed by transforming a second-order model Mq̈ +Cq̇ + Kq = B′u, y = C′q into a first-order model
ẋ = Ax + Bu, y = Cd x:[

q̇
q̈

]
︸︷︷︸

ẋ

=

[
0 I

−M−1K −M−1C

]
︸                   ︷︷                   ︸

A

[
q
q̇

]
︸︷︷︸

x

+

[
0

−M−1B′

]
︸      ︷︷      ︸

B

u, y =
[
C′ 0

]︸   ︷︷   ︸
Cd

[
q
q̇

]
︸︷︷︸

x

(D.1)

where Dd = 0. Deriving y = C′q with respect to time, one finds ẏ = C′q̇ which shows that Dv has to be zero as well.
For the first-order model, this results in the following expressions:

y = Cd x⇒ ẏ = Cd ẋ⇒ ẏ = Cd (Ax + Bu) = CdAx + CdB︸︷︷︸
Dv

u⇒ Dv = CdB = 0 (D.2)

ÿ = CdAẋ = CdA2︸︷︷︸
Ca

x +CdAB︸︷︷︸
Da

u = 0⇒ Cd = CaA−2, Da = CdAB = CaA−1B (D.3)

Summarizing, starting from displacement outputs with Dd = 0 and deriving the system with respect to time, one finds
that Dv = CdB !

= 0 and Cd = CaA−2 resulting in

CaA−2B = 0 (D.4)

which is a sufficient condition to ensure that Da = CaA−1B. However, Equation (D.4) allows to exploit the fact that,
if n > nI which would be the case for the vast majority of all AMPIE applications, a nullspace N ∈ R(n−nI )×n exists
such that NA−2B = 0. The matrix Ca can then be defined by a linear combination in that nullspace Ca

!
= PN where

P ∈ RnO×(n−nI ) is unknown. There are two main possibilities to determine P. First, one could directly solve the required
equations on matrix-level by inserting Ca

!
= PN in Equation (D.4), or second, P can be determined such that the

resulting FRF Gcstr(ω) with substituted quantities Ca and Da matches the FRF Ga(ω) of the original system as good
as possible. The latter foregoing is chosen as it allows to exclude frequency-intervals where out-of-band modes are
located.

Mathematically, this means that Gcstr(ω) = CaΛ(ω)B +CaA−1B = PNΛ(ω)B + PNA−1B = P
[
NΛ(ω)B + NA−1B

]
=

PΛ̄(ω), equals the FRF Ga(ω) = CaΛ(ω)B + Da. Given a frequency grid Ω, this results in

Gcstr(ωk) = PΛ̄(ωk) !
= CaΛ(ωk)B + Da = Ga(ωk) ∀ωk ∈ Ω ∈ R

nω (D.5)

which can be converted into and solved by a LES of the form[
PΛ̄(ω1) . . . PΛ̄(ωnω )

]
=
[
Ga(ω1) . . . Ga(ωnω )

]
(D.6)

P
[
Λ̄(ω1) . . . Λ̄(ωnω )

]
=
[
Ga(ω1) . . . Ga(ωnω )

]
(D.7)

Λ̄T(ω1)
...

Λ̄T(ωnω )

 PT =


GT

a (ω1)
...

GT
a (ωnω )

 . (D.8)
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