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Abstract 
 

This paper is the completion of a previous work in which an algorithm was developed for direct calculation of 
the hysteresis cycle of Underplatform Dampers (UDs) used for vibration damping of turbine blades. 

While the previous paper examined the scalability of a given damper shape as a function of its size, platform 
size and contact parameters, this paper instead shows how the method can be used to evaluate the 
advantages and disadvantages of different damper shapes. 

Only the asymmetric contact damper is studied, in its simplest version with three pad-located contacts, and its 
merits are discussed in comparison with the wedge or cottage-roof type dampers, whose crucial difficulties 
are pointed out. 

A family of five dampers obtained by distortion of an isosceles damper of 60° vertex aperture is studied as an 
example of application of the method. A criterion is defined for positioning the single contact to avoid lifting 

when the coefficient of friction is maximum at =0.7, then performance is studied for two values in the range 

expected for normal operation,  =0.5 and =0.3. 

For each of the five dampers, the different problems that arise in calculating the hysteresis cycle at the onset 
of the total full-slip, called Base-Cycle, are examined, first on the damper in terms of the “force Base-Cycle,” 
otherwise known as the “equilibrium trace diagram,” then of the “moment Base-Cycle” on the platform.  

The “moment Base-Cycle” is employed in the context of the Platform Centered Reduction (PCR) technique, 
and diagrams of the real and imaginary components of the complex moment-rotation stiffness of the platform 
representing the mutual damper-platform actions are defined.  

Finally, the values of the energies dissipated on the contact pads of the dampers are determined, the sum of 
which is checked against the total energy dissipated by the moment of the contact forces acting on the 
platform, consistent with the Platform Centered Reduction.  

The parameters and diagrams that characterize the shape of a damper, regardless of its subsequent coupling 
with a specific turbine blade, are useful tools for characterizing its performance with greater insight than can 
be obtained from the usual purely numerical approach. 
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1   Introduction 
 

Turbine blades are subjected to vibrations that cause high cycle fatigue and can trigger cracks in highly stressed areas, 

leading to failure. To minimize vibrations, devices known as Underplatform Dampers (UDs), are placed between 

platforms of adjacent turbine blades. They are positioned so that, during turbine operation, centrifugal forces draw their 

lateral inclined friction faces into contact with the complementary inclined faces of platforms. These, placed 

circumferentially on the blades between the airfoil and the neck, are intended to create a continuity wall that separates 

the flow path acting on the airfoils from the cooling flow path on the neck. Circumferential gaps between the platforms 

are sealed by the dampers themselves.  Vibrations of the blades cause relative motion between the damper-platform 

contact surfaces under compressive load. The energy dissipated by the resulting frictional forces reduces the vibration 

amplitude.  
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Paper [1] of 1988 states that over the decade before its publication date research on turbine blade friction dampers 

had resulted in new methods to optimize damper design, while before blade damper design was a more a matter of 

“experience and very simple mathematical models”. Paper [2] can be considered seminal for a systematic engineering 

approach to UDs. 

 

Complementary lines have then been followed by other groups. In the impossibility of reviewing the overwhelming 

amount of activity, a historical summary can be made by examining in a selection of papers [3-16], the topics covered, 

their lines of development and their references.   

 

Papers [1, 2], as well as their synthesis [17], deal with a flat damper, acting on parallel adjacent platforms, of the 

BG (Blade-to-Ground) type; damping capabilities are investigated by comparing a numerical model of a blade-damper 

system with their experimental counterpart. For a range of damper compressive normal load (N) and blade excitation 

(E) levels the resonance frequency (f) is found with associated response (R) amplitude; the damper-blade system is 

characterized by representing either the R/E vs. N/E or the R/N vs. E/N curves (in both cases loci of response maxima), 

the last being the damper performance curve. The key to this curve is to determine the normal load N such that the 

resonant response in terms of a local stress is less than an allowable value (e.g. fatigue endurance stress) for as large 

an excitation as possible, a concept insightfully commented by [8] in a broader context of concurring damping 

techniques. 

 

After that initial stage numerical and experimental procedures were extended to blade-to-blade, self-centering, 

wedge dampers, as they provided more design flexibility to meet operating conditions [4, 5]. These papers have in 

common:  

• platforms and damper are treated as rigid bodies,  

• blade and platform motion is harmonic, 

• damper and platform surfaces remain in parallel and in contact at all times, 

• relative contact kinematics is calculated,  

• tangential contact stiffness is considered, not normal stiffness 

• vibration inertia forces of the damper are negligible, 

• contact resultant forces are considered, acting on fixed “nodes” representing the platforms, 

• in-plane damper equilibrium is represented by two translational equilibrium equations 

• equilibrium of damper to rotation is missing. 

Paper [5] claims to add 3-dimensional platforms, 2-dimensional contact motions and microslip.  

 

Although these works had the merit of pursuing the essential characteristics of the damper-platform interaction, in 

the light of subsequent experience it is now all too easy to observe that the lack of rotational equilibrium leads to 

difficulties both on the stick-slip transition criteria [4] and on the determination of contact forces [5].  

 

In [6] a “contact asymmetric” damper is first introduced, with a cylindrical contact on one platform and a flat contact 

on the opposite platform. The wedge damper is reported to be unsuitable in practical applications (as opposed, of 

course, to idealized numerical simulations) because of the practical impossibility of accurately aligning it within the 

platforms and having complete, controllable contact between the flat surfaces. Resulting in unpredictable damper 

positions due to a multiplicity of possible edge contacts and likely cyclic impacts on the damper edges during each 

vibration cycle. 

 

In [6] contact forces are represented by a line-force on the cylindrical contact, and by means of a surface discretized 

into a large number of contact elements on the opposite flat-to-flat contact. At each contact element, a Coulomb slider 

is introduced with both tangential and normal stiffness, the latter non-linear to take into account the roughness 

according to an Abbott model.  

 

A common feature of most of the papers from the initial stages up to today is that of developing and proposing 

their own calculation method of a complete blade-dampers or disk-blade-dampers system in the form of a dedicated 

[7, 9] or proprietary software, as DATAR [6,12], FORSE [14], NOVA, the last used in papers as [15] that demonstrate 

the capability of simulating nonlinear responses of bladed disks with mistuning.   

 

Paper [7] proposes a general method for nonlinear forced response analysis for bladed discs with friction dampers 
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of different designs. This contribution represents a departure from the approaches previously examined. It is based on 

the explicit modelling of friction dampers in the analysis of the nonlinear forced response of bladed discs, utilising large-

scale high-fidelity finite element (FE) models. This paper presents numerical studies of realistic bladed discs with three 

different types of UDs: a "cottage roof" (wedge) damper, a seal wire damper, and a ribbon damper. 

 

The increasing complexity of geometry and parameters has led to an objective need to keep computational time 

below values that tend to become prohibitive. This occurs in the computationally intensive problems encountered in 

practical applications to turbine blades equipped with damping devices, when it is necessary to systematically explore 

a design space [9, 13, 14]. 

 

In [9] the robustness of the optimal blade-damper coupling is treated through a probabilistic approach. It takes into 

account uncertainties in the friction coefficient, excitation level and linear damping, applied to a rotationally periodic 

assembly of a bladed disk with UDs. The computational efficiency of nonlinear dynamic analysis is achieved by 

employing a reduced-order parametric model (ROM) based on nonlinear vibration modes. This proof-of-concept study 

uses an academic geometry with beams in pure bending integral with a perfectly tuned disk, and rigid body UDs of the 

cottage-roof type.  

 

The analysis of the blade-damper coupling performed in [13] is deployed in design space defined by ten geometric 

parameters of damper, neck and airfoil. An asymmetric contact damper is modeled by FEA but maintaining only rigid 

body DOFs. In order to keep the calculation time within reasonable limits, the exploration of the parameter space and 

the subsequent calculation of the performance (in terms of high cycle fatigue) is carried out via a three-level DOE 

sampling producing a response surface for the first bending mode.   

 

In [14] the issues of damping performance, resonant frequency stability and robustness are addressed for a 

symmetric wedge damper coupled to the blade pair of an academic "two blades" test-rig, all modeled using FEM. The 

search for the optimal design is done via a surrogate model. The design space includes three variables, one of which 

(the platform groove angle) has simulated uncertainties due to manufacturing tolerances, which implies the recognized 

possibility of edge contacts. Similar to [12], only the first bending mode is studied. 

 

In the meantime, POLITO's AERMEC Lab. pursued the development of experimental and numerical methods to 

deal with nonlinear problems related to bladed disks with any kind of dry friction damping. In UD application it is used 

to tune contact parameters, develop criteria for damper optimization and for damper-blade matching.   

 

This agenda was developed at AERMEC Lab., during the last 15 years or so, along the following lines: 

1. development of a first non-resonant test-rig measure simultaneously the resultant forces exchanged between 

a damper and the two simulated adjacent platforms, together with their absolute and relative kinematics 

2. determination of contact parameters (coefficient of friction, stiffness) based on the shape of the measured 

hysteresis loop, as opposed to parameter tuning techniques based on numerical-experimental comparison of 

FRFs deemed insufficient,  

3. development of a second improved test-rig towards the simultaneous measurement of tangential force and 

sliding directly at the damper-platform contact surfaces, to achieve highest reliability on values for tangential 

contact stiffness and friction coefficient,  

4. adoption of an asymmetric-contact damper (flat to flat and cylindrical), evolved into a three-point damper, as 

opposed to the “cottage-roof” or wedge damper, to ensure full control of the position of the resultant contact 

forces on both sides of the damper.    

Line 1 was approached with the first non-resonant test-rig, [10], which allowed us to determine the forces exchanged 

at the damper-platform contacts simultaneously with the absolute movements of the damper and simulated platforms.  

