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Abstract 

This research presents a novel analysis method for calculating nonlinear Frequency Response Functions from 
a nonlinear frequency response surface (NFRS). The research aims to provide engineers with a user-friendly 
technique to evaluate the nonlinear frequency responses when the modal parameters as a function of the 
vibration amplitude are available. The Frequency Response Functions (FRFs) are the most widely used 
functions to characterise the dynamic behaviour of structures. The experimental modal analysis stands on four 
pillars 1) measurement, 2) identification, 3) regeneration, and 4) comparison, and these four steps must be 
ensured under linear and nonlinear vibrations. However, the nonlinear vibrations are challenging for identifying, 
regenerating, and comparing nonlinear FRFs.  

This research postulates that a nonlinear FRF solves a geometrical intersection between the nonlinear 
frequency response surface and any constant amplitude force surface. The paper demonstrates the hypothesis 
with ONE- and TWO-DoF systems with a cubic stiffness nonlinearity by showing how to generate a nonlinear 
frequency response surface when the force-displacement relationship is calculated. The verification of the 
proposed formulation is yielded by comparing nonlinear FRFs generated by the new analysis method (NM) to 
the ones generated by the Harmonic Balance Method and numerical integration. Furthermore, the paper 
presents a new identification method, based on the Dobson formulation, for extracting amplitude-dependent 
modal parameters. These parameters generate an NFRS, from which synthesised nonlinear FRFs are 
evaluated and compared to the experimental ones. The most important innovation of this research is that the 
four steps listed earlier can quickly be implemented with the proposed technique. 
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1 Introduction 

Modal testing and analysis are well-established practices for measuring and analysing frequency response functions. 
The modal parameters identified from the analysis can be used to generate a simple mathematical response model 
or validate and update a structural model generated by finite element methods. There are four essential steps in the 
modal analysis practice. The first one is the measurement of frequency response frequencies, FRFs, which are the 
ratio between response and stimulus, measured under steady-state, random or transient vibrations. The vibrations 
are acquired and processed by linear operators, such as the Fast Fourier Transform (FFT), to calculate frequency 
response spectra. The second step is the modal analysis, which identifies the modal parameters from the FRFs. The 
process can be either via time- or frequency-domain methods. The third step is to generate or synthesise FRFs using 
linear frequency response models with the modal parameters identified in the second step. The final fourth step is 
the comparison of the measured and synthesised FRFs, a process that ensures the reliability of the modal 
parameters. Nowadays, modal analysis toolsets are implemented in several commercial and open-source software 
suites and used in several engineering applications. The four steps, 1) measurement, 2) identification, 3) 
regeneration and 4) comparison, ensure that the analysis process delivers robust and reliable modal parameters. 
Ewins [1], Maia [2], Avitable [3], to name a few, worked extensively on modal analysis, and they cast this modus 
operandi on solid foundations for the future generation of practitioners to use it reliably. 
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 Any mechanical system is intrinsically nonlinear by nature, and therefore, those four steps described earlier break 
as soon as nonlinear vibrations are excited and measured. Under such nonlinear conditions, the FRFs will become 
more and more distorted. Such distortions can become visible around the resonances, which tend to skew towards 
higher or lower frequencies. There are also situations where the resonance distortion is not visible. Therefore, any 
modal test practitioner must often conduct linearity checks before running any test. Tomlinson and Worden wrote a 
textbook describing nonlinear structural dynamics [4], in which several types of nonlinearities are modelled in the 
frequency and time domain, and experimental techniques for characterising nonlinearities are also presented. 
Although nonlinear dynamics is a science that covers many applications, from engineering to physics and 
mathematics, this manuscript narrows its focus to the steady state nonlinear vibrations, which are only analysed 
using FRFs. 
 Noël and Kerschen [5] wrote a comprehensive manuscript reviewing the testing and identification methods 
developed from 2006 to 2016. The author’s interest in that review is on the methods focussed on FRF linearisation 
and the CONCERTO techniques, both of which evaluate amplitude-dependent modal properties from FRFs 
measurements. The review highlights the pros and cons of those techniques, which will be discussed further in 
section 3.1 of this paper. Moreover, consistent research work on the test and analysis of nonlinear FRFs was carried 
out by Özgüven et al. [6-9], which is the primary source of inspiration for the proposed analysis method. Özgüven [9] 
describes a response surface in his manuscripts, generated by the frequency, harmonic displacement and force. 
That surface is called the Harmonic Force Surface (HFS). The authors report that: ”In Response Controlled Test, this 
problem is solved by keeping the displacement amplitude constant, which results in smooth response spectrum 
incorporating points on the unstable branch as well.” The authors also report that equation (24) in [9] is solved 
iteratively to synthesise the nonlinear frequency response. Despite the high value of that research, this manuscript 
takes a different direction by using a simple open-loop control method for measuring and analysing one nonlinear 
FRF. Since 2019, Zhang and Zang [10-12] proposed an interesting testing technique for characterising nonlinear 
vibrations. Their technique can also extract amplitude-dependent modal parameters from several FRFs measured 
using an open-loop control technique. A further in-depth description of their technique is given in section 3.1. Their 
research also inspired this paper, but it takes a step further by demonstrating that a single nonlinear FRF is sufficient 
for retrieving amplitude-dependent parameters even when one part of the FRF branch is missing because of the 
unstable vibration response. The yielding of the nonlinear modal parameters is also used to generate a nonlinear 
frequency response surface.  
 
 This manuscript postulates that: 
A nonlinear frequency response surface, generated by a waterfall of linear FRFs, is the solution space of nonlinear 
FRFs, which can be evaluated by any force plane cutting across the response surface. 
 
The hypothesis must address the following scientific objectives: 
 

(i) The primary scientific objective is to develop a new mathematical formulation to (i) analyse a nonlinear 
frequency response surface and (ii) calculate nonlinear frequency response functions. 

 
(ii) The secondary scientific objective is to develop a new modal analysis tool to calculate amplitude-dependent 

modal parameters using one FRF rather than several ones. 
 
This manuscript will present three research sections. The first section will focus on one and two degrees of freedom 
systems to model and simulate a nonlinear frequency response surface. At this stage, the nonlinearity is achieved 
using a nonlinear force-displacement relationship. The nonlinear FRFs evaluated by the proposed method are 
compared to nonlinear FRFs calculated by numerical integration and the Harmonic Balance Method. The second 
section will present a novel modal analysis method based on the Dobson formulation [13], which allows for calculating 
amplitude-dependent modal parameters from one nonlinear FRF. These modal parameters will be used to generate 
the NFRS. Finally, the third section will present three case studies to validate the new formulation proposed: one 
experimental case based on a lap joint and two experimental cases based on a composite blade. In this section, the 
regeneration and comparison of the FRFs are yielded to prove the validity of the hypothesis. A blind analysis, the 
fourth case, is also provided to show that the entire process is achieved on test data generated from an unknown 
aerospace component. 
It is important to stress that the proposed formulation and application of the method are currently developed on the 
following limitations. 
 

(i) Experimental and synthesised measurements are yielded using stepped sine tests under steady state 
conditions. 

 
(ii) The FRFs, calculated from the measurements, are the ratio between the response and stimulus at the 

fundamental excitation frequency, and therefore, higher-order harmonics are neglected. 
 
(iii) The resonances are considered well-isolated, meaning that modal contribution from neighbouring modes 

can be neglected. 
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(iv) The manuscript focuses on smooth nonlinearities. 
 

2 Response function model for nonlinear steady state vibrations 

The primary scientific objective of this section is to demonstrate the hypothesis postulated in the introduction. The 
investigation starts by revisiting the relationship between force and displacement, which contains an element to 
understand how linear FRFs can generate a nonlinear frequency response surface. This section will only treat a 
grounded nonlinear stiffness, leaving the nonlinear damping out of the scope of this demonstration. The nonlinear 
FRF yielded by the proposed new analysis method (NM) will be compared to those calculated using the Harmonic 
Balance Method and numerical integration method. The section will focus on the ONE- and TWO-Degrees of 
Freedom systems to prove that an NFRS can be simulated with a cascade of linear FRFs, and any nonlinear FRF is 
the geometrical intersection between the response and stimulus surface. 

2.1 Force-displacement relationship for linear system 

An idealised spring, subjected to a static force, will extend or compress about a displacement, (𝑋). It is custom to 

write the force-displacement relationship as in equation (1), where 𝑘, is the stiffness coefficient. An alternative form 
can be used, in which equation (1) describes the compliance of the spring as expressed by equation (2).  

𝐹(𝑋) = 𝑘𝑋  (1) 

𝑋

𝐹(𝑋)
=

1

𝑘
= 𝛼(𝑋)  (2) 

One can plot the relationship of the compliance as a function of displacement, and this plot bears a critical significance 
when the static compliance (or receptance) is extended over the frequency domain. First, we shall assume that a 
spring and a mass, 𝑚, are subjected to a harmonic force, which will lead to a harmonic response as expressed by 
equation (3), where 𝜔 is the excitation frequency. The transfer function of the spring and the mass are expressed by 
equation (4). The transfer function of the spring itself does not depend on the excitation frequency. The transfer 
function of the mass depends on the inverse of the squared of the excitation frequency. When the two transfer 
functions are plotted in the Bode diagram (log-log scale), these will be two straight lines forming the skeleton of the 
FRF [14]. The intercept of the two straight lines occurs at the undamped natural frequency of the sprung-mass 
system. By adding damping, the skeleton can be dressed using the equation (5), where 𝑐, is the viscous damping. 
 

𝑥(𝑡) = 𝑋𝑒𝑖𝜔𝑡 𝑓(𝑋, 𝑡) = 𝐹(𝑋)𝑒𝑖𝜔𝑡 (3) 

 
𝑋

𝐹(𝑋)
=

1

𝑘
  

(a) 

(4) 
𝑋

𝐹(𝑋)
= −

1

𝑚𝜔2  (b) 

 
𝑋

𝐹(𝑋)
(𝜔) =

1

𝑘−𝑚𝜔2+𝑖𝜔𝑐
  (5) 

 
In conclusion, by using equation (5), one can simulate a linear FRF from any point of the static compliance function. 
The waterfall of linear FRFs generates a linear frequency response surface, and any force plane used for cutting 
across that surface will return a linear FRF, as expected. Fig. 1 shows a 3D plot of the Bode diagram, where the 
static receptance is constant and the start of linear FRFs, whereas the dashed red lines are possible static forces 
which will extend over the frequency axis at constant amplitude (or slope). 

 
(a) 

 
(b) 

 
(c) 

Fig. 1: (a) Schematic Linear Frequency Response Surface (LFRS), (b) simulated of the LFRS and (c) projection of 
the linear FRF on the force plane 
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2.2 Force-displacement relationship for nonlinear system 

Understanding that the linear frequency response surface is the solution space of any possible linear FRF was 
straightforward. This section repeats the process using the linear equation of motion, expressed by the transfer 
function in equation (5). It is rewritten using a cubic stiffness nonlinearity in equation (6). The relationship between 
force and displacement is nonlinear, for which 𝑘𝐿𝐼𝑁 is the linear stiffness coefficient and 𝑘𝑁𝐿 is the nonlinear one. 
Assuming both harmonic force and response, as given in equation (3), one calculates the static transfer function for 
𝜔 = 0. Equation (7) shows the static receptance for linear (a) and nonlinear responses (b). These two static transfer 
functions are plotted in Fig. 2. 

The next step is to repeat the procedure as described earlier. A cascade of linear FRFs will be generated using 
equation (9) starting from the nonlinear static transfer function 𝛼(𝑋). 

 
𝑚�̈� + 𝑐�̇� + 𝑘𝐿𝐼𝑁𝑥 + 𝑘𝑁𝐿𝑥3 = 𝑓(𝑥, 𝑡)  

(6) 

 
𝑋

𝐹(𝑋)
(𝜔 = 0, 𝑋) = 𝛼(𝑋) =

1

𝑘𝐿𝐼𝑁
  (a) 

(7) 𝑋

𝐹(𝑋)
(𝜔 = 0, 𝑋) = 𝛼(𝑋) =

1

𝑘𝐿𝐼𝑁+𝑘𝑁𝐿𝑋2  (b) 

 

 

Fig. 2: Linear and nonlinear static receptance curves 

As indicated earlier, every point of the nonlinear static receptance can be the starting point of a linear FRF, as shown 
in Fig. 2. The effective stiffness, 𝑘𝐸, can be calculated by the equation (8), noting that one effective stiffness exists 

for one force, 𝐹𝑖(𝑋), where, 𝑖, indexes the force amplitude (see Fig. 2). Equation (9) is used for generating the 

nonlinear frequency response surface (NFRS) for the single degree of freedom system. 
 

𝛼(𝜔, 𝑋) =
1

𝑘𝐸(𝑋)−𝑚𝜔2+𝑖𝜔𝑐
  (9) 

 
Fig. 3 shows an NFRS generated between 0 and 100 Hz in a displacement range between 0 and 1*10-6 m in the 
colour spectrum. The surface is built with many linear FRFs which follow the pattern set by the nonlinear static 
receptance. Fig. 2 shows two forces of different amplitudes, and equation (10) evaluates the receptance amplitudes 
for a given force amplitude, which will extend over the frequency range, as expressed by equation (11). This force 
surface cuts across the NFRS, as shown in Fig. 4. A nonlinear FRF curve is visible on that force surface, as shown 

in Fig. 5. 
 
 

𝑘𝐸(𝑋) =
𝑋

𝐹𝑖(𝑋)
  

𝑖 = 1. . . 𝑛 

(8) 

|�̄�(𝑋)| =
𝑋

𝐹𝑖(𝑋)
  (10) 
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a) Perspective. 

 
b) Top-view. 

Fig. 3: Nonlinear frequency response surface 

 

Fig. 4: Nonlinear frequency response surface (red) and 
constant force plane (blue) 

 

Fig. 5: Nonlinear FRF overlaid on the force surface 

The final step is to extract the nonlinear FRF, a geometrical intersection between two surfaces, the response and 
the stimulus. This step is achieved using equations (12) and (13). At this stage, one should note that there is an 
excitation frequency used for generating the surfaces and an unknown variable called frequency, 𝜔𝑁𝐿, which is the 

frequency evaluated by the intersection of these two surfaces. The receptance amplitudes, |�̄�(𝜔, 𝑋)|, are known at 
every displacement amplitude (see the plot in Fig. 2), and the effective stiffness is calculated from equation (7), 
whereas the mass, 𝑚 , and the damping, 𝑐, are taken from the Table 1. Reworking the equation (12) as function of 

the unknow frequency, 𝜔𝑁𝐿, one can solve an equation of the fourth order, equation (13), which will give four roots 
for the selected receptance value. Once the nonlinear frequency, 𝜔𝑁𝐿, is calculated for every linear FRF at a given 
receptance amplitude (eq.(11)), the real and imaginary parts of the nonlinear receptance can be calculated using 
equations (14) and (15).  The undamped natural frequency, 𝜔𝑟, is calculated by the ratio between the effective 

stiffness, 𝑘𝐸(𝑋), at displacement (𝑋), and the mass 𝑚. One will be able to generate the full nonlinear FRF for any 
desired force amplitude, as shown in Fig. 6. 

|�̄�(𝜔, 𝑋)| = |
1

𝑘𝐸(𝑋)−𝑚𝜔𝑁𝐿
2 +𝑖𝜔𝑁𝐿𝑐

|  (12) 

𝜔𝑁𝐿
4 + (2𝑚𝑘𝐸(𝑋) −

𝑐𝑚𝑘𝐸(𝑋)

√𝑚𝑘𝐸(𝑋)
) 𝜔𝑁𝐿

2 +
𝑘𝐸

2(𝑋)

𝑚2 −
1

|�̄�(𝜔,𝑋)|
= 0  (13) 

𝐹𝑖(𝜔, 𝑋) =
𝑋

|�̄�(𝜔,𝑋)|
  (11) 
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𝑅𝐸1,2 = 𝜔𝑟
2 − 𝜔𝑁𝐿1,2

2   (14) 

𝐼𝑀1,2 = 2𝜁 ∗ 𝜔𝑟 ∗ 𝜔𝑁𝐿1,2  (15) 

 

 

Fig. 6: Nonlinear FRF calculated from the nonlinear frequency response surface 

The verification of the nonlinear FRF, thus calculated, is carried out by numerical integration (ODE) and the Harmonic 
Balance Method (HBM). A single DOF equation of motion (16) generates nonlinear FRFs. The system parameters 
implemented in the equation (16) are listed in the Table 1. The simulation of the nonlinear FRF was run between 40 
and 60 Hz with a frequency step of 0.1 Hz, and every step was simulated for 2 seconds at 10,000 samples/sec. The 
HBM is performed using the first fundamental harmonic, as many textbooks show. Instead of the modulus and phase, 
the real and imaginary parts of the FRF are calculated to plot the Nyquist circles. Fig. 7 shows Nyquist curves for 
the three calculated FRFs, which overlay on each other. 