 

Line 2 was addressed first in [10] by manual tuning, later in [19] with a Latin Hypercube sampling technique, in 

both cases for a laboratory three contact damper and with some limitation on the number of independent contact 

parameters. This required either hypotheses on the ratio of normal to tangential stiffness, or independent 

measurements of friction and stiffness made on purposely dedicated test-rigs [20, 21]. A special application is found in 

[22], where a special laboratory crossed curve-flat damper subjected to In-Phase vibrations was used to extract from 

the hysteresis cycle the two friction coefficients and two pairs of contact stiffness values, normal and tangential, on 

either contact surface. Contrary to other methods available at that time, the values of contact parameters were derived 

solely from experimental data, without support from other analytical or numerical sources.  
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Line 3 was addressed in [23], where an extension to [10] was applied by introducing new sets of experimental 

evidence (hysteresis cycles at the contacts and moment vs rotation diagram) to uniquely estimate the contact stiffness 

values on a Siemens type contact-asymmetric damper.  Paper [24] presented a new test-rig with several advanced 

features, probably the most sophisticated collection of normal and tangential stiffness measurements for the time, for 

both cylindrical and flat-to-flat contacts. With these tools the problem of erratic behaviors due to machining 

imperfections on the plane contact surfaces of the damper was addressed [24]. 

 

Line 4 represents a significant divergence from other schools of thought, encompassing two distinct issues.  

• whether it is more appropriate to introduce the plane-on-plane discretized contact surface into the numerical 

model, or whether it would be more rational to treat the resultant force directly. 

• whether a simpler wedge geometry of the damper or an asymmetric contact geometry is preferable. 

Regarding the first issue, the determination of plane-on-plane contact forces by full FEM discretization of the contact 

surface is a most often preferred practice, for instance [7, 9, 12, 14, 25, 26]. However, it should be observed that in the 

case of a contact-asymmetric damper, [6, 18], the line contact on one side implies that the position of the resultant 

force on the opposite flat-on-flat contact is automatically determined independently of the pressure distribution. Based 

on this, the position at AERMEC has always been to pre-determine the position of resultant forces on a rigid body 

model of a contact-asymmetric damper, both experimentally and numerically, as in [10, 13, 16, 27, 28, 29]. 

 

This opens up the second issue, for which [18] is exemplary in stating that: 

• for dampers to be effective, a sliding full contact between the damper and platform surfaces must be 

maintained for any combination of tangential and radial relative platform motions, 

• in order to avoid a rocking motion, that would significantly reduce the effectiveness of the damper in dissipating 

the vibrational energy, the damper should have raised bearing surfaces (pads) around the points where contact 

is precisely desired, 

It was observed [24], that these pads or reliefs are highly suggested on the plane extended contact (left side of Fig. 2) 

even in the case of In-Phase vibrations for an additional reason: the lack of flatness due to machining, even within 

tolerances, may be the origin of extremely erratic force-displacement cycles, as stressed in [6, 24] but anticipated 

already in [1].  

 

In the case of Out-of-Phase vibrations, as well as in the case of In-Phase vibrations with a non-zero interblade 

phase-angle, a wedge damper suffers edge contacts and liftoff, while instead an asymmetric-contact damper is always 

self-aligning within platforms in all possible cases [16, Appendix 2]. 

 

Other laboratories however follow different lines to investigate the effect of the contact surface area on the damping 

capacity. For instance, the two-blade test-rig is revived by [12], while a three-blade scheme is used in [25]. Paper [12] 

adopts an explicit model of the damper, equipped on the contact surfaces with a dense grid of 3D contact friction 

elements, in combination with multi-harmonic balance solvers, and validates the numerical solutions with the test-rig. 

It is found that the results are strongly dependent on the pressure distribution on the contact surfaces, and therefore 

detects the shape of those of the damper which in fact turn out to be slightly convex due to the manufacturing process. 

Using pressure distribution results from a pressure film, [12] finds a better agreement between numerical predictions 

of the FRF and experimental results. 

 

An observation regarding the contact surface: for method validation it makes sense to detect the shape of the 

actual surfaces, but from a practical engineering point of view it seems more appropriate to avoid the problem (e. g., 

with raised pads) rather than reproduce it numerically. 

 

Furthermore, in the case of [12] the angle at the vertex of the damper, although not indicated, seems to be around 

120°, which combined with a declared friction coefficient of 0.6 guarantees, to this author’s experience, damper rocking 

in IP vibration.   

 

The Platform Centred Reduction [27] has recently been proposed, with the Base-Cycle concept [28] supplementing 

it. The latter refers to the cycle with the smallest amplitude of platform oscillation in which all contact forces travel a 

complete oscillation between the two friction limit angles, that is to say, they reach at least the onset of slip at both 

ends. In [16], it was demonstrated that the Base-Cycle is a unique characterization of a given damper shape. Once 

produced for a convenient reference case, it can be scaled linearly without recalculation according to size, radial force, 
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platform proportions, and proportional variation of contact stiffness. 

 

In [28,29], the damper is represented by a complex spring, function of the relative rotation between platforms, and 

disappears as a physical body. The final achievement is the Amplitude Layered (Excitation) Force Mapping [29], which 

reduces the amount of computation by up to three orders of magnitude in comparison to standard techniques, thus 

making it a suitable competitor in the case of optimisations that are numerically intensive. 
 
 

2   Background 
 
This paper is the completion of a previous work [16] in which a piecewise-linear algorithm was developed for direct 
calculation of the hysteresis cycle of UDs. The reader should refer to [16] for the complete set of kinematic and 
equilibrium equations, for the treatment of the contact model and for the solution procedure.  
 

Aim of the “parent” paper [16] were the concepts of “force Base-Cycle” that uniquely characterizes a given damper 
shape, and of “moment Base-Cycle” characterizing the damper coupled to a given platform.  

 
The algorithm was applied to an example damper shape. It was demonstrated in that once produced for a 

convenient Reference Case, Base-Cycles can be scaled without recalculation according to damper size, radial force 
intensity, platform proportions, and proportional variation of contact stiffness values.  

 
The goal of this paper is now to fill in the missing part, that is, to study how the basic cycles change with the shape 

of the damper, to present the different computational problems that different shapes entail, and finally to address the 
evaluation of shape-related damping effectiveness through appropriate indicators.  

 
As in [16], object of this study is the contact-asymmetric UD, Fig. 1 and 2. 
 

 

 
 

Fig. 1: SIEMENS type damper [6], represented with 
Jenkins discrete contact elements, dotted lines added 
[16] to suggest raised pads. 

Fig. 2:  From UNITED STATES PATENT N. 5,156,528, 
Oct. 20 1992 [15]; 48 and 50: radial motions of respect. 
right and left platforms 

 
In both cases, contacts are localized by means of raised pads, each accommodating a Jenkins contact element, 

one on the right and two at the flat-on-flat surface on the left.  
 
All dampers of the types of Fig. 1 and 2 belong to the same family of geometries and therefore are best described 

[16] according to Fig. 3. In brief: 
• the vertical reference line passes through the center of mass (not shown) of the damper, on which its radial 

centrifugal force 𝐹𝐷 acts  
• the line through point L, the midpoint of segment L1 - L2, is the main horizontal reference line  
• these two reference lines cross at a point D, named the “damper reference point” 
• point L (in section) has the role of “left surface reference point” 
• the intersection of the horizontal reference line with the line tangent to the right contact in R1 is named R, the 

“right surface reference point” 
• the three reference points (L, D, R) are then aligned horizontally 
• the Jenkins contact elements act on points L1, L2, R1  
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• in order to precisely locate the contacts, it is possible either to adequately limit the pad width or, in addition, to 
locally impart a (large) radius of curvature thus realizing a cylindrical Hertzian contact. 

 

Fig. 3: Geometry preferred in [1] to describe the contact-asymmetric damper 
 
An advantage of the solution of Fig. 2 over that of Fig. 1 is the free adjustment of the position of R1 with respect to 

R, i.e., freedom to choose the value of 𝑏𝑅. This paper shows how to take maximum advantage of this freedom. 
 
In [16] it was first demonstrated that the relative motion of damper and adjacent blade platforms can be reduced to 

a kinematically equivalent system of parallel blades: Fig. 4 shows schematically the damper type of Fig. 2 between the 
adjacent platforms that rotate about their “instantaneous velocity center” C about which the platform has a pure rigid 
rotation. On the right the position of maximum clockwise rotation, corresponding to what will be named the cycle’s point 
0, and on the left the maximum counterclockwise rotation, corresponding to the cycle’s point C. Note that the relative 
motion represented in Fig. 4b is the same indicated by vertical platform displacements 48, 50 of Fig. 2, where the 
corresponding relative sliding motions between damper and platforms are indicated as 52. 

 

Fig. 4: In-Phase vibration, platforms rigidly rotating about their “instantaneous velocity center” C; a): max counter-clockwise 

rotation; b): max clockwise rotation. 
 
As shown in [16], the number of linear tracts of the piecewise solution is equal, for each half-cycle, to the number 

of the contact points where the contact Jenkins elements are applied. They correspond to the number of stick-slip 
transitions. However, this paper will show that there are exceptions to this simple rule.  

 
The equilibrium equations of the damper give origin [16] to a damper “force” cycle, i.e. the cycle of contact forces 

applied to the damper during the motion of platforms. Once the damper “force” cycle is known, a platform “moment” 
cycle is calculated, i.e., the moment produced by contact forces on the platform versus the angle of rotation of the 
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platform.   
 
In [27], the concept of Platform Centered Reduction was introduced, in which the number of non-linear DOFs was 

reduced to those of a rigid body for both platform and damper, followed in [28] by that of "Base-Cycle," defined as 
follows: 

 
“Base-Cycle: the cycle established at the smallest platform oscillation amplitude at which all contacts reach the slip 

condition at both ends of the oscillation”  
 
The concept of Base-Cycle holds for both the damper “force” cycle and for the platform “moment” cycle. In this 

case, the DOFs of the damper are eliminated from the dynamic equations of the damper-blade system, and replaced 
by the platform “moment” cycle, in [16] a function of the In-Phase oscillation amplitude of the platform in Mode 1, Fig. 
5.  

 
In [16] it is demonstrated that the damper “force” Base-Cycle, during In-Phase vibration,  is a function uniquely of 

the difference  (𝒗𝐷𝐿 −  𝒗𝐷𝑅)  of the radial, i.e. vertical displacements (Fig. 6) 𝒗𝑃𝐿  , 𝒗𝑃𝑅  of respectively a left point DPL  
and a right point DPR , both placed in the same geometric position as the damper reference point D, but belonging to, 
and moving with, the left (L) and right (R) platform. Distance 𝑞∗  is the “virtual” pitch, defined in [16], of parallel blades 
kinematically equivalent to the real blades that have a relative angular pitch 2𝛽, Fig. 5.  