�̈� + 2𝜁𝜔𝑟�̇� + 𝜔𝑟
2𝑥 + 𝑘𝑁𝐿𝑥3 = 𝑝 =

𝑓(𝑡)

𝑚
= 𝑃 𝑐𝑜𝑠(Ω𝑡 + 𝜙)  (16) 

 

Table 1: SDOF system parameters 

Mass Damping Linear stiffness Nonlinear stiffness 

𝑚 = 0.1 kg 𝑐 = 1 m/s N-1 𝑘𝐿𝐼𝑁 = 104 N/m 𝑘𝑁𝐿 = 115 N/m3 

 

 

Fig. 7: Comparison of the Nyquist circles simulated by numerical integration (ODE), the new method (NM) and the 
harmonic balance method (HBM) 

This section proves that a nonlinear frequency response surface can be simulated using a linear frequency response 
model, and the section ends by comparing three nonlinear FRFs. The main objective was to evaluate a nonlinear 
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FRF resulting from a geometrical intersection between two surfaces, the stimulus and response. This formulation 
supports the new analysis method when nonlinear modal parameters are extracted from nonlinear FRFs. The 
following subsection will extend the analysis method to a TWO-DoF vibration response to verify that the two surfaces 
can extract a nonlinear FRF for an MDoF system. 

2.3 The theoretical nonlinear transfer function for a TWO-DoF system 

This subsection investigates the proposed analysis method using a TWO-DoF system. One of the hypotheses of this 
paper is to apply the nonlinear regeneration technique to experimental FRFs, which are measured from multiple 
degrees of freedom systems. Therefore, the extension to MDoF vibration response is necessary for evaluating if the 
intersection between stimulus and response surfaces generates a nonlinear FRF. The previous subsection presented 
equation (13) for solving the nonlinear FRF, while this subsection will provide a more convenient numerical 
alternative. 

As said, this subsection extends the same theoretical formulation to a TWO-DoF system with a grounded stiffness 
nonlinearity, as shown in Fig. 8. This simple system could be imagined as a double cantilever beam, where an end 
of which has a smaller cross-section area than the other end of the beam, as seen in [15]. The assumptions used in 
generating this MDoF system will simplify the mathematical formulation, but the model cannot be generalised. The 
system is made of two masses, 𝑚, and three equal linear springs, 𝑘𝐿𝐼𝑁, one of the two grounded springs will exhibit 
nonlinear behaviour, as shown in Fig. 8. This simplification makes the stiffness matrix depend on one linear and 
nonlinear stiffness moduli, which, in reality, might not be the case. Another simplification is grounded nonlinearity, 
which is a convenient choice to make the receptance as a function of one degree of freedom because the nonlinearity 
does not couple the two degrees of freedom. Even this simplification does not represent the reality of the response 
vibrations of structures. Both simplifications show that a constant force plane can extract nonlinear FRFs from an 
MDoF system with modes well separated in frequency. The proof of concept is crucial for section 4, where the 
experimental validation of the identification and regeneration techniques are applied to real experimental MDoF 
cases.  

The equations of motion are written for the undamped system and presented in equation (17). Table 2 reports 
the system’s and simulations’ parameters for the steady state analysis using numerical integration, which will 
simulate a nonlinear FRF. 

 

Fig. 8: TWO-DoF system with grounded nonlinearity 

Table 2: System parameters and measurement parameters for the steady state simulations 

Mass 
(kg) 

Stiffness 
(N/m) 

Damping 
Ns/m 

Nonlinear 
stiffness 
(N/m^3) 

Excitation 
force 
(N) 

Frequency 
step 
(Hz) 

Sample 
rate 

Sample/sec 

Time 
generation 

(sec) 

Steady-
state part 

(sec) 

0.1 15,000 1 1014 0.00124 0.05 10,000 2 0.3 

 
Under steady state conditions, one can assume a harmonic excitation and response, as expressed in equation (3), 
and then solve for the transfer function at the first degree of freedom. 𝑥1(𝑡), as expressed in equation (18). That 
equation will be evaluated at a null frequency on the static receptance plot to learn how the nonlinear stiffness 
relationship is related between the input and output at the first DoF of the system. 

{
𝑚�̈�1 + 𝑘𝐿𝐼𝑁𝑥1 + 𝑘𝑁𝐿𝑥1

3 + 𝑘𝐿𝐼𝑁(𝑥1 − 𝑥2) = 𝑓1(𝑥, 𝑡)

𝑚�̈�2 − 𝑘𝐿𝐼𝑁(𝑥1 − 𝑥2) + 𝑘𝐿𝐼𝑁𝑥2 = 0
  (17) 

The undamped transfer function is written as follows. 

𝑋1

𝐹1,𝑖
(𝜔, 𝑋) =

2𝑘−𝑚𝜔2

−𝑚𝜔2(2𝑘−𝑚𝜔2)+𝑘(2𝑘−𝑚𝜔2)+𝑘𝑁𝐿(2𝑘−𝑚𝜔2)𝑋1
2𝑒2𝜔𝑡+𝑘(2𝑘−𝑚𝜔2)−𝑘2

  (18) 



Journal of Structural Dynamics, 3, (pp. 30-57) 2025 
A novel analysis method for calculating nonlinear Frequency Response Functions 

37|  doi:10.25518/2684-6500.242  D. Di Maio 

The static nonlinear receptance is expressed by equation (19), and it allows calculating the effective nonlinear 

stiffness as a function of the displacement of the degree of freedom, 𝑋1, and a force amplitude, 𝐹1,𝑖,  at the same 

degree of freedom. When the nonlinearity is null, the static transfer function returns the same value for all 
displacements, as expected for linear vibrations. 

𝛼1,1(𝑋) =
𝑋1

𝐹1,𝑖
=

1

𝑘𝐸(𝑋)
=

2𝑘𝐿𝐼𝑁

2𝑘𝐿𝐼𝑁𝑘𝑁𝐿𝑋1
2+3𝑘𝐿𝐼𝑁

2   (19) 

A direct method is used for evaluating the entire receptance matrix, equation (20), valid for the system shown in Fig. 
8,  and for which the effective stiffness is calculated from equation (19). The NFRS is generated using the receptance 
excited and measured at the first degree of freedom as a function of a generic displacement. The stiffness term will 
obey the relationship expressed in equation (19). The same equation is used for constructing the force plane, which 
is a function of 𝜔 and 𝑋, as in equation (11). 

[𝛼(𝜔, 𝑋)] = ([𝐾(𝑋)] − 𝜔2[𝑀] + 𝑖𝜔[𝐶])−1  
 

[𝐾(𝑋)] = [
2𝑘𝐸 −𝑘𝐸

−𝑘𝐸 2𝑘𝐸
]  

(20) 

Fig. 9 shows the nonlinear frequency response surface generated by the equation (20). Fig. 10 shows a top view of 
that figure where the variation of the resonance frequency of the first and second modes vary as a function of the 
displacement. The process of evaluating the nonlinear FRF is the one explained earlier. Fig. 11 shows the surface 
(red) cut across by an arbitrary force surface (blue). Extracting the nonlinear FRF from the surface would require 

solving the equation (20) where the nonlinear frequency, NL, is the unknown parameter and the amplitude of the 
static transfer function is known at every displacement amplitude. The analytical solution for the nonlinear excitation 
frequency can be very cumbersome, so a much simpler solution technique is offered. 
 

 

Fig. 9: Nonlinear frequency response surface generated 
by equation (20) 

 

Fig. 10: Top-view of the Nonlinear frequency response 
surface 

The product shown in equation (21) equals unity for frequencies evaluated at the same given transfer function 

modulus, |�̅�1,1(𝜔, 𝑋)|, calculated using (19); otherwise, it is different. Note that the overscored receptance is 

determined by the amplitude of the force plane selected (the blue plane in Fig. 11). A numerical solution is used for 
calculating the new nonlinear frequency, 𝜔𝑁𝐿, for which a search condition is implemented. The finer the frequency 
steps forming the linear FRF of the nonlinear frequency response surface, the smaller the error for the search 
condition that can be set. 

|�̄�1,1(𝜔, 𝑋)||([𝐾(𝑋)] − 𝜔𝑁𝐿
2 [𝑀] + 𝑖𝜔𝑁𝐿[𝐶])| = 1  

(21) 

The first verification is done by setting the nonlinear coefficient to null, extracting a linear FRF compared to one 
generated by numerical integration. The numerical integration was somewhat redundant, but consistency was 
maintained with the simulation when the nonlinearity was activated again. Fig. 12 shows the comparison and the 
perfect overlay between the two FRFs. 
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Fig. 11: Nonlinear frequency response surface (red) and a constant force plane (blue) for the extraction of the 
nonlinear FRF 

 

Fig. 12: Comparison between linear FRF using numerical integration and NM. 