 

Fig. 5: Moment 𝑀𝑃 applied to the platform by the two adjacent dampers, function of the damper rotation 𝜓𝑃 
 
A final concept imported here from [16] is that from the platform “moment Base-Cycle”, any other cycle having 

higher amplitude of platform rotation can be deduced by means of a simple “constant moment” stretch, or amplitude 
elongation, in full-slip. Then, the diagram of the real and imaginary parts (HBM) of the complex stiffness applied to the 
platform, dynamically equivalent to the friction contact forces, is trivially calculated for any platform vibration 
amplitude. Then, there is no need to iterate the cycle calculation as in the customary HBM-AFT procedure [28, 29]. 

 

Fig. 6: Hemi-platforms displacements of their fictitious ends DPL and DPR in D due to a clockwise In-Phase platform rotation, 
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when 𝒗𝑃𝑅  moves upwards and 𝒗𝑃𝐿 is specularly opposite 
 
 

3   The Method Illustrated on the Shape-Case 60sym 
 
The main purpose of this section is to acquaint the reader with all the graphs representing the behavior of the dampers, 
commenting on them extensively to facilitate the reader's understanding. It concludes by stating-in summary-the 
minimum set of data that, once the method is acquired, is necessary and sufficient to fully characterize a damper-
platform coupling.  
 

This section deals with the symmetrical (however, contact asymmetrical) damper with input parameters (Fig. 3): 
 

𝜗𝐿=60°, 𝜗𝑅=60°            (1.a) 
2𝑏𝐿=0.8 ℎ                        (1.b) 
𝑏𝑅 /ℎ =0.14            (1.c) 

 
The friction coefficient at three levels (𝜇 = 0.3 ; 0.5 ; 0.7) the lowest being the most likely at the highest temperatures 

while the highest being possible in cold start conditions.  
 
Assumption (1.b) means that the centers of the left pads, L1 and L2, are the ends of an L1-L2 segment that 

represents 80% of the total available left flank. The extension of each pad in cross section is then 20% of the left flank. 
This assumption is common to all dampers considered in this study.  
 

  
Fig. 7a: 60sym cycle-start, 𝜇 = 0.7 : full-slip at the end of 

clockwise platform rotation, i.e., relative motion as in Fig. 2 
and Fig. 4 right 

Fig. 7b: 60sym mid-cycle, 𝜇 = 0.7 : full-slip at the end of 

counter-clockwise platform rotation, , relative motion 
opposite to that of Fig. 2 and Fig. 4 left  

 
Assumption (1.c) for the positioning of point R1, i.e., for the choice of the value of 𝑏𝑅 /ℎ =0.14 (discretization to 

second decimal place), comes from imposing that with the highest possible coefficient of friction (𝜇 = 0.7) the left 
resultant force at the two extreme positions, at the beginning of the cycle and at mid-cycle respectively, falls at the 
same distance from the nearest contact point and inside the L1-L2 segment. In this case the distance of the resultant 
force from L1 is 6.6%  of  L1-L2

̅̅ ̅̅ ̅̅ ̅  and that of L2 6.5%. So as to ensure no liftoff, or, as said in [18]: ”such as to preclude 
rotating or rocking … … for conditions of maximum coefficient of friction”.  

 
Figures 7a,b show the case for 𝜇 = 0.7, cycle-start and mid-cycle. Geometric dimensions are normalized to the 

value of ℎ , i.e., ℎ = 1. Forces normalized to the centrifugal force 𝐹𝐷 = 1 . Radial and circumferential directions 
respectively 𝑟 and 𝑐 . Figures 7a,b represent full-slip conditions, i.e, all contact forces are at their limit friction angles, 
indicated by the dashed lines on either side of the contact normal. Dotted lines represent the lines of action of the 
resultant forces that cross on the line of action of the centrifugal force.  

 



Journal of Structural Dynamics, Special issue on Tribomechadynamics, (pp. 105-138) 2024 
On comparing behavior and performance of underplatform dampers according to shape 

 

 
 
113| doi: 10.25518/2684-6500.239  M.M Gola 

 

  
Fig. 8a: 60sym cycle-start, full-slip, 𝜇 = 0.5  Fig. 8b: 60sym cycle-start, full-slip, 𝜇 = 0.3  

 
Figures 8a,b show the equivalent of Fig. 7a for, respectively, 𝜇 = 0.5 and 𝜇 = 0.3, keeping  𝑏𝑅 /ℎ =0.14. Although 

only the cycle-start condition is represented, lines of action of the right and left resultant forces are represented by 
dotted lines for both cycle-start and mid-cycle. Table 1 collects the distances of the left resultant force to the nearest 
left contact (L1 or L2, Fig. 3) in % of L1-L2

̅̅ ̅̅ ̅̅ ̅ during the cycle, consequence of the design decision to adopt the value of 
𝑏𝑅 /ℎ that guarantees equal distance for the highest predicted friction angle 𝜇 = 0.7.  
 

Table 1: 60sym distances of resultant left force from nearest contact, in % of  L1-L2
̅̅ ̅̅ ̅̅ ̅ . 

Friction coeff. 𝜇 dist. from L1 dist. from L2 

0.7* 6.6% 6.5% 

0.5* 12.3% 31.0% 

0.3* 19.2% 48.7% 

    * 𝑏𝑅 /ℎ =0.14 

Fig. 9a displays the equilibrium polygon of centrifugal force and contact forces at the cycle-start of Fig. 7a. Fig. 9b 
displays the force increments between cycle-start (point 0, corresponding to Fig. 4 right) and the end of the first tract 
(point A), covered during the counter-clockwise (reverse motion) platform rotation with all contacts still in stick.  

  
Fig. 9a: 60sym forces on damper according to Fig. 6a, cycle-
start, point 0, normalized 𝐹𝐷 = 1 

Fig. 9b: 60sym increment from cycle-start, point 0, to end of 
first tract, point A, normalized 𝐹𝐷 = 1 
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Dotted vectors are the force increments  Δ𝐹𝑅1,0𝐴   , Δ𝐹𝐿1,0𝐴   , Δ𝐹𝐿2,0𝐴  that summed to the contact forces 𝐹𝑅1,0, 𝐹𝐿1,0 , 𝐹𝐿2,0  
give the final contact forces 𝐹𝑅1,𝐴, 𝐹𝐿1,𝐴 , 𝐹𝐿2,𝐴, hence also the left resultant  𝐹𝐿,𝐴.  

 
Notice that the final force 𝐹𝐿2,𝐴 is parallel to the friction boundary line a-a, i.e., in the contact L2 the transition for 

stick-to-slip is realized: consistent with the fact that, [16], the cycle is calculated by succession of linear tracts, each of 
which ends with a stick-to-slip transition at one of the contact points. 

 
The complete collection of figures following 0-A to E-F (F=0) is summarized as an “equilibrium track” by Fig. 10a, 

named also “force Base-Cycle” of the damper, where the blue thick-line closed loop indicates the path of the tip of the 
vector 𝐹𝑅1  as well as the tail of the vector 𝐹𝐿  . The secondary loop, thin red dashed line, indicating the path of the tail 
of the vector 𝐹𝐿1  can also (if necessary) be represented. The “force Base-Cycle” is represented normalized to 𝐹𝐷=1.  

 
The value of this figure lies in the fact that it contains all the information about the positions of the contact forces 

during the Base-Cycle as they travel through the space between the friction boundary angles. In addition, this polygonal 
figure is uniquely related to the damper shape and friction coefficient, and contains all the information necessary for 
the subsequent calculation of the Base-Cycle moment.   

 
Fig. 10b collects the three equilibrium tracks for 𝜇 = 0.7; 0.5; 0.3. To be remarked that in for all friction coefficients 

the cycle closes at the end of the first sequence of tracts, i.e., F≡0 exactly at the end of the last tract. At the and of tract 
E-F  the last contact in stick, here R1, becomes slip when the backward half-cycle is completed and the initial position  
reached.   

 
Complementary to this figure, Table 2 tracks the succession of transitions that take place in the tracts. For instance, 

for the 60sym damper, at the end of tract 0-A contact L2 reaches full-slip, then it is maintained during the following tract 
A-B, and so on. At point C there is full-slip on all contacts and motion reversal. Point F coincides with point 0.  Note 
that tract D-E does not have the same transitions for all values of 𝜇.  

 
Comparing rows B-C and E-F of Table 2 with Fig. 10b one can check that tracts B-C and E-F are effectively on the 

left friction angle, as contacts L1 and L2 are in slip.  
 

Table 2: Shape-case 60sym: Transitions Chart, stick or slip condition at contacts in cycle tracts 

 𝜇 = 0.7 𝜇 = 0.5 𝜇 = 0.3 

tract in  stick in slip in  stick in slip in  stick in slip 

0-A R1 L1 L2  R1 L1 L2  R1 L1 L2  

A-B R1 L1 L2 R1 L1 L2 R1 L1 L2 

B-C R1 L1 L2 R1 L1 L2 R1 L1 L2 

C-D R1 L1 L2  R1 L1 L2  R1 L1 L2  

D-E R1 L2 L1 R1 L1 L2 R1 L1 L2 

E-F R1 L1 L2 R1 L1 L2 R1 L1 L2 

 

  

Fig. 10a: 60sym, 𝜇 = 0.7: equilibrium track, or normalized 

“force Base-Cycle” (solid blue: equilibrium track; thin dashed 
red: secondary loop) 

Fig. 10b: 60sym, 𝜇 = 0.7, 0.5, 0.3: equilibrium tracks or 

normalized “force Base-Cycles” (solid blue: equilibrium tracks; 
thin dashed red: secondary loops) 
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The “moment Base-Cycle” is then defined as the cycle of the moment 𝑀𝑃 applied to the platform by the damper-to-

platform forces versus the platform rotation angle  𝜓𝑃 , Figs. 5, 6.  The moment is calculated point by point (0, A … to 
F) according to the general schemes of Figs. 11, 11 (details in [16]), its value being: 

 
𝑀𝑃 = (𝐹𝐿,𝑣 − 𝐹𝑅,𝑣)( 𝑞∗/2 + 𝑟 sin 𝛽)          (2) 

 
Data from the “force” Base-Cycle, Fig. 10a,b , are transformed into the “moment Base-Cycle”, that in Fig. 12 is 

represented as moment 𝑀𝑃  vs. platform relative displacement  ( 𝑣𝐷𝑅 − 𝑣𝐷𝐿 ) and platforms’ rotation angle 𝜓𝑃 , related 
by: 

 

𝜓𝑃 =  (𝑣𝐷𝑅 − 𝑣𝐷𝐿 ) / 𝑞∗                                                                             (3) 
 
Unlike the normalized “force Base-Cycle” of Fig. 10a,b exclusively connected to the damper’s shape and the friction 

coefficient, the “moment Base-Cycle” will be here expressed for a Reference Case where damper radial force and 
virtual blade pitch are assumed as: 

 

𝐹𝐷 = 1000 N             (4.a) 
𝑞∗ = 100 mm            (4.b) 

 
Fig. 13 shows the “moment Base-Cycles” for 𝜇 = 0.7; 0.5; 0.3 . Any other case is obtained from a “Reference Case” 

by proportional scaling. The rules for scaling according to geometry and proportional change of all contact stiffness 
values from the “Reference Case” to any other case are given in [16]. 