The second simulation is yielded by activating the nonlinearity, setting the nonlinear stiffness coefficient of the cubic 
term to the value listed in Table 2. The FRF extracted from the surface is overlaid by the one generated by the 
numerical integration, as shown in Fig. 13. Both the amplitude and phase of the FRFs overlay well, for which the first 
mode shows a more distinct nonlinearity than a much milder one of the second mode. The simulation of the nonlinear 
FRF yielded by numerical integration presents the typical response jump for the unstable branch of the FRF. The 
nonlinear FRF evaluated by the surface will also show the unstable branch, and the missing points of that branch 
are caused by the frequency steps used by equation (20); the finer the frequency steps, the smoother the 
regeneration of the nonlinear FRF. 
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(a) nonlinear FRF modulus 

 

(b) nonlinear FRF phase 

Fig. 13: Nonlinear FRF generated by the new analysis method and numerical integration 

2.4 Final remarks 

This section showed that a nonlinear frequency response surface can be generated using  ONE- and TWO-DoF 
response models with a grounded nonlinearity. In these two examples, the static equivalent stiffness is used to 
calculate linear FRFs, which will build a nonlinear surface. In section 4, the equivalent stiffness will be a function of 
the natural frequency curve (amplitude-dependent). The NFRS will be built using that frequency curve and the other 
modal parameters such as damping and modal constant. This theoretical section verified the first hypothesis, which 
is recalled as follows: 
 

(i) The primary scientific objective is to develop a new mathematical formulation to (i) analyse a nonlinear 
frequency response surface and (ii) calculate nonlinear frequency response functions. 
 
Using the TWO-DoF model with grounded nonlinearity is simplistic but proves the new analysis method. The matter 
would have been more complex if the nonlinear is between two DoFs, whereby the two degrees of freedom will stay 
coupled. An alternative might be found using Finite Element modelling by  Singh et al.[16], the authors use mode 
shapes to perform virtual fully reverse mechanical loading to extract the equivalent stiffnesses. Magi et al. [17] and 
Di Maio et al. [18] applied a similar technique where the deflection shape method was used for calculating the energy 
release rate (ERR) of fatigue damage growth. The second objective of this paper is to prove that such a surface, 
generated by the experimentally measured amplitude-dependent modal parameters, is the solution space for 
nonlinear FRFs. This further step will require the development of a novel identification method for performing modal 
analysis. 
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3 Modal analysis of nonlinear response functions 

An extensive review was carried out by Noël and Kerschen [5], and the reader is invited to consult that reference 
alongside the brief literature presented hereafter. This section is focused on identification methods of nonlinear modal 
parameters that can be extracted by FRF analysis using the single input, single output (SISO) sine testing method. 
Such a testing method fits the Dobson formulation for linear and nonlinear system identification, described in the 
following section. 

3.1 Background literature 

Measuring the frequency response functions is the most used experimental technique for characterising smooth 
nonlinearities. Although time-consuming because it requires steady state conditions, the stepped-sine test is 
convenient because it deals with sine IN - sine OUT (+ noise + nonlinear harmonics). The ratio between the complex 
Fourier terms of response and the force at the excitation frequency generates the frequency response. With the 
inclusion of a PID controller, able to control the amplitude of the steady state of the response for every linear excitation 
frequency, the FRFs can be “linearised” at a given constant response amplitude, and linear modal analysis methods 
can process the transfer functions. The higher the amplitude levels, the more the nonlinearity can be characterised 
[19] and [20]. In the nineties, Li [21] investigated a different technique for analysing nonlinear FRFs in his PhD thesis. 
It did not require a control method for acquiring vibrations but was based on the open-loop control technique. The 
identification method was based on analysing a nonlinear FRF by taking two pairs of frequency points at an equal 
vibration amplitude on either side of the response peak. One could write two receptance FRF equations at the same 
vibration amplitude, one for the frequency at the left and one at the right of the maximum response peak. These two 
equations, Real and Imaginary relationships, could be used to calculate the modal parameters. By sweeping the pair 
of frequency points from low up to high vibration amplitudes, the nonlinear FRF could be easily characterised. 
Carrella and Ewins [22] investigated this technique using an aerospace structure and evaluated its weaknesses. The 
method fails when one FRF branch is absent due to the system's unstable vibration response. Hence, the 
interpolation method used to identify the frequency points at the same displacement amplitude cannot be applied, 
so the equations cannot be solved correctly. Furthermore, the analysis is based on the single degree of freedom 
theory, which does not consider the contribution of neighbour modes. Although simple and practical, this 
experimental technique presents many limitations. 

In recent years, Zhang and Zang [10-12] yielded several research papers presenting a method for identifying 
nonlinear modal parameters by measuring and analysing FRFs. Every FRF is measured by step-sine tests under 
steady state vibrations and labelled at drive voltage (V) feeding the shaker. The very innovative idea is to generate 
a three-dimensional response surface (such as acceleration) made of frequencies, voltages and accelerations (Hz, 
V, m/s^2) and a force surface made of frequencies, voltages and forces (Hz, V, N). The linearization process is 
achieved by extracting a constant acceleration curve from the acceleration surface and using it to extract the force 
curve. This operation is achieved using the common voltage axis to identify accelerations and forces. Once the 
operation is completed, the FRF linearised at the constant acceleration is derived. Finally, the linear modal analysis 
can extract the modal parameters. The more FRFs extracted from the surface, the better the nonlinearity 
characterisation is. The method is very robust for smooth and non-smooth types of nonlinearities. These techniques 
can calculate the amplitude-varying modal parameters from linear FRFs. The following subsection will propose a 
new technique derived from the line-fit method using the Dobson formulation. Before doing that, some basics of 
modal analysis using the inverse FRF methods are provided. 

3.2 Inverse methods for modal analysis 

The inverse FRF methods are commonly called single DoF modal analysis [1], because an FRF is analysed using 
the SDoF theory. The convenience of the analysis is that the inverse of an FRF can be separated into the Real and 
Imaginary parts and plotted as a function of the excitation frequency. Around the resonance, these two functions are 
straight lines, as becomes evident by inspecting the equation (22), where 𝜔𝑟 is the natural frequency, 𝜂𝑟 is the 

damping loss factor of the 𝑟 mode shape. 

𝛼(𝜔) =
𝐴𝑟

𝜔𝑟
2–𝜔2+𝑖𝜁𝑟𝜔𝜔𝑟

=
𝐴𝑟

𝜔𝑟
2–𝜔2+𝑖𝜂𝑟𝜔𝑟

2  (22) 

The modal constant 𝐴𝑟   in equation (22) can be either a Real or complex number. When the constant is a Real 
number, equation (22) can be inverted and separated into its real and imaginary parts, which can be plotted as a 

function of the squared excitation frequency, ω2. The Real part of the equation (23) calculates the natural frequency. 
The Imaginary part of the same equation calculates either the loss factor or the damping ratio. 

𝛼(𝜔)−1 = 𝑅𝐸 + 𝐼𝑀 =
𝜔𝑟

2–𝜔2

𝐴𝑟
+ 𝑖

𝜂𝑟𝜔𝑟
2

𝐴𝑟
=

𝜔𝑟
2–𝜔2

𝐴𝑟
+ 𝑖

𝜁𝑟𝜔𝜔𝑟

𝐴𝑟
  (23) 
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When the constant 𝐴𝑟 = (𝐴𝑟 + 𝑖𝐵𝑟) is a complex number, the inverse can be calculated by multiplying the numerator 
and denominator by its complex and conjugate, thus leading to (24). From this point, the manuscript will refer to a 
hysteretic damping model coherent with the Dobson formulation discussed hereafter. 

𝛼(𝜔)−1 =
𝜔𝑟

2–𝜔2+𝑖𝜂𝑟𝜔𝑟
2

𝐴𝑟
=

(𝐴𝑟+𝐵𝑟𝜂𝑟)𝜔𝑟
2−𝐴𝑟𝜔2

𝐴𝑟
2+𝐵𝑟

2 + 𝑖
(𝐴𝑟𝜂𝑟+𝐵𝑟)𝜔𝑟

2−𝐵𝑟𝜔2

𝐴𝑟
2+𝐵𝑟

2   (24) 

The Real and Imaginary parts of the equation (24) are linear relationships as a function of 𝜔2, see equation (25).  
These two equations (25a&b) can be solved by calculating the coefficients and intercepts of the straight lines, which 
are used for evaluating the four modal properties (𝜔𝑟

2 𝜂𝑟 𝐴𝑟 𝐵𝑟). 