 

 
Fig. 11: Geometric scheme for the calculation of platform moment about point P, according to [16], in terms of resultant forces 

 

 
Fig. 12: Platform non-dimensionalized for 𝑞∗=1, scheme of contact forces producing moment about P 
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Fig. 13: Case 60sym, 𝜇 = 0.7, 0.5, 0.3: “moment Base-Cycle”: moment 𝑀𝑃  on platform vs. platforms’ relative vertical 

displacement (𝑣𝐷𝐿 − 𝑣𝐷𝑅) and, by way of example, platform rotation angle 𝜓𝑃 for 𝑞∗=100 mm 
 
Once the “moment Base-Cycle” is known, larger oscillation amplitudes stretch it horizontally as Fig. 14, where an 

increasingly larger portion of the platform rotation in both directions is spent in full-slip at all contact points. In the 
diagram, point 0-F and point C of Fig. 13 are now split into pairs 0-F and pairs C-C' in Fig. 14, respectively, the 
ascending and descending half-cycles shifted to the left and right, respectively, so as to obtain the desired amplitude 
of rotation 𝜓𝑃,𝑎   larger than that of the Base-Cycle. Fig. 14 shows the cases 𝜓𝑃,𝑎 = 3, 4 and 6 mrad, and splitted points 
are given names, for clarity, only on the cycle 𝜓𝑃,𝑎 = 6 mrad. 

 
In Fig. 14 each cycle is accompanied by its Fourier representation that to the purpose of damping the first bending 

mode can limited to the first order [27, 28].  
 
Finally, from this representation the function  𝑀𝑃 (𝜓𝑃)  is written as a complex number: 

 
𝑀𝑃,𝑎
̅̅ ̅̅ ̅̅ = 𝑘 ̅ 𝜓𝑃,𝑎              (5) 

 
where the complex stiffness: 

 
𝑘̅ =  𝑘𝑅𝑒 + 𝑖 𝑘𝐼𝑚             (6) 
 
has the real and imaginary parts (𝑘𝑅𝑒 , 𝑘𝐼𝑚), represented in Fig. 15 for all amplitudes:  𝜓𝑃,𝑎    larger than the Base-Cycle 
amplitude   𝜓𝑃,𝑎,𝐵𝑎𝑠𝑒−𝐶𝑦𝑐𝑙𝑒  that in this case is found at the value 2.56 mrad.  
 

In Fig. 15 are also indicated the amplitude of the largest cycle in full-stick, amounting here at 𝜓𝑃,𝑎 = 0.60 mrad, and 
the value of the corresponding real rotational stiffness on the platform due to the constraint of the adjacent dampers, 
here at 28741 (Nm /mrad). In this range the value of the imaginary component, related to damping, is obviously zero.  

 
The interval between the end of the full-stick, 𝜓𝑃,𝑎 = 0.60 mrad, and the onset of full-slip, 𝜓𝑃,𝑎 = 2.56 mrad, is a 

zone of multiple solutions that depends on the initial equilibrium of the damper between the two adjacent platforms, 
and is not an objective pursued in this paper whose purpose is the determination of the maximum damping 
characteristic of a damper shape. 

 
The Base-Cycle is represented by the amplitude 𝜓𝑃,𝑎 = 2.56 mrad, the associated real and imaginary stiffness 

coefficients, 21679 and 4583 N mm / mrad respectively, that are the basis to calculate the values for larger amplitudes 
[16].  

 
In conclusion, it should be emphasized that in order to construct the curves in Fig. 15 - which are used to calculate 

the best match of a given damper to the given blade - it is sufficient to have five numbers (values for the present 
example provided for easy recognition):   
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1. the “Base-Cycle” oscillation amplitude (here at 𝜓𝑃,𝑎 = 2.56 mrad) 
2. the corresponding values of  𝑘𝑅𝑒and  𝑘𝐼𝑚 (here at 21679 and 4583 N mm / mrad) 
3. the “full-stick” maximum oscillation amplitude (here at 𝜓𝑃,𝑎 = 0.60 mrad) 
4. the corresponding value of the initial 𝑘𝑅𝑒 (here at 28741 N mm / mrad) 
 

 

 
Fig. 14: Case 60sym, 𝜇 = 0.7: 𝑀𝑃 vs. 𝜓𝑃. Moment Base-Cycle, 𝜓𝑃𝑎= 2.56 mrad (blue) and examples of stretched BCs (𝜓𝑃𝑎= 3, 4, 6) 

mrad (respectively: violet, red, green). Solid lines: Base-Cycles. Dotted lines: their first-order Fourier representations. On the 
largest, 0-F = C-C’ is the full-slip stretching. 

 

 
Fig. 15: Case 60sym, 𝜇 = 0.7, real, 𝑘𝑅𝑒 , and imaginary, 𝑘𝐼𝑚  (N mm/mrad) components of platform rotational stiffness vs. amplitude 

of alternating platform rotation 𝜓𝑃,𝑎 (mrad) 

 

The microslip range 0.60 < 𝜓𝑃,𝑎 < 2.56 is briefly commented. Whenever the damper is unable to reach generalized 
gross slip at all contacts, different initial states at contacts give rise to great variability in vibration amplitudes and 
resonance frequencies, as confirmed experimentally by [30, 31]. In [32], a numerical method for calculating the 
response limits of systems with friction contacts is proposed, based on a constrained optimization to search for a 
configuration that maximizes or minimizes the system's loss factor.  

 
Whatever the approach, in the microslip range the values of real or imaginary stiffness depend on the non-unique 

initial state. In [30] it is observed that the “… inability of a damper to reach generalized gross slip for the expected 
forcing levels is doubly harmful: not only its damping capability is reduced but the range of possible dynamic responses 
increases. Therefore, one of the UD design priorities should be to tailor the damper shape and mass to the blade mode 
shape in order to ensure that generalized gross slip is easily reached.”  
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It therefore seems logical to pursue the lowest possible value of the rotation 𝜓𝑃,𝑎 at which Base-Cycle (i.e., onset 

of full slip at both cycle ends), together with the highest possible value of the corresponding 𝑘𝐼𝑚 .  
 
Damping in the microslip field is not the subject of this paper, the purpose of which is to determine the maximum 

damping performance. As commented above on Fig. 15, calculation of such cycles starting with loading history 
dependent initial state is the object of a specific approach, as in [32]. In the present context, linear interpolation (dashed 
line) can be considered an indication of the achievable complex stiffness. 
 
 

4   Case Shape-Case 45sym 
 

In the case of the 45sym shape this is impossible to obtain a valid solution (no liftoff, no damper rolling) for 𝜇 = 0.7, 
as shown in Fig. 16 for the position of point R1 (points R1, L1, L2: Fig. 3). If (by way of example) we choose  𝑏𝑅 /ℎ = - 
0.20 so that the position of the resultant force on the left at cycle-start is slightly below L1 (distance to L1 2.94% of L1-L2 

̅̅ ̅̅ ̅̅ ̅̅ , 
the left resultant at mid-cycle is completely out of segment L1-L2 , over 3,8 times L1-L2

̅̅ ̅̅ ̅̅ ̅ . In this case the strategy of 
setting  𝑏𝑅 /ℎ for 𝜇 = 0.7 must be abandoned.   

 
Fig. 17a shows the optimal position of R1 for 𝜇 = 0.5, with 𝑏𝑅 /ℎ = 0.20. However, should the contact move slightly 

above or below this optimum position, for μ = 0.5 the damper is at high risk of rolling and liftoff, see Table 3. When 𝜇 = 
0.3, 𝑏𝑅 /ℎ = 0.20, Fig. 17b, the damper is obviously at no risk of liftoff.  

 
Overall, considering the marginal safety conditions against rolling, this damper geometry is not recommended and 

will not be analyzed further. The rest of the paper examines the family of damper shapes derived from the 60sym.  
 

Table 3: case 45sym, distances of resultant left force from nearest contact, in % of  L1-L2
̅̅ ̅̅ ̅̅ ̅ . 

Friction coeff. 𝜇 dist. from L1 dist. from L2 

0.7 NA NA 

0.5* 0.4% 2.5% 

0.3* 7.7% 42.9% 

     * 𝑏𝑅 /ℎ =0.20 
 

 
Fig. 16: 45sym cycle-start, 𝜇 = 0.7, 𝑏𝑅 /ℎ = - 0.20. 
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Fig. 17a: 45sym, cycle-start, full-slip, 𝜇 = 0.5,  𝑏𝑅 /ℎ = +0.20 Fig. 17b: 45sym, cycle-start, full-slip, 𝜇 = 0.3,  𝑏𝑅 /ℎ = +0.20 

 
 

5   The 60sym Family of Shapes, Comparison Criteria 
 

The family of shapes compared in this paper is presented in Fig. 17. Shape named “60sym” is the symmetrical shape 
with base angles 𝜗𝐿=60°, 𝜗𝑅=60° already presented in Section 3. The other members of the family are obtained by 
moving the vertex of the triangle in steps of ¼ the base length.  
 

 
Fig. 18: The 60sym family of shapes 

 
Shapes 90L (𝜗𝐿=90.0°, 𝜗𝑅=40.9°), 74L (𝜗𝐿=90.00°, 𝜗𝑅=49.1°), 74R (𝜗𝐿=49.1°, 𝜗𝑅=73.9°), 90R (𝜗𝐿=40.9°, 𝜗𝑅=90°) 

are examined comparatively together with the “parent shape” 60sym.   
 