𝑅𝐸(𝛼(𝜔)−1) =
(𝐴𝑟+𝐵𝑟𝜂𝑟)𝜔𝑟

2−𝐴𝑟𝜔2

𝐴𝑟
2+𝐵𝑟

2 = 𝑚𝑅 + 𝑛𝑅𝜔2  (a) 

(25) 

𝐼𝑀(𝛼(𝜔)−1) =
(𝐴𝑟𝜂𝑟+𝐵𝑟)𝜔𝑟

2−𝐵𝑟𝜔2

𝐴𝑟
2+𝐵𝑟

2 = 𝑚𝐼 + 𝑛𝐼𝜔2  
(b) 

Although very simple and intuitive, this method is limited by the upper and lower residuals, which are not eliminated. 
The technique works for well-spaced resonances but fails as soon as resonances become closer in frequency. As 
opposed to the simple line fit, Dobson [13] developed a method based on better mathematical formulation, which 
could eliminate the effect of the residuals from the analysis. Even though the Dobson method is applied to SISO 
tests, Maia extended the same method to Single-Input Multiple-Output (SIMO) tests [23]. Recalling the drive-point 
FRF in equation (26), the linear frequency response is the total sum of the contribution of N modes (𝑟), or equally, 
the sum of a single mode (𝑟) with a constant residual. 

𝛼𝑖𝑖(𝜔) = ∑
𝐴𝑟 𝑖𝑖

𝜔𝑟
2–𝜔2+𝑖𝜂𝑟𝜔𝑟

2
𝑁
𝑟=1 =

𝐴𝑟 𝑖𝑖

𝜔𝑟
2–𝜔2+𝑖𝜂𝑟𝜔𝑟

2 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  (26) 

 
The Dobson method introduces a new variable, a pseudo excitation frequency, Ω, which is used to build a pseudo 

response frequency, 𝛼(Ω), near the resonance. The effect of residuals on the response of the mode (𝑟) is eliminated 
by subtracting the two transfer functions, as presented in equation (27).  

𝛼𝑖𝑖(𝜔) − 𝛼𝑖𝑖(Ω) =
𝐴𝑟+𝑖𝐵𝑟

𝜔𝑟
2–𝜔2+𝑖𝜂𝑟𝜔𝑟

2 −
𝐴𝑟+𝑖𝐵𝑟

𝜔𝑟
2–Ω2+𝑖𝜂𝑟𝜔𝑟

2 =  

(𝐴𝑟 + 𝑖𝐵𝑟) [
𝜔2−Ω2

(𝜔𝑟
2–𝜔2)(𝜔𝑟

2–Ω2)−𝜂𝑟
4𝜔𝑟

4+𝑖𝜂𝑟𝜔𝑟
2(2𝜔𝑟

2–𝜔2–Ω2)
]  

(27) 

 
By multiplying the numerator of equation (27) by the complex and conjugate of the modal constant and by taking the 
inverse, one can define a function delta Δ, as expressed in equation (28). 

Δ =
𝜔2−Ω2

𝛼𝑖𝑖(𝜔)−𝛼𝑖𝑖(Ω)
=

𝐴𝑟−𝑖𝐵𝑟

𝐴𝑟
2+𝐵𝑟

2 (𝜔𝑟
2– 𝜔2)(𝜔𝑟

2– Ω2) − 𝜂𝑟
4𝜔𝑟

4 + 𝑖𝜂𝑟𝜔𝑟
2(2𝜔𝑟

2– 𝜔2– Ω2)  (28) 

The “fixing” frequency, Ω, will sweep the entire excitation frequency vector 𝜔 , thus generating an array [Δ]𝑛×𝑛where 

the zeros obtained for Ω = 𝜔 will need to be eliminated. The next step is to separate the real and imaginary deltas 

and plot them as a function of the frequency squared, 𝜔2, in equation (28). 

𝑅𝐸(Δ) = 𝑚𝑅𝜔2 + 𝑐𝑅  

𝐼𝑀(Δ) = 𝑚𝐼𝜔2 + 𝑐𝐼  
(29) 

The angular coefficients are expressed in equation (30). 

𝑚𝑅 = −
1

𝐴𝑟
2+𝐵𝑟

2 [𝐴𝑟(𝜔𝑟
2– 𝛺2) + 𝐵𝑟𝜂𝑟𝜔𝑟

2]  

𝑚𝐼 = −
1

𝐴𝑟
2+𝐵𝑟

2 [𝐵𝑟(𝜔𝑟
2– 𝛺2) − 𝐴𝑟𝜂𝑟𝜔𝑟

2]  
(30) 

The angular coefficients from the plots (RE(), 2) and (IM(), 2) are selected and used for generating two new 
straight lines, as expressed in equation (31). Fig. 14 shows the implementation of the method. 

𝑚𝑅 = 𝑛𝑅𝛺2 + 𝑑𝑅  

𝑚𝐼 = 𝑛𝐼𝛺2 + 𝑑𝐼  
(31) 

One can solve the modal parameters using the relationships expressed in equation (32) by evaluating the two angular 
coefficients and intercepts of the two straight lines. 

𝑛𝑅 = −
(𝐴𝑟+𝐵𝑟𝜂𝑟)𝜔𝑟

2

𝐴𝑟
2+𝐵𝑟

2   

𝑑𝑅 =
𝐴𝑟

𝐴𝑟
2+𝐵𝑟

2  

(32) 
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𝑛𝐼 = −
(𝐴𝑟𝜂𝑟−𝐵𝑟)𝜔𝑟

2

𝐴𝑟
2+𝐵𝑟

2   

𝑑𝐼 = −
𝐵𝑟

𝐴𝑟
2+𝐵𝑟

2  

The four constants evaluated by equation (32) can be used for extracting the four modal 
parameters (𝜔𝑟

2 𝜂𝑟 𝐴𝑟 𝐵𝑟)−1. The Dobson method proved robust because the procedure performs the line fitting 
twice before the modal parameters are extracted.  

 

Fig. 14: Implementation of the Dobson method for a linear FRF. The slopes from the Real() and Imag() are selected and fitted 
again by straight lines 

3.3 Modified-Dobson method applied to nonlinear FRFs 

The previous subsection presented the Dobson method applied to a linear FRF. The author postulates that the same 
mathematical formulation can characterise nonlinear FRF and calculate the nonlinear modal parameters. First of all, 
a nonlinear FRF is plotted using the Nyquist circle. One shall think of a nonlinear FRF that starts from an underlying 
linear response, becoming increasingly nonlinear as one sweeps the Nyquist circle and then more and more linear 
as one approaches its origin again. The Nyquist points do not indeed form a circle, but it is possible to select three 
frequency points forming a Nyquist circle of an equivalent linear system. Assume that one takes two frequency points 
from the lowest amplitude of the FRF at which the vibration response can be considered linear. 

Moreover, these two points can be taken on either side of the max response peak. Now, one shall assume that 
a third point is taken at any desired amplitude of the receptance, thus forming a triplet of frequency points. This triplet 
can form a Nyquist circle, identifying an equivalent linear system for the selected receptance amplitude. By sweeping 
the third receptance point from the first to the second reference point of the FRF, one can observe how the modal 
parameters change from linear to nonlinear vibrations. It is like performing a continuation analysis using the sweeper 
as an observer.  

The data analysis is therefore carried out by selecting triplets of frequency responses at every iteration. These 
triplets are chosen as indicated in the previous paragraph. The two references are called the “fixers”, and these two 
will never change during the Dobson analysis. The third frequency point, forming the triplet, is called the “sweeper” 
because it will change for every triplet. Therefore, a selected response peak of an FRF made of 32 frequency points 
will be analysed 30 times, such that three frequency points are taken for each analysis, as expressed in equation 
(33). The sweeper will sweep the frequency points between the two references. 

(𝛼(𝜔1
𝑓𝑥𝑟

) 𝛼(𝜔𝑖
𝑠𝑤𝑝

) 𝛼(𝜔𝑁
𝑓𝑥𝑟

))
−1

  

𝑖 = 2, . . . , 𝑁 − 1  
(33) 

Therefore, the procedure is repeated from equation (26) up to (32) as often as needed for the sweeper to observe 
all the frequency points around the response peak. Fig. 15 shows a diagram of the modified-Dobson implementation 
for the analysis of a nonlinear FRF, and it becomes more apparent when Fig. 16 is also observed. 
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Fig. 15: Diagram of the modified-Dobson method 

Fig. 16(a) shows the Nyquist circle, while Fig. 16(b) shows the moduli of the FRFs. The two frequency points in 
green are the fixers, and these are at low amplitudes where the vibration response is still linear, as visible in Fig. 
16(b). The third frequency point is the sweeper, in red, which can be taken anywhere between the two references, 

and the modal parameters will be a function of the modulus of the receptance, |𝛼(𝜔𝑖
𝑠𝑤𝑝

)| = 𝛼𝑖
𝑠𝑤𝑝

. This triplet can be 

used to generate the Nyquist circle of an equivalent linear system at the amplitude of the sweeper. The Dobson 
method is now applied to the triplet to extract the modal parameters at that given amplitude, as the diagram in Fig. 
15 describes. 