Sections 6 to 9 illustrate the main features of this family, except the case 60sym already presented in the “guide” 

Section 3. For each shape the following fundamentals are presented:  
 
• 2𝑏𝐿 /ℎ = 0.8 in all cases, with one small exception in Case 90L 
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• value of 𝑏𝑅 /ℎ chosen for the best left resultant force placement at 𝜇 = 0.7 
• cycle-start analogue of Fig. 7a 
• “force” Base-Cycles or equilibrium tracks for 𝜇 = 0.7, 0.5, 0.3, analogue of Fig. 10b 
• “moment Base-Cycle”, analogue of Fig. 13 
• chart of transitions, analogue of Table 2, for 𝜇 = 0.7, 0.5, 0.3  

 
plus, when necessary, illustration of special features on transitions and special features on cycle convergence. 
 

Section 10 compares the performance characteristics of all shapes on the basis of: 
 
• complex stiffness curves for 𝜇 = 0.7, 0.5, 0.3 
• indicators of energy dissipation on contacts 

 

6   The Shape-Case 90L 
 
Table 4 shows the values of distances of the left resultant force from the contacts L1 and L2. The choice of  𝑏𝑅 /ℎ = 
0.15 does not give, for 𝜇 = 0.7 , a position strictly equidistant from contact limits, however it is the best value available 
by rounding-off to the tenth of a millimeter.    

 
Table 4: Shape-case 90L, distances of resultant left force from nearest contact, in % of  L1-L2

̅̅ ̅̅ ̅̅ ̅  . 

Friction coeff. μ dist. from L1 dist. from L2 

0.7* 1.2% 14,1% 

0.5* 8.2% 35.3% 

0.3* 18.3% 49.0% 

* 𝑏𝑅 /ℎ = 0.15 ,   2𝑏𝐿/ℎ = 0.85 

 
For 𝜇 = 0.7 the vertical distance between model contact points (L1 , L2) was set at 2𝑏𝐿 = 0.85 ℎ (ref. Fig. 3), to 

overcome a marginal difficulty in keeping the resultant left force inside the L1-L2  segment. This is reasonable because 
the contact pad can extend on both sides of the model contact up to 10% of the total available length of the left side of 
the platform. 

 
Fig. 19a indicates the position of forces at cycle-start, and their predicted at mid-cycle (dotted lines) in the 

hypothesis of full slip. However, in this case, as shown in Fig. 19b, the right contact force does not reach full slip, i.e. 
the dotted (*) position predicted in Fig. 19a -  and remains in stick during the whole cycle. Compared with previous 
similar figures, here the scale of the forces has been reduced to contain the vectors within the figure. 

 
Fig. 20 shows the normalized “force” Base-Cycles or equilibrium tracks for the three friction coefficients, while Fig. 

21 shows the “moment Base-Cycle”.  Table 5 shows the stick-slip or slip-stick transitions. 
 

  
Fig. 19a: Shape-case 90L, cycle-start, 𝜇 = 0.7, force lines of 

action at start (up) and at predicted in full slip,mid-cycle (*) 
for full slip 

Fig. 19b: Shape-case 90L, mid-cycle, 𝜇 = 0.7, effective mid-

cycle forces: the right force does not reach full slip 
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Fig. 20: Shape-case 90L, 𝜇 = 0.7, 0.5, 0.3: equilibrium tracks or normalized “force” Base-Cycles 

 

 
Fig. 21: Shape-case 90L, 𝜇 = 0.7, 0.5, 0.3: “moment Base-Cycle”: moment 𝑀𝑃 on platform vs. platforms relative vertical 

displacement (𝑣𝐷𝐿 − 𝑣𝐷𝑅) and, by way of example, platform rotation angle 𝜓𝑃 for 𝑞∗=100 mm 
 

Table 5: Shape-case 90L Transitions Chart: stick or slip condition at contacts in cycle tracts 

 𝜇 = 0.7 𝜇 = 0.5 𝜇 = 0.3 

tract in  stick in slip in  stick in slip in  stick in slip 

0-A R1 L1 L2   R1 L1 L2   R1 L1 L2   

A-B-C R1 L1 L2 R1 L1 L2 R1 L1 L2 

C-D R1 L1 L2   R1 L1 L2   R1 L1 L2   

D-E-F R1 L1 L2 R1 L1 L2 R1 L1 L2 

 
Special features  

 
As seen in Table 5, this case exhibits two special behaviors, consequence of the missing stick-slip transition of 

force in R1.   
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The first occurs at the end of the A-B tract, when the forces in L1 and L2 reach the limiting angle. Any further rotation 

of the platform cannot change this equilibrium, since the left contact force slips without changing value, so the right 
contact force, in R1, also remains fixed and does not reach full slip, see Fig. 19b. Tract B-C, retained to preserve the 
cycle pattern in 3 forward tract, is not activated and corresponds to a zero platform rotation angle.   

 
The second occurs in the same way when the return half-cycle is covered in two tracts, as already at the end of 

tract D-E all contact forces reach the limit angle. Tract E-F, retained to preserve the 3 backward tracts pattern, again 
is not activated and corresponds to a zero angle of platform rotation. 
 
 

7   The Shape-Case 74L 
 
Table 6 shows the values of distances of the left resultant force from the contacts L1 and L2. The choice of  𝑏𝑅 /ℎ = 1.6 
determines, for 𝜇 = 0.7,  the % distances in the first row of Table 6.  
 

Table 6: Shape-case 74L, distances in % of  L1-L2
̅̅ ̅̅ ̅̅ ̅ 

Friction coeff. 𝜇 dist. from L1 dist. from L2 

0.7* 0.9% 2.9% 

0.5* 6.1% 30.5% 

0.3* 15.1% 49.5% 

* 𝑏𝑅 /ℎ = 0.16,    2𝑏𝐿/ℎ = 0.85 

 

 
Fig. 22: Shape-case 74L, cycle-start, 𝜇 = 0.7, force lines of action at start (up) and at mid-cycle (down) 
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Fig. 23: Shape-case 74L, 𝜇 = 0.7, 0.5, 0.3: equilibrium tracks or normalized “force” Base-Cycles 

 

 
Fig. 24: Shape-case 74L, 𝜇 = 0.7, 0.5, 0.3: “moment Base-Cycle”: moment 𝑀𝑃 on platform vs. platforms relative vertical 

displacement (𝑣𝐷𝐿 − 𝑣𝐷𝑅) and, by way of example, platform rotation angle 𝜓𝑃 for 𝑞∗=100 mm 
 

Table 7: Shape-case 74L Transitions Chart: stick or slip condition at contacts in cycle tracts 

 𝜇 = 0.7*** 𝜇 = 0.5*** 𝜇 = 0.3 

tract in stick in slip in stick in slip in stick in slip 

0-A R1 L1 L2   R1 L1 L2   R1 L1 L2   

A-B R1 L1 L2 R1 L1 L2 R1 L1 L2 

B-C R1 L1 L2 R1 L1 L2 R1 L1 L2 

C-D L1 L2  R1** L1 L2  R1** L1 L2  R1** 

D-E L2 R1** L1 R1 L1 L2 R1 L1 L2 

E-F R1  L1 L2 R1  L1 L2 R1  L1 L2 

**    back-slide spring release, example in Appendix 1 

***  for 𝜇 = 0.7 and 0.5 full slip is reached before completion of the backward cycle   
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Comparing rows B-C and E-F of Table 7 with Fig. 23 one can check that tracts B-C and E-F are effectively on the 
left friction angle, as contacts L1 and L2 are in slip.  

 
Special features  

 
In Table 7 the symbol in red italics with double asterisk, R1**, indicates that if during its tract, C-D or D-E in the 

reverse half cycle, the contact is set in “stick”, as expected, and the tangential spring releases reducing the tangential 
force component, in this case the normal component decreases more than proportionally. The effect is to move the 
resultant contact force outside the limit friction angle. To avoid this, it is necessary to keep the contact in the “slide” 
mode along the whole tract.  

 
For 𝜇 = 0.3 the cycle closes, i.e. F0, at the end of the succession of tracts. For 𝜇 = 0.7 and 0.5 point F, identified 

with full slip at all contacts, is reached prematurely, as seen in Fig. 24. Then, the cycle closing requires one more tract, 
a tract F-0 having all contacts in slip and all contact forces at constant value.     
 
 

8   The Shape-Case 74R 
 
Table 8 shows the values of distances of the left resultant force from the contacts L1 and L2. The choice of  𝑏𝑅 /ℎ = 0.8 
determines, for 𝜇 = 0.7 ,  the distances in the first row of the table.  
 

Table 8: Shape-case 74R, distances in % of  L1-L2
̅̅ ̅̅ ̅̅ ̅ 

Friction coeff. 𝜇 dist. from L1 dist. from L2 

0.7* 17.8% 17.4% 

0.5* 21.0% 34.9% 

0.3* 29.8% 40.2% 

* 𝑏𝑅 /ℎ = 0.08 

 

 
Fig. 25: Shape-case 74R, cycle-start, 𝜇 = 0.7, force lines of action at start (up) and at mid-cycle (down) 
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Fig. 26: Shape-case 74R, 𝜇 = 0.7, 0.5, 0.3: equilibrium tracks or normalized “force” Base-Cycle 

 

 
Fig. 27: Shape-case 74R, 𝜇 = 0.7, 0.5, 0.3: “moment Base-Cycle” 

 
Table 8: Shape-case 74R Transitions Chart: stick or slip condition at contacts in cycle tracts 

 𝜇 = 0.7* 𝜇 = 0.5* 𝜇 = 0.3 

tract in stick in slip in stick in slip in stick in slip 

0-A R1 L2 L1** R1 L2 L1** R1 L1 L2   

A-B L1 L2 R1 L1 L2 R1 R1 L1 L2 

B-C L1  R1 L2 L1  R1 L2 R1 L1 L2 

C-C2   R1 L1 L2   R1 L1 L2 / / 

C2-D*** R1 L1 L2   R1 L1 L2   R1 L1 L2   

D-E L1 L2 R1 L1 L2 R1 R1 L1 L2 

E-F* L1 R1 L2 L1 R1 L2 R1 L1 L2 

* 𝜇 = 0.7, 0.5 : convergence in two iterations, the second is represented 

** back-slide spring release, example in Appendix 1 

*** additional tract in full slip, only for 𝜇 = 0.7 , 0.5 

 
Special features  
 

For 𝜇 = 0.7 and 0.5 the cycle stabilizes after two iterations.   
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In Table 8 the symbol in red italics with double asterisk, for L1**, indicates that if during its tract 0-A, the contact is 

set in “stick”, as expected, and the tangential spring releases reducing the tangential force component, in this case the 
normal component decreases more than proportionally. The effect is to move the resultant contact force outside the 
limit friction angle. To avoid this, it is necessary to keep the contact in the “slide” mode along the whole tract.  

 
Similar to the 74L case, where it was necessary to extend the cycle for a stretch at constant contact forces in full 

slip from point F to point 0 at the end of the cycle, in this 74R it is necessary to split point C at mid-cycle by reaching 
an auxiliary point C2 in full slip, so that at the end of the cycle point F coincides with the initial point 0. This is necessary 
for 𝜇 = 0.7 and, to a much lesser extent, for 𝜇 = 0.5, and implies seven tracts instead of six. The cycle for 𝜇 = 0.3 closes 
with the “normal” six tracts.  
 
 

9   The Shape-Case 90R 
 
Table 9 shows the values of distances of the left resultant force from the contacts L1 and L2. The choice of  𝑏𝑅 /ℎ = 
0.0 determines, for 𝜇 = 0.7 ,  the distances in the first row of the table.  
 

Table 9: Shape-case 90R, distances in % of  L1-L2
̅̅ ̅̅ ̅̅ ̅ 

Friction coeff. 𝜇 dist. from L1 dist. from L2 

0.7 28.1% 28.6% 

0.5 28.6% 40.5% 

0.3 31.0% 50.5% 

*   𝑏𝑅 /ℎ = 0.0 

 

 
Fig. 28: Shape-case 90R, cycle-start, 𝜇 = 0.7, force lines of action at start (up) and at mid-cycle (down) 
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Fig. 29: Shape-case 90R, 𝜇 = 0.7, 0.5, 0.3: equilibrium tracks or normalized “force Base-Cycle” 

 

 
Fig. 30: Shape-case 90R, 𝜇 = 0.7, 0.5, 0.3: “moment Base-Cycle” 

 
Table 10: Shape-case 90R Transitions Chart: stick or slip condition at contacts in cycle tracts 

 𝜇 = 0.7* 𝜇 = 0.5* 𝜇 = 0.3* 

tract in  stick in slip in  stick in slip in  stick in slip 

0-A R1 L1 L2  R1 L2 L1** R1 L1 L2   

A-B R1 L2 L1** R1 L2 L1** R1 L2 L1** 

B-C L2 R1 L1** L2 R1 L1** R1 L2 L1** 

C-D R1 L1 L2  R1 L1 L2  R1 L1 L2  

D-E R1 L1   L2 R1 L1   L2 R1 L1   L2 

E-F*** L1  R1 L2 L1  R1 L2 L1  R1 L2 

*    all converge in two iterations, the second is represented 

**   back-slide spring release, as in Appendix 1 

 
Special features  
 

In Table 10 the symbol in red italics with double asterisk, for L1**, indicates that during  the tract this contact cannot 
be set in “stick”, as expected, because the normal force component decreases more than proportionally the tangential 
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spring releases reducing the tangential force component, in this case. The effect is to move the resultant contact force 
outside the limit friction angle. To avoid this, it is necessary to keep the contact in the “slide” mode along the whole 
tract.  
 
 

10   Comparison of Shape Efficiencies 
 
Complex stiffness components (𝑘𝑅𝑒  , 𝑘𝐼𝑚) are represented for all the shape-cases of Fig. 18 in Appendix B, subSections 
from B.1 to B.5 that show the curves in the range 0< 𝜓𝑃,𝑎 < 20 mrad, together with their companion Tables of parameters 
of full stick and Base-Cycle. 
 

Appendix B collects, for each shape, also a Table “full-sliding energy dissipation indicators” that shows the work 
shape factors, defined in Appendix C, that represent the amount of dissipated energy at the three contacts.   
 
10.1 – Comparative synthesis 
 
Data of concluding interest from the Tables of Appendix B are summarized in Table 11, for the 𝜇 = 0.3  and 𝜇 = 0.5  
only, however not for  𝜇 = 0.7, a friction angle that was considered to ensure regular working without liftoff throughout 
the whole possible friction range, hence the corresponding choice of 𝑏𝑅/ℎ. The following values are commented through 
scores:  

• 𝜓𝑃,𝑎,𝑓𝑠 : platform angle at the end of full-slip, not evaluated, variability limited  
• 𝑘𝑅𝑒,𝑖𝑛𝑖𝑡 : initial stiffness, best  if value is highest 
• 𝜓𝑃,𝑎,𝐵𝐶 : platform angle at Base-Cycle, best  if value is lowest 
• 𝑘𝑅𝑒,𝐵𝐶  : real stiffness component at Base-Cycle, best  if value is highest 
• 𝑘𝐼𝑚,𝐵𝐶  : imaginary stiffness component at Base-Cycle, not evaluated  
• 𝓌𝑀      : work shape factor for platform moment: best  if value is highest 

 
Case 90L collects the highest number of positive evaluations, case 74L the highest number of negative ones. 
 
Case 90R has the critical defect of a lowest  𝓌𝑀 , i.e., the lowest damping capability in the event of full slip. Moreover, 

sliding takes place only on the single contact pad in R1, Tab. B5.2, while, on the contrary, case 90L shares dissipation 
work on pads in L1 and L2 in a quite balanced manner, Tab. B1.2.  

 
A curious result holds for case 60sym, Tab.B3.2 dissipation on contact R1 is always 50% of the total the rest is 

shared by about two thirds on L1 and one third on L2, independently of the friction coefficient. This proportion holds as 
well for L1 and L2 in case 90L with 𝜇 = 0.3 , where, however, these two contacts dissipate the whole amount of energy.   

 
Table 11: Principal performance indicators of dampers of the 60sym family, and scores according to friction and shape:  best 

choice,  second best,   worst 

 
Attention is drawn to the fact that both in the case pair 90L and 90R, as well as in the case pair 74L and 74R, the 

two members of the pair have markedly different results. This is because on the same geometric shape, simply flipped 
horizontally, the two contacts representing the flat surface and the single contact on the opposite side always remain 
on the left or right respectively. This completely changes the shape of the “equilibrium tracks”. An additional cause of 
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difference is due to the different choice of the position of the single contact R1 to “center” the resultant on the flat 
contact in the case of maximum coefficient of friction. These differences would not exist if the same shapes were used 
with perfectly ideal plane contacts, evenly distributed on both surfaces, as in the case of ideal wedge dampers. 

 
As has been demonstrated experimentally [24], the inevitable machining imperfections on the flat contact surfaces 

of a Siemens-type damper result in erratic behaviour due to the lack of precise control over the position of the contacts.  
It is relatively straightforward to envisage the potential consequences of the aforementioned issues in a real-world 
context, as opposed to idealised numerical models. This is particularly pertinent in the case of a wedge damper, where 
the challenge of machining imperfections (as duly acknowledged in reference [12]) is compounded by the possibility of 
misalignment between adjacent blade platforms (which, it must be noted, does not appear to be a primary focus within 
the extant literature). In contrast to the contact-asymmetric contact damper [16], the wedge damper is unable to adapt 
to such circumstances. 
 

11   Conclusions 
 
The algorithm developed in a previous paper for direct calculation of the hysteresis “Base-Cycle” of contact-
asymmetric UDs was here used as a method of comparing the effectiveness of damper shapes. Scaling according to 
either damper or platform size was the subject of the previous paper, and can be applied separately.  
 
It was discussed how to adjust the position of the single contact on its damper side to avoid liftoff when the damper-
platform friction coefficient is highest, at 0.7, a value at cold start. The hysteresis cycles for rotations of blade 
platforms during In-Phase vibrations equal to - and higher than – that of the Base-Cycle were then examined for 
friction coefficients 0.5 and 0.3, i.e. at the limits of the range expected in operating conditions at temperature. On this 
basis, the isosceles 45°/45° damper was examined, concluding that at the highest operational friction coefficient 0.5 it 
would work in marginal conditions not guaranteeing absence of liftoff.  
 
For this reason, the method was applied to a family of dampers with a smaller vertex angle. This family is composed 
of five dampers obtained by distortion of an isosceles of 60° aperture at the vertex. The five study cases include two 
dampers with 90° inclination of either the left or the right side, named 90L and 90R, and two intermediate dampers 
having the left or the right side inclines by 74°, named 74L and 74R. In all cases the left surface accommodates a 
couple of contact pads, while the right surface contains the single contact.  
 
For each of the five dampers, and for the three friction coefficients, the different problems were examined that arise in 
calculating the hysteresis cycle at the onset of the total full-slip, called Base-Cycle, described first in a “force” form, 
otherwise named “equilibrium track diagram”, then as a platform “moment” diagram.  Moreover, for each damper a 
Transitions Chart is given, that serves to elucidate the variety of special problems that are encountered in calculating 
the fundamental “equilibrium track” diagram.Shapes for both types of Base-Cycles are provided for the whole damper 
family and the three friction coefficients, thus covering a variety of cases that give a deep insight into the damper 
behavior.  
 
Applying the “moment Base-Cycle” concept to the Platform Centered Reduction technique, the dampers of the studied 
family are described by their characteristic diagrams of the real and imaginary components of the complex stiffness on 
the platform rotation.  
 
Finally, the values of the dissipated energies at the damper contact pads are determined, the sum of which is checked 
against the total energy dissipated by the moment of contact forces acting on the platform, consistent with Platform 
Centered Reduction.  
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Appendix 
 
A The Back-Slide Spring Release 

 
At any of the contacts, L1 or L2 or R1, is represented in Fig. A.1 a), where the contact surface D of the damper slides 

relative to the platform P until the onset of sliding is reached, i.e.,  𝑇 = 𝜇 𝑁 . The normal contact force 𝑁 on damper is 

due to compression of the normal spring 𝑘𝑛 and the tangential force 𝑇 is due to the elongation 𝑡𝐷𝑃 of the tangential 

spring 𝑘𝑡.  