 

 
a) Nyquist plots 

 
b) Modulus of linear and nonlinear FRF 

Fig. 16: Linear and nonlinear response functions, with fixers (green) and sweeper (red). 

Fig. 17 shows one step of the straight-line fitting, as expressed in equation (29) and where the coefficients are 
expressed in equation (30). The natural frequency can be evaluated as a function of the amplitude of the sweeper 
by repeating the process as many times as required. Fig. 17(a) shows the Real part of the delta, while Fig. 17(b) 
shows the Imaginary part. 
 

 

 

 

 

Select response peak Select frequency range 

Select two frequency points at the lowest 

amplitude, the fixers  

While loop (𝑖) 

Apply equations from (26) to (32) to the triplet 
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a) Real () of the first step analysis 

 
b) Imaginary () of the first step analysis 

Fig. 17: The Real and Imaginary  of the first step analysis of one triplet 

The red dot in Fig. 18 indicates the natural frequency of an equivalent linear system at the amplitude of the sweeper. 
Fig. 18 also shows the natural frequency curve where some points are circled in blue, indicating the natural frequency 
curve calculated when the sweeper goes beyond the response jump, from about 52 Hz up to 53 Hz. The modified-
Dobson method is a simple and effective technique that overcomes two main shortfalls identified in the Lin’s and the 
Zhang-Zang methods. The first one is limited when one of the two branches of the FRF is missed, as in the example 
presented in Fig. 18, because the algorithm needs two frequency points on either side of the max response peak of 
the FRF. The second method requires the measurement of a few nonlinear FRFs to extract linearised ones, which 
can be used to evaluate the modal parameters. The modified-Dobson method can extract the nonlinear modal 
parameters from a single FRF. The applicability of the modified-Dobson method is valid for well-separated 
resonances because equation (27) eliminates the residuals from neighbouring modes. Still, it fails when modes 
become closer and closer for two main reasons. For the first reason, the two references are taken at an amplitude 
with linear vibration. However, the closer the modes are, the higher the chances of including nonlinear residuals in 
frequency points taken as references. In the second one, the sweeper sweeps the frequency points from one fixer 
to the other, thus including different residuals at every iteration. The standard Dobson method equation (25) is 
calculated for as many frequency points as available in the analysis run, thus eliminating the residuals. In the present 
modified formulation, equation (27) is carried out for one triplet, which changes every time. The issue can be mitigated 
by including a technique called “interference criteria in modal identification” proposed by Maia [18]. 
 

 

Fig. 18: Nonlinear FRF with natural frequency in black. The red dot indicates the linearised natural frequency at the amplitude of 
the sweeper.  

Finally, having evaluated the modal parameters as a function of the amplitude of the sweeper, one shall convert 
those into polynomial functions. Table 3 reports the steps to generate the polynomial functions. 
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Table 3: Summary table for the modal properties 

Function of receptance Function of displacement Polynomial functions Equations 

𝜔𝑟(𝛼𝑖
𝑠𝑤𝑝

) 
𝜔𝑟(𝑋𝑖

𝑠𝑤𝑝
) 𝜔𝑟(𝑋) = 𝜔𝑛𝑋𝑛+. . . +𝜔1𝑋 + 𝜔0 

(34) 

𝜂𝑟(𝛼𝑖
𝑠𝑤𝑝

) 
𝜂𝑟(𝑋𝑖

𝑠𝑤𝑝
) 𝜂𝑟(𝑋) = 𝜂𝑛𝑋𝑛+. . . +𝜂1𝑋 + 𝜂0 

(35) 

𝐴𝑟(𝛼𝑖
𝑠𝑤𝑝

) 
𝐴𝑟(𝑋𝑖

𝑠𝑤𝑝
) 𝐴𝑟(𝑋) = 𝐴𝑛𝑋𝑛+. . . +𝐴1𝑋 + 𝐴0 

(36) 

𝐵𝑟(𝛼𝑖
𝑠𝑤𝑝

) 
𝐵𝑟(𝑋𝑖

𝑠𝑤𝑝
) 𝐵𝑟(𝑋) = 𝐵𝑛𝑋𝑛+. . . +𝐵1𝑋 + 𝐵0 

(37) 

Equation (38) can be used to generate the experimental nonlinear response frequency surface. 
It is worth mentioning that equation (38) is written as a function of displacement. However, it could be the same if the 
velocity or acceleration were measured, so one will deal with Mobility or Accelerance FRFs. The nonlinear frequency 
response surface will be coherent with the units used for the measurements, and conversions are always possible 
because the ratio is calculated with the fundamental excitation frequency. Equation (39) can be solved numerically, 

as indicated in section 2.4, to find the nonlinear frequencies, 𝜔𝑁𝐿, of the nonlinear FRF. 
The following section will demonstrate that the nonlinear FRF evaluated from the synthesised surface can be 
compared to the experimental one. The |�̄�(𝜔, 𝑋)| comes from the force surface used in section 2 to intercept the 
nonlinear frequency response surface. 

4 Experimental validation 

This section will describe the experimental validation of the modified-Dobson method and the application of the new 
method for extracting nonlinear FRFs. The validation is developed in four stages. The first experimental validation 
(setup-1) will verify that the proposed modified-Dobson method produces the same results as the Zhang-Zang 
method. The second and third experimental validations will verify that the new analysis method can calculate 
nonlinear FRFs once the nonlinear modal parameters are identified. These parameters are used to regenerate FRFs 
by the equation (38) to build the NFRS, from which the nonlinear FRFs are calculated. The final case is a blind 
analysis for which the author does not know the test article, measurement setup, and acquisition. 

As mentioned earlier, equation (38) is a receptance model that converts to Mobility or Accelerance depending on 
the test data. Three test setups, built over the past ten years for different research reasons and applications, are 
used for this validation exercise.  

4.1 Validation of the modified-Dobson method using setup-1 

The experiment for validating the modified-Dobson method is made of a simple aluminium semicircle structure with 
two extremes connected by two strips of metals. The test structure is mounted by a load cell to the shaker head, 
while an accelerometer is connected to the side of the semicircle. Fig. 19 shows the test structure and the setup with 
the shaker and sensors. The mode of vibration selected for this experiment is at approximately 326 Hz, which brings 
the two extreme points of the arch close and apart, thus forcing the thin metal strips into nonlinear vibrations. 

𝛼(𝜔, 𝑋) =
𝐴𝑟 (𝑋)

𝜔𝑟
2(𝑋)–𝜔2+𝑖𝜂𝑟(𝑋)𝜔𝑟

2(𝑋)
  (38) 

|�̄�(𝜔, 𝑋)| |(
𝐴𝑟 (𝑋)

𝜔𝑟
2(𝑋)–𝜔𝑁𝐿

2 +𝑖𝜂𝑟(𝑋)𝜔𝑟
2(𝑋)

)
−1

| = 1  (39) 
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Fig. 19: Test structure for validation of the modified-Dobson method. 

A custom-made acquisition panel was developed to measure the acceleration and force signals and calculate the 
transfer functions. The control panel stepped over the frequency range of interest using a drive signal for the shaker, 
shaped with a cosine tapered window. Therefore, every sinewave had a smooth ramp-up, steady state, and a smooth 
ramp-down signal. It avoided harsh transients from one frequency to the next one. An example of a response signal 
is available in Appendix A2, Fig. A34, which shows an example of the sinewaves measured by the accelerometer 
and force sensors, and where in red, the portion of the steady state signal is analysed. The test was conducted at 
ten drive voltages from 0.1V up to 1V, with a 0.1V increment.  

The Zhang-Zang method was applied to the acceleration and force surfaces. The acceleration surface was cut 
by a plane at constant acceleration, and the voltage axis found the corresponding forces shared by the two surfaces. 
The standard Dobson method calculated and processed a set of linearised FRFs to extract the modal parameters. 
The modified-Dobson method processed the nonlinear FRFs generated using the steady state part of the acquired 
signals to extract amplitude-dependent modal parameters, as shown in Fig. 20. Fig. 21 and Fig. 22 show the natural 
frequency and damping curves for the stepwise and modified-Dobson analyses. The Zhang-Zang method confirms 
the results of the modified-Dobson method.  