 

Fig. A.1 b) shows a backward damper-to-platform motion ∆𝑡𝐷𝑃, a tangential force release ∆𝑇 and a normal 

compression release ∆𝑁 due to normal release ∆𝑛𝐷𝑃, with ∆𝑇 < 𝜇 ∆𝑁 then the resultant force falling inside the friction 

angle. In this case the contact model is “stick”.   

 

Fig. A.1c) represents an impossible situation when the stick model would be adopted while the normal spring 

release ∆𝑛𝐷𝑃
∗  produces a normal force reduction ∆𝑁∗, what would bring the resultant contact force outside the friction 

angle. To overcome the problem, a slip contact model must be adopted as in Fig. A.1 d), where the sliding contact 

condition is imposed ∆𝑇 = 𝜇 ∆𝑁∗ corresponding to let the contact back-slide by an amount ∆𝑠 compatible with such 

tangential force variation.   

 

For equations, please refer to [16] at “Appendix 4 – The local contact matrices”. 

 

https://doi.org/10.1115/1.4049187
https://doi.org/10.1115/1.4055414
https://doi.org/10.1016/j.ymssp.2023.111062
https://doi.org/10.1115/1.4037865%20032504
https://doi.org/10.1115/1.4049186
file:///C:/Users/mrb7/Downloads/%20https:/doi.org/10.1115/1.4049186
https://doi.org/10.1016/j.ymssp.2021.107917


Journal of Structural Dynamics, Special issue on Tribomechadynamics, (pp. 105-138) 2024 
On comparing behavior and performance of underplatform dampers according to shape 

 

 
 
132| doi: 10.25518/2684-6500.239  M.M Gola 

 

Fig. A.1: P: platform; D damper; 𝑡𝐷𝑃: damper-to-platform tangential motion, ; a): onset of contact slip, max elongation 𝑡𝐷𝑃 of 
tangential spring; b) backward relative motion ∆𝑡𝐷𝑃 , spring release in stick; c) impossible stick solution; d) contact slides back by ∆𝑠 

, increased spring release to ∆𝑇 = 𝜇 ∆𝑁∗ 
 
Figs A.2 show by way of example the case 90L, where the tract 0-A requires setting the contact L1 in  “back-slip” 

instead  of “stick”. Fig. A.2a shows force 𝐹𝐿1,𝐴  on the limit friction angle as the initial force 𝐹𝐿1,0 . Were the contact in L1 

set in stick, then, Fig. A.2b, the force 𝐹𝐿1,𝐴𝑤  (𝑤: for “wrong”) would fall outside the limit friction angle. All other forces 

would be wrong as well. 

 

 

 

Fig. A.2: (Left) case 90L, 𝜇 = 0.7, contact forces at initial point 0 and at final point A of the first tract 0-A, contact in L1 set “back-

slip”, R1 and L2 “stick”. (Right) case 90L, 𝜇 = 0.7, contact forces at initial point 0 and at final point A of the first tract 0-A, all contacts 
on R1 , L1 , L2  set “stick” 

 
 

B Complex Stiffness Components and Energy Dissipation Indicators for 
the Family of Cases 

 
Complex stiffness components (𝑘𝑅𝑒  , 𝑘𝐼𝑚) are represented in this Appendix for all shape-cases of Fig. 18, in subSections 

from B.1 to B.5 that show the curves in the range 0< 𝜓𝑃,𝑎 < 20 mrad, together with their companion Tables of parameters 

of full stick and Base-Cycle. 

 

Companion tables collect the values of: 

• 𝜓𝑃,𝑎,𝑓𝑠 : value of  𝜓𝑃,𝑎 at the end of full-stick 

• 𝑘𝑅𝑒,𝑓𝑠   : real rotational stiffness of platform in initial full-stick 

• 𝜓𝑃,𝑎,𝐵𝐶 : value of  𝜓𝑃,𝑎 at Base-Cycle 

• 𝑘𝑅𝑒,𝐵𝐶 : real rotational stiffness of platform at Base-Cycle 

• 𝑘𝐼𝑚,𝐵𝐶 : imaginary rotational stiffness of platform at Base-Cycle 

Then, for each shape, work shape factors, defined in Appendix C, are collected in a Table “full-sliding energy dissipation 

indicators” that represent the amount of relative dissipated energy at the three contacts.  Note that the sum of the 

indicators of dissipated energy on the three contacts (rows 2, 3, 4) equals the corresponding value calculated in row 5 

for the moment on the platform. 
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B.1 – Shape-case 90L 

For this case 2𝑏𝐿 = 0.85 ℎ, as explained in Section 6 

 

Table B1.1: Parameters of full stick (fs) and Base-Cycle (BC) of Fig. B1.1 

𝜇 𝜓𝑃,𝑎,𝑓𝑠 𝑘𝑅𝑒,𝑓𝑠 𝜓𝑃,𝑎,𝐵𝐶 𝑘𝑅𝑒,𝐵𝐶 𝑘𝐼𝑚,𝐵𝐶 

0.7 0.64 41150* 3.14 40191 1077 

0.5 0.71 40851 2.13 37078 3185 

0.3 0.49 40851 1.12 35244 4490 

 

 

Fig. B1.1: Shape-case 90L, 𝜇 = 0.7, 0.5, 0.3: real, 𝑘𝑅𝑒 , and imaginary, 𝑘𝐼𝑚  (N mm/mrad) components of platform complex 

rotational stiffness vs. amplitude of alternating platform rotation 𝜓𝑃,𝑎 (mrad) 
 

Table B1.2: Full-slip energy dissipation of shape-case 90L 

 Work shape factors 𝜇 = 0.7 𝜇 = 0.5 𝜇 = 0.3 

1 𝓌𝑅1 : work shape factor on contact R1 0.000 0% 0.000 0% 0,000 0% 

2 𝓌𝐿1 ∶work shape factor on contact L1 1.317 53% 0.927 60% 0.501 64% 

3 𝓌𝐿2 : work shape factor on contact L2 1.182 47% 0.625 40% 0.279 36% 

4 Sum 𝓌𝑅1 + 𝓌𝐿1 + 𝓌𝐿2  2.499 100% 1.552 100% 0.780 100% 

5 𝓌𝑀  : work shape factor of moment  2.499 / 1.552 / 0.780 / 

 
Note the percentage of the total energy dissipated on each contact. With this shape the right contact does not 

dissipate, then it does not wear, conforming to the fact that it always remains in stick (see Fig.19a, 19b, 20). 
 

B.2 – Shape-case 74L 

Table B2.1: Parameters of full stick (fs) and Base-Cycle (BC) of Fig. B2.1 

𝜇 𝜓𝑃,𝑎,𝑓𝑠 𝑘𝑅𝑒,𝑓𝑠 𝜓𝑃,𝑎,𝐵𝐶 𝑘𝑅𝑒,𝐵𝐶 𝑘𝐼𝑚,𝐵𝐶 

0.7 0.092 33788 5.159 9243 7517 

0.5 0.333 33549 4.429 8672 6957 

0.3 0.360 33549 3.047 8332 6513 
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Fig. B2.1: Shape-case 74L, 𝜇 = 0.7, 0.5, 0.3: real, 𝑘𝑅𝑒 , and imaginary, 𝑘𝐼𝑚  (N mm/mrad) components of platform complex 
rotational stiffness vs. amplitude of alternating platform rotation 𝜓𝑃,𝑎 (mrad) 

 
Table B2.2: Full-slip energy dissipation of shape-case 74L 

 Work shape factors 𝜇 = 0.7 𝜇 = 0.5 𝜇 = 0.3 

1 𝓌𝑅1: work shape factor on contact R1 0.356 35% 0.303 35% 0.209 35% 

2 𝓌𝐿1 ∶work shape factor on contact L1 0.530 52% 0.427 49% 0.278 47% 

3 𝓌𝐿2: work shape factor on contact L2 0.131 13% 0.136 16% 0.109 18% 

4 Sum 𝓌𝑅1 + 𝓌𝐿1 + 𝓌𝐿2  1.017 100% 0.866 100% 0.596 100% 

5 𝓌𝑀  : work shape factor of moment  1.017 / 0.866 / 0.596 / 

 

B.3 – Shape-case 60sym 

Table B2.1: Parameters of full stick (fs) and Base-Cycle (BC) of Fig. B3.1 

𝜇 𝜓𝑃,𝑎,𝑓𝑠 𝑘𝑅𝑒,𝑓𝑠 𝜓𝑃,𝑎,𝐵𝐶 𝑘𝑅𝑒,𝐵𝐶 𝑘𝐼𝑚,𝐵𝐶 

0.7 0.60 28741 2.56 21679 4583 

0.5 0.67 28741 2.18 21634 4921 

0.3 0.53 28741 1.50 21634 5057 

 

 
Fig. B3.1: Shape-case 60sym - 𝜇 = 0.7, 0.5, 0.3: complex stiffness components 
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Table B3.2: Full-slip energy dissipation of shape-case 60sym 

 Work shape factors 𝜇 = 0.7 𝜇 = 0.5 𝜇 = 0.3 

1 𝓌𝑅1: work shape factor on contact R1 0.542 50% 0.462 50% 0.318 50% 

2 𝓌𝐿1: work shape factor on contact L1 0.366 34% 0.312 34% 0.215 34% 

3 𝓌𝐿2: work shape factor on contact L2 0.176 16% 0.150 16% 0.103 16% 

4 Sum 𝓌𝑅1 + 𝓌𝐿1 + 𝓌𝐿2  1.085 100% 0.924 100% 0.636 100% 

5 𝓌𝑀  : work shape factor of moment  1.085 / 0.924 / 0.636 / 

 

B.4 – Shape-case 74R 

Table B4.1: Parameters of full stick (fs) and Base-Cycle (BC) of Fig. B4.1 

𝜇 𝜓𝑃,𝑎,𝑓𝑠 𝑘𝑅𝑒,𝑓𝑠 𝜓𝑃,𝑎,𝐵𝐶 𝑘𝑅𝑒,𝐵𝐶 𝑘𝐼𝑚,𝐵𝐶 

0.7 1.030 27426 3.270 16194 7452 

0.5 1.023 25983 2.935 14908 7020 

0.3 0.841 25849 2.089 14245 7168 

 
 

 

 

 

Fig. B4.1: Shape-case 74R, 𝜇 = 0.7, 0.5, 0.3: real, 𝑘𝑅𝑒 , and imaginary, 𝑘𝐼𝑚  (N mm/mrad) components of platform complex 
rotational stiffness vs. amplitude of alternating platform rotation 𝜓𝑃,𝑎 (mrad) 