 

Fig. 20: Two nonlinear FRFs processed by the modified-Dobson method 
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Fig. 21: Natural frequency curves compare modified-
Dobson and stepwise analysis methods (note these are 

expressed in acceleration (g)) 

 

Fig. 22: Damping curves compare modified-Dobson and 
stepwise analysis methods 

 

4.2 Validation of the new method for setup-2: a dumbbell setup 

This first stage of the validation of the new method is based on an experiment carried out on a dumbbell setup with 
a shaker, as shown in Fig. 23. Most details are reported in [25]. This section will resume the central aspect of that 
publication. The test structure was designed to have two steel masses weighing approximately 4 kg. The lap joint 
comprises two square aluminium sections, each connected to the mass with a single 10/32 UNF bolt and coupled to 
each other with two M5 bolts. Two torque levels of 6 Nm and 10 Nm were applied to the bolts to track the behaviour 
differences. The structure was instrumented with four single-axis accelerometers placed at the ends of the cylinders, 
and a force gauge was installed in the axial direction. The dumbbell was then supported by two belts and suspended 
in free-free conditions by elastic cords. 

The test regards the stepped sine excitation, which was carried out at pure tone excitation in a frequency range 
between 1200 [Hz] and 1360 [Hz] with a frequency resolution of 0.2 [Hz]. The test was carried out by controlling the 
excitation force, which was kept constant over the frequency range. These campaigns used several excitation forces,  
measured for a tightening torque of 6 Nm and 10 Nm, respectively. The measured FRFs showed an evident distortion 
of the response curves as the excitation force is increased, demonstrating the amplitude dependency of this nonlinear 
phenomenon under study. Fig. 24 shows an example of FRFs measured at various excitation forces for a tightening 
torque 10 Nm. The FRF measured at 25 N is processed by the modified-Dobson method. The amplitude-dependent 
modal parameters were then used to generate the surface and calculate nonlinear FRFs. Fig. 25 shows the black 
nonlinear FRF measured at 25 N, with the natural frequency curve in red. Polynomials fitted the four nonlinear modal 

parameters as a function of the modulus of the Accelerance of the sweeeper, |𝐴(𝜔)| = �̄�. Table 4 reports the 
polynomial functions used for generating the surface, recalling that those polynomials were converted to acceleration 
functions. The 3D surface plot is made by Accelerance (g/N), Frequency (Hz), Acceleration (g). 
 
 
 
 
 
 

 

Fig. 23: Dumbbell test setup 
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Table 4 Amplitude-dependent modal parameters in the form of polynomial functions 

Modal parameters Polynomial functions Equations 

Natural Frequency (Hz) 𝜔𝑟(�̄�) = 3.067 ∗ �̄�2 − 24.52 ∗ �̄� + 1265.1  (40) 

Damping loss factor (-) 𝜂𝑟(�̄�) = 0.0006 ∗ �̄� + 0.0082  (41) 

Modal constant - Real RE ( 𝐴𝑟 (�̄�)) = −33975 ∗ �̄�2 − 136804 ∗ �̄� + 891077  (42) 

Modal constant - Imaginary IM ( 𝐴𝑟 (�̄�)) = 42430 ∗ �̄� − 26831  (43) 

 

Fig. 24: Nonlinear FRFs at various force levels for 10Nm torque 

 

Fig. 25: Nonlinear FRF at 25 N in black with the natural frequency curve in red 

The surface is graphically similar to the one shown in Fig. 4 and is not reproduced here. The goal is to compare the 
experimental FRF at 25 N force with the regenerated one extracted from the NFR surface. Furthermore, it is expected 
that by changing the force magnitude (and so the inclination of the force plane), one can extract the regenerated 
FRFs of 15 N and 7 N force. Fig. 26 shows the targeted FRF at 25 N measured and regenerated FRFs in red and 
black, respectively. The overlap is rather remarkable. Moreover, the figure also shows the overlay between the FRFs 
at 15 N (blue) and 7 N (green) and the regenerated nonlinear ones. Even for these two cases, the regenerated and 
measured ones overlay well. 
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Fig. 26: Measured and regenerated nonlinear FRFs. 

One final remark: the constant term of  𝜔𝑟, equation (40), is not the natural frequency of the underlying linear system 
because the FRF is still mildly nonlinear. A much lower excitation force is required for extracting the linear natural 
frequency curve. The modified-Dobson observes the change of modal parameters from the lowest vibration points 
of the FRF, which are not always as low as desired for extracting the linear parameters. 

4.3 Validation of the new method using setup-3: a composite blade 

The third validation stage was carried out using FRF data measured from cantilever blades made of composite 
materials. The work was published in [26], and more details can be found in that manuscript. Here, a summary is 
given to the reader to contextualise the type of experiments executed on such test structures. The blades were 
designed using different layup configurations to enhance the nonlinear vibration response. Three different stacking 
sequences of composite materials were selected, and these were a unidirectional named (0-0), a cross-ply named 
(0-90) and a cross-ply named (+45, -45). The first three modes were investigated for each configuration. The 
measurements of the FRFs were carried out using a contactless excitation system called the Pulsed Air Jet system, 
which was developed by the author of this paper with the support of Rolls-Royce plc. [27] . 

The excitation force was exerted onto the blade by jets of compressed air sampled by a spinning perforated disc. 
The rotational speed of the disc could be adjusted, and the jets’ rate could be yielded to excite the resonances of the 
blade. The blade was mounted inside a mass block of about 40kg, where another smaller mass block was pressed 
utilising two large bolts, the root of the blade, as shown in Fig. 27. The nozzle of the Pulsed Air Jet was directed to 
the corner of the blade. This exciter is contactless, meaning the excitation force exerted by the compressed air jet 
cannot be measured. An attempt was made to calibrate the measured pressure at the nozzle with a load cell, but the 
results were not accurate. Therefore, the FRFs presented in this paper were scaled by an arbitrary constant unit 
force. A single-point laser vibrometer was used to measure the response at the blade's top-left (or top-right corner), 
as shown by the reflective tapes in Fig. 27. The FRFs were measured under steady state response, which meant 
changing the rotational speed step-by-step, with an elapsed time to settle the transient response. The acquisitions 
of the steady state signals were triggered by the one-pulse per revolution of an encoder mounted on the shaft of the 
rotor used to measure rotational speed. Such an acquisition arrangement allowed for measuring the modulus and 
phase of each spectral frequency point. The excitation level was changed manually by opening the compressed 
airflow's inlet valve to the exciter system's plenum chamber. Hence, this manual operation is another reason for 
scaling the force arbitrarily, set to unity for convenience.  

Two examples of FRFs are presented here. The first one was measured from a blade made of cross-ply laminate, 
where the second bending mode of the blade was measured. The FRF was processed by the modified-Dobson 
method, and the nonlinear modal parameters were fitted by the polynomials function of the mobility FRF modulus 
|𝑉(𝜔)| = �̄�, as shown in Table 5. 
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Fig. 27: Blade mounted onto a block with the nozzle of the exciter at the top-left corner 

Fig. 28 shows the measured FRF (grey) with the frequency curve extracted by the modified-Dobson method (red) 
and the regenerated nonlinear FRF (black). The comparison is remarkable, so much so that the frequency curve 
could be seen continuing up to the peak displacement of the regenerated nonlinear FRF. 

Table 5: Amplitude-dependent modal parameters (0-90) second bending resonance 

Modal parameters Polynomial functions Equations 

Natural Frequency (Hz) 𝜔𝑟(�̄�) = −2 ∗ 108 ∗ �̄�3 + 748972 ∗ �̄�2 − 4057.6 ∗ �̄� + 286.2  (44) 

Damping loss factor (-) 𝜂𝑟(�̄�) = −1378 ∗ �̄�2 + 5.3715 ∗ �̄� + 0.0124  (45) 

Modal constant - Real  RE ( 𝐴𝑟 (�̄�)) = −13615 ∗ �̄� + 17.522  (46) 

Modal constant - Imaginary IM ( 𝐴𝑟 (�̄�)) = −4 ∗ 108 ∗ �̄�3 − 1 ∗ 107 ∗ �̄�2 + 31053 ∗ �̄� + 175.6  (47) 

 

 

Fig. 28: Second bending mode of the composite blade (0-90). 

 
Given the accurate regeneration of the nonlinear FRF, an attempt to extend the amplitude range of the previous 
regeneration was yielded. Therefore, the surface FRF and a new force surface were simulated to extract a new 
nonlinear FRF. The nonlinear frequency response surface is not reproduced because finding a suitable perspective 
to appreciate how the surface was shaped was impossible. Fig. 29 shows a new FRF presenting the same curve 
seen in Fig. 28 with an additional separate loop resembling an isola [28]. That feature might be a bias, or not, of the 
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polynomial function fitting the damping curve, which simulated a decrease of damping at higher vibration amplitudes. 
However, this matter was not investigated further. 
 

 

Fig. 29: Simulation with an extended amplitude range. 

The last example describes the response measured from a composite blade made of a unidirectional laminate and 
vibrated at its first torsional mode. The experiment, the application of the modified-Dobson method, and the 
generation of the surface are the same as discussed earlier. Table 6 shows the polynomial functions used for 
generating the surface. 

Table 6: Amplitude-dependent modal parameters (0-0) first torsional resonance 

Modal parameters Polynomial functions Equations 

Natural Frequency (Hz) 𝜔𝑟(�̄�) = −2 ∗ 109 ∗ �̄�3 + 5 ∗ 106 ∗ �̄�2 − 1191.7 ∗ �̄� + 306.24  (48) 

Damping loss factor (-) 𝜂𝑟(�̄�) = 0.016  (49) 

Modal constant – Real RE ( 𝐴𝑟 (�̄�)) = 6 ∗ 109 ∗ �̄�3 − 1 ∗ 107 ∗ �̄�2 + 889.38 ∗ �̄� − 123.46  (50) 

Modal constant - Imaginary IM ( 𝐴𝑟 (�̄�)) = −8 ∗ 109 ∗ 𝛼𝑉
3 + 2 ∗ 107 ∗ 𝛼𝑉

2 − 5098.2 ∗ 𝛼 + 35.035  (51) 

 
The damping was constant over the vibration amplitude analysed. Its value had to be slightly adjusted from 0.018 to 
0.016 to match the peak amplitude of the regenerated FRF with the experimental one. Fig. 30 shows the overlay of 
the experimental and regenerated FRFs, including the experimental natural frequency curve. The overlay shows a 
frequency offset caused by the natural frequency curve estimation. This divergence is caused by the selection of the 
frequency points swept by the sweeper, which were from a frequency at approx. 307 Hz up to 330 Hz. The whole 
frequency response curve was not used because the lower branch did not produce coherent modal parameters. 
Unfortunately, no alternative FRF was inspected for such typical S-shaped behaviour. Nonetheless, the overlay 
shows very similar shapes. 
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Fig. 30: Measured (grey) and regenerated (black) nonlinear FRFs. 

4.4 Blind analysis cases 

The final example is the analysis carried out on the test data of unknown components. The test data were received 
as transfer functions. There was no indication of the type of excitation signal used, nor was the vibration amplitude 
level reached to generate the nonlinear test data. The analysis followed the same procedure described in the 
previous examples. The modified-Dobson method was used for the sweep-up and sweep-down test data, and 
polynomial functions were evaluated for the nonlinear modal parameters. The test data were assumed Mobility 
transfer functions by inspecting the Nyquist circle. The polynomial functions of the modal properties are not reported 
in this section. Fig. 31 shows the frequency response measured from high to low excitation frequency in red, while 
the blue curves show it measured the other way around. The regenerated FRFs were obtained from the nonlinear 
modal analyses of the red and blue curves, respectively. The regenerated curves show almost an identical profile; 
the one generated from the “measured – sweep up” roll off earlier than the other one. Both regenerated nonlinear 
responses do not sufficiently capture the region of the unstable response, which is the frequency band between the 
red and blue curves. The regenerated FRFs tend to fold but not sufficiently enough. This inaccuracy could be an 
issue with the modal analysis and regeneration or measurement bias. It is difficult to judge, given the blind analysis 
exercise. 

 

Fig. 31: Measured (blue and red) and regenerated (grey and black) nonlinear FRFs. 

Fig. 32 shows another example, where both measured (red) and regenerated (black) are overlaid to verify the 
consistency of the modal parameters derived by the modified-Dobson method. Both examples demonstrate that test 
data, probably archived, can now be processed and verified.  
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Fig. 32: Measured and regenerated frequency responses 

5 Discussions 

In the introduction, the manuscript postulated the following hypothesis: A nonlinear frequency response surface, 
generated by a waterfall of linear FRFs, is the solution space of nonlinear FRFs, which can be evaluated by any 
force plane cutting across the response surface. The first scientific challenge to address was to develop a new 
mathematical formulation to (i) analyse a nonlinear frequency response surface and (ii) calculate nonlinear frequency 
response functions. ONE and TWO-DoF response models were used to explain how the NFRS could be generated 
using linear frequency response functions, each starting with a different equivalent stiffness. Although a simple 
ground nonlinearity was used, the theoretical formulation allowed us to understand that any nonlinear FRFs could 
be evaluated from that surface. The nonlinear FRF is the result of a geometrical intersection between two surfaces.  
This calculation is simple and essential for the following challenge: when the NFRS is generated using nonlinear 
modal parameters extracted from the measurements. Even though the proposed analysis presents some similarities 
with the ones proposed by Özgüven [9], Schwartz [29] and Scheel  [30], the main difference lies in using linear FRFs 
to generate a nonlinear frequency response surface.  

The second scientific challenge was to develop a new modal analysis tool to calculate amplitude-dependent 
modal parameters reformulating Dobson line-fit method. The modified-Dobson formulation allowed the calculation of 
the nonlinear modal parameters. The reformulation of the line-fit method allowed the deconstruction of a nonlinear 
FRF in many linear ones by using a triplet of frequency points at the time. A significant benefit was given by the 
sweeper, which swept the response frequency even when one branch of the response was missing. The 
experimental analysis indicated that a well-isolated resonance could be identified, and nonlinear FRFs could be 
regenerated and compared to the experimental ones. The challenge is when the modes become closer, whereby 
the current formulation might fail to return reliable nonlinear modal parameters. It was already stated in section 3.3 
that the close modes analysis was addressed for the linear modal analysis, and a similar approach can be extended 
to the nonlinear one. This new modal analysis method is proven for single-input, single-output (SISO) testing and 
could be extended to single-input, multi-output (SIMO) tests. The convenience of this method is analyse FRFs 
measured with an open loop control scheme, which can be considered the most straightforward testing approach. A 
blind analysis was eventually carried out to validate three steps. The first was to use the modified-Dobson method 
to calculate the nonlinear modal data. The second step was to use those parameters to generate the NFRS. The 
third and final step was to evaluate nonlinear FRFs to compare with the measured ones.  

The proposed new analysis method fills a gap in the modal analysis practice when test data are generated but 
cannot be analysed in any other way. Equally, the proposed method is not exclusive because it was applied to test 
data generated by the force-controlled using the closed-loop technique in section 4.2. 

 

6 Conclusions 

The primary objective of this manuscript was to enable engineers to analyse, regenerate and compare nonlinear 
FRFs, following a similar process established for linear modal analysis. This goal was achieved for FRFs measured 
under steady-state vibrations, smooth nonlinearities and well-separated modes. These conditions are not always 
possible for mechanical systems. Nonetheless, it was essential to (i) establish a new analytical framework for 
processing nonlinear frequency responses, (ii) regenerate, and (iii) compare them. The manuscript presented a 
modified-Dobson method for extracting nonlinear modal parameters. The experimental validation proves the new 
analysis method is user-friendly, time-efficient and reliable, producing good agreement between measured and 
synthesised nonlinear FRFs. 
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APPENDIX 
 

This appendix provides supporting materials: 
1- A diagram to implement the new analysis method 
2- Example of time domain data used for section 4.1. 

 

A1 Block diagram to operate the new analysis method 
The block diagram presented in Fig. A33 shows a stepwise approach of the proposed new analysis method. 
Note that the look-up table requires the parameters’ curves to create much finer steps than an analysis can 
typically produce. Hence, many interpolation points can be created between the ones identified by the modified-
Dobson method. Remembering that the look-up table is also limited to the maximum vibration amplitude 
analysed is also good, for this case, the range cannot extended as it is possible for polynomial functions. 

 

Fig. A33 Block diagram for the application of the new analysis method. 

EMA 
FEM 

Stress model 

Generate a surface 
using equation (36) 

Modal parameters as functions of 
displacement or velocity or acceleration 

Force-Displacement 
relationship 

Polynomial-fitting 

Look-up table 

Generate a constant amplitude force plane to 
calculate the amplitudes of the frequency 
response at every amplitude of vibration. 

Apply equation (37) 
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A2 Validation of the modified-Dobson method 

 

Fig. A34: An example of a signal measured by the accelerometer and force sensors. In red, the steady state part is 
analysed 

 

 