 

Table B4.2: Full-slip energy dissipation of shape-case 74R 

 Work shape factors 𝜇 = 0.7 𝜇 = 0.5 𝜇 = 0.3 

1 𝓌𝑅1: work shape factor on contact R1 0.661 65% 0.563 65% 0.387 65% 

2 𝓌𝐿1: work shape factor on contact L1 0.201 20% 0.182 21% 0.131 22% 

3 𝓌𝐿2  : work shape factor on contact L2 0.155 15% 0.121 14% 0.078 13% 

4 Sum 𝓌𝑅1 + 𝓌𝐿1 + 𝓌𝐿2  1.017 100% 0.866 100% 0.596 100% 

5 𝓌𝑀  : work shape factor of moment  1.017 / 0.866 / 0.596 / 

 

B.5 – Shape-case 90R 

Table B5.1: Parameters of full stick (fs) and Base-Cycle (BC) of Fig. B5.1 

𝜇 𝜓𝑃,𝑎,𝑓𝑠 𝑘𝑅𝑒,𝑓𝑠 𝜓𝑃,𝑎,𝐵𝐶 𝑘𝑅𝑒,𝐵𝐶 𝑘𝐼𝑚,𝐵𝐶 

0.7 0.434 27799 0.436 27797 79 

0.5 0.580 27805 0.608 27779 33 

0.3 0.519 27805 0.543 27676 168 
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Fig. B5.1: Shape-case 90R, 𝜇 = 0.7, 0.5, 0.3: real, 𝑘𝑅𝑒 , and imaginary, 𝑘𝐼𝑚  (N mm/mrad) components of platform complex 
rotational stiffness vs. amplitude of alternating platform rotation 𝜓𝑃,𝑎 (mrad) 

 

Table B5.2: Full-slip energy dissipation of shape-case 90R 

 Work shape factors 𝜇 = 0.7 𝜇 = 0.5 𝜇 = 0.3 

1 𝓌𝑅1: work shape factor on contact R1 0.242 100% 0.338 100% 0.301 100% 

2 𝓌𝐿1: work shape factor on contact L1 0.000 0% 0.000 0% 0.000 0.000% 

3 𝓌𝐿2: work shape factor on contact L2 0.000 0% 0.000 0% 0.000 0.000% 

4 Sum 𝓌𝑅1 + 𝓌𝐿1 + 𝓌𝐿2  0.242 100% 0.338* 100% 0.301 100% 

5 𝓌𝑀  : work shape factor of moment  0.242 / 0.337* / 0.299* / 

* differences due to cycle convergence approximation 

 
 

C Definition of Work Shape Factors in Full Sliding 

Fig. C.1: Relative sliding velocities in full sliding 

 
Since the sliding damper-platform velocities depend on the relative motion between platforms, Fig. C.1 most 
conveniently represents the case where the right platform is fixed and the left platform of moves vertically by the amount 
∆𝑣 = 𝑣𝑃𝐿 − 𝑣𝑂𝑅 , Fig. 6. Segment AC represents the vector ∆𝑣𝑡𝑅 of sliding motion of the damper against the right 
platform, RD against RP. A point belonging to the left platform, on LP moves together with a point   RD on the damper 
and in addition has a relative sliding motion ∆𝑣𝑡𝐿, represented by segment BC, the sum being the absolute motion of 
left platform.  
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This trivial gives: 
 

∆𝑣𝑡𝑅 = ∆𝑣
1

cos 𝜗𝑅 (tan 𝜗𝑅+tan 𝜗𝐿  )
          (C.1) 

∆𝑣𝑡𝐿 = ∆𝑣
1

cos 𝜗𝐿 (tan 𝜗𝑅+tan 𝜗𝐿  )
          (C.2) 

 
With:  
 
𝐹𝑅1

+ : contact force in R1 during the forward half cycle 

𝐹𝑅1
−  : contact force in R1 during the backward cycle 

𝐹𝐿1
+ : contact force in L1 during the forward half cycle 

𝐹𝐿1
−  : contact force in L1 during the backward cycle 

𝐹𝐿2
+ : contact force in L2 during the forward half cycle 

𝐹𝐿2
−  : contact force in L2 during the backward cycle 

 
During sliding the respective tangential components are: 

 
𝐹𝑋𝑦

+ sin 𝜑𝑋             (C.3) 
 
Since all forces are proportional to the damper radial force   𝐹𝐷 , the following factors 𝑓𝑋𝑦

+   are defined so that: 
 
𝐹𝑋𝑦

± =  𝑓𝑋𝑦
±  𝐹𝐷             (C.4) 

 
Work dissipated on a contact during the forward and the backward half-cycle are: 

 
𝑊𝑅1 =  𝐹𝐷  ∆𝑣𝑡𝑅  [sin 𝜑𝑅  (𝑓𝑅1

+ +  𝑓𝑅1
− )]           (C.5) 

𝑊𝐿1 =  𝐹𝐷  ∆𝑣𝑡𝐿  [sin 𝜑𝐿  (𝑓𝐿1
+ +  𝑓𝐿1

− ) ]          (C.6) 

𝑊𝐿2 =  𝐹𝐷  ∆𝑣𝑡𝐿  [sin 𝜑𝐿  (𝑓𝐿2
+ +  𝑓𝐿2

− ) ]           (C.7) 

 
The dissipated energy can be calculated as well from the cycle of the moment 𝑀𝑃 applied to the platform. It was 

demonstrated in [16] that aside the more standard method of directly using the contact force components on the 
platform, a more synthetic formula holds as well, that neglecting the angular pitch between blades, i.e, adopting the 
“parallel blade” model of Fig. 6:   

 
𝑀𝑝 = (𝐹𝐿,𝑣 − 𝐹𝑅1,𝑣) 

𝑞∗

2
             (C.8) 

 
where: 
 
𝐹𝐿,𝑣 = 𝐹𝐷  𝑓𝐿,𝑣 :  total resultant contact force on the damper’s left side 

𝐹𝑅1,𝑣 = 𝐹𝐷   𝑓𝑅1,𝑣  : contact force on the damper’s right side,  i.e., force on R1 

𝑞∗  : the distance between platforms, Fig. 6. 

 
Then with: 
 
𝑀𝑃

+ : moment in the forward half-cycle 

𝑀𝑃
− : moment in the backward half-cycle 

the moment difference: 

 
∆𝑀𝑃 = 𝑀𝑃

+ −  𝑀𝑃
− = 𝐹𝐷 

𝑞∗

2
 [(𝑓𝐿,𝑣

+ − 𝑓𝑅1,𝑣
+ ) − (𝑓𝐿,𝑣

− − 𝑓𝑅1,𝑣
− )]        (C.9) 

 
Note that thanks to (B.9) all the necessary information is contained in in the “equilibrium track” diagram, or “force” 

Base-Cycle.  In fact, all factors  𝑓…
±  involved in these equations are seen as in the example of Fig. C.2, cycle for 𝜇 =0.5 

in the case 90L, Fig. 19.  
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Fig. C.2: Left and right resultant forces on damper on “equilibrium track”, cycle-start and half-cycle, case 90L,  𝜇 = 0.5 of Fig. 19 
 

For a rotation range  ∆𝜓𝑃 such that, Fig. 15: 
 

∆𝑣 =  ∆𝜓𝑃 
𝑞∗

2
              (C.10) 

 
Then, a sliding forward and backward motion of angular range ∆𝜓𝑃 produce on contacts, (C.1), (C.2) into (C.5), 

(C.6), (C.7) with (C.10): 

𝑊𝑅1 =  𝐹𝐷  ∆𝑣 [
sin 𝜑𝑅

sin 𝜗𝑅
 

tan 𝜗𝑅 

(tan 𝜗𝑅 +tan 𝜗𝐿  )
(𝑓𝑅1

+ +  𝑓𝑅1
− )] = 𝐹𝐷  ∆𝜓𝑃 

𝑞∗

2
 𝓌𝑅1                    (C.11) 

𝑊𝐿1 =  𝐹𝐷  ∆𝑣 [
sin 𝜑𝐿

sin 𝜗𝐿
 

tan 𝜗𝐿 

(tan 𝜗𝑅 +tan 𝜗𝐿  )
(𝑓𝐿1

+ +  𝑓𝐿1
− ) ] =  𝐹𝐷  ∆𝜓𝑃 

𝑞∗

2
 𝓌𝐿1                    (C.12) 

𝑊𝐿2 =  𝐹𝐷  ∆𝑣 [
sin 𝜑𝐿

sin 𝜗𝐿
 

tan 𝜗𝐿 

(tan 𝜗𝑅 +tan 𝜗𝐿  )
(𝑓𝐿2

+ +  𝑓𝐿2
− ) ] =  𝐹𝐷  ∆𝜓𝑃 

𝑞∗

2
 𝓌𝐿2                    (C.13) 

 
and the work of the platform moment, from (B.9): 
 

 𝑊𝑀 =  𝐹𝐷  ∆𝜓𝑃 
𝑞∗

2
 [(𝑓𝐿,𝑣

+ − 𝑓𝑅1,𝑣
+ ) − (𝑓𝐿,𝑣

− − 𝑓𝑅1,𝑣
− )] =   𝐹𝐷  ∆𝜓𝑃 

𝑞∗

2
 𝓌𝑀                    (C.14) 

 
The non-dimensional factors:   
 

𝓌𝑅1,  𝓌𝐿1,  𝓌𝐿2,  𝓌𝑀   
 

are here named “work shape factors”. Fig. C.3 represents an example dissipated work of contact forces due to Base-
Cycle, hatched area, and the part due to full sliding, parallelogram of area ∆𝑀𝑃 ∆𝜓𝑃 . 
 

The value of 𝓌𝑀 is proportional to the full-slip moment difference 𝑀𝑃, eq. (A9). The values calculated in row 4, 5 of 
Tables B1.2, B2.2, B3.2, B4.2, B5.2 are a final check of the correctness of the calculations, as it always found: 

 
𝓌𝑀 =  𝓌𝑅1 + 𝓌𝐿1 + 𝓌𝐿2                        (C.15) 

 

Fig. C.3: Dissipative frictional work, hatched from Base-Cycle, void parallelogram from full sliding  


