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Abstract
This paper addresses the problem of optimal tuning of a tuned mass damper (TMD) attached to a
complex structure that is dynamically excited by its base. It proposes new analytical formulae which
are based on the reduction of the multiple-degree-of-freedom (MDOF) model of the host-structure into
an equivalent single-degree-of-freedom (SDOF) model. As it has been recognized in the literature that
the traditional single mode approximation used to perform this reduction is not valid for base-excited
systems, we propose an improved version that leads to the definition of two mass ratios instead of one
in the traditional approach. Taking into account this new mass ratio, the equal peak method is used to
derive analytically the optimal values of stiffness and damping of the TMD for a given mass ratio of the
device. The introduction of a second mass ratio leads to the existence of two sets of equations for the
optimal parameters, depending on the relative values of the two mass ratios. It is shown, however, that
only the first set of equations is of practical use. The application of these new tuning rules is illustrated
using a MDOF model of a high-rise building. It demonstrates the efficiency of the approach when the
first mode of vibration is targeted. When higher modes are of interest, modal interactions are important,
which cause a slight to moderate unbalance of the peaks.
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1 Introduction

Tuned mass dampers (TMDs) are being installed extensively across the globe on civil infrastructure such as buildings,
bridges and footbridges in order to mitigate the effects of dynamic excitations due to wind, earthquake or pedestrians.
In order for these devices to be efficient, it is essential to properly tune their frequency and damping to target the
mode of interest.

There is a huge literature available on the optimization of TMDs, and several notable reviews have also been
published on the topic [1, 2, 3]. The TMD parameters (stiffness and damping) can be optimized in the time domain or
in the frequency domain. In most cases, the information of the frequency content of the excitation is available rather
than the exact time history. Frequency domain approaches are therefore more useful and popular.

Some popular frequency domain approaches are the equal peak method [4] and the variance minimization
method [5]. On the other hand, the energy method [6] and the area ratio method [7] are some popular time-domain
approaches. Out of all these methods, the most widely used one is the equal peak method, which is a frequency
domain approach and provides simple analytical expressions for the optimal tuning ratio and optimal damping ratio as
a function of the chosen mass ratio between the TMD and the host structure.
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Although the equal-peak approach does not provide the exact minimization of the H∞-norm of the frequency
response function, it has been shown extensively in previous studies to be a very good approximation for all the
practical cases considering undamped host-systems [8]. It was also shown by Ghosh et al. in [9] that this approach,
also called the fixed-point theory, works reasonably well even for moderately damped (1-3% damping ratio) host
systems. Moreover, analytical expressions can be obtained, including the damping of the host-system, as in [9, 10].
Of course, if the damping in the host-structure is more important, such an approach will fail, but on the other hand, the
addition of a TMD to an already heavily damped structure is probably not of much practical interest.

The aforementioned methods provide analytical expressions of the optimal frequency ratio and damping values for
the case of a TMD attached to the host system modelled as a simple mass-spring system, which of course limits their
applicability to real-life structures where a more complex model is often needed. In [11], the authors have generalized
the work of [12] and discussed the idea of optimizing the TMD attached to multi-degree-of-freedom (MDOF) or
continuous systems by converting them into an equivalent SDOF system corresponding to a particular mode of
interest (usually the dominant/first mode of vibration). This approach, also called the single-mode approximation,
is justified by the fact that the TMD has a narrow-band effect around the natural frequency of interest where the
response is dominated by the corresponding mode, and assumes that the modes are sufficiently spaced in frequency.

In [13], Warburton demonstrated the applicability of this equivalence approach for a variety of practical cases
where the MDOF host system is subjected to harmonic or white-noise excitations, the input force is acting directly on
the host-system, and the absolute responses (displacement, velocity, and acceleration) are minimized. The authors
could however not demonstrate such an equivalence when the MDOF host system is subjected to a base excitation
and relative responses are the target of the optimization.

In their work, it was clearly stated that the analogy to obtain the equivalent SDOF is not applicable for this
case. This particular case is however of special importance in earthquake engineering where relative displacement
responses are of interest and are the quantity to be minimized using the TMD devices. It is important to highlight
the fact that despite the inadequacy of the equivalence approach for base excited structures, it is often used in the
literature (see, for example, [14]).

The above literature review shows that simple analytical formulae can be used to obtain the optimal parameters
of TMDs only when the MDOF system is subjected to forces on the host-structure and the modes are sufficiently
spaced in frequency. In this case, the MDOF host system can be replaced by an SDOF system using the traditional
single-mode approximation. When base excitation is applied, this approach, although often used in the literature, is
not correct. This is the main motivation for developing a new technique in the present paper.

The paper is organized as follows: in Section 2, the equations of motion for an MDOF host-system excited through
its base are established and reduced to an SDOF system using a single-mode approximation. The equation of motion
is extended taking into account the addition of the TMD, and the non-dimensional transfer function for the host-system
is given as a function of two mass ratios µ and µ1.

Then in Section 3, based on this transfer function, the equal peak approach is used to derive the analytical
formulae for optimal stiffness and damping of the TMD for base-excited systems. Due to the existence of three and
not two invariant points for the transfer function for certain values of the set of parameters (µ, µ1), a discussion is
presented on the adequate choice of the two invariant points to be set at equal height. This results in two sets of
equations to be used in different regions of the parameter space of (µ, µ1), and is illustrated by plotting the transfer
functions for different values of µ and µ1.

A practical example of the tuning of a TMD starting from the MDOF model of a high-rise building excited by its
base is presented in Section 4 in order to illustrate the improvements of the new formulae compared to the traditional
equations derived by Warburton. The paper finishes with conclusions and outlooks in Section 5. The detailed complex
calculations for the optimal damping ratio are given in Annex A & B.

2 Single-mode approximation for base-excited systems

As explained in the introduction, single-mode approximation is traditionally used to simplify the dynamics of the
host-system and obtain analytical expressions of tuning rules for TMDs. Complex structures typically exhibit a rich
dynamic behavior where several of their mode shapes can be excited by external sources. The TMD is an SDOF
resonant system which, when coupled to the host structure will only be efficient in a narrow frequency band. Its
application is therefore only pertinent if one wishes to increase the damping of the host structure around one chosen
resonance frequency, as it will have no effect on the dynamics of the host-system at other frequencies. With this
in mind, it becomes pertinent, for the purpose of optimally tuning the TMD, to restrict the dynamics of the complex
MDOF system to an equivalent SDOF system where only one mode is retained.
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It is important however to understand that proper tuning of the TMD can only be achieved if the above conditions
are met. As already stated, if the modal density is high around the mode one wishes to damp, the single-mode
approximation cannot be used [11]. This paper focuses on the specific case of base excitation. Because of the nature
of this excitation, and as will be shown further in Section 4 , the level of excitation of the modes strongly decreases
with the frequency so that in general, only the first mode is dominant in the response. In applications therefore, only
the first mode shape typically needs to be damped, so that the use of a TMD is pertinent, even if the frequency content
of the excitation (such as earthquakes) extends over a number of mode shapes.

One also needs to understand that the single-mode approximation using the first mode of the structure is relevant
for the tuning of the TMD targeted to this specific mode, but that the model is not aimed at representing the full
dynamics of the system under random or pseudo-random excitation.

2.1 Equations of motion for a base-excited system using single mode approximation

Consider a complex structure excited by its base (Fig. 1). The discrete equations of motion of the system without the
TMD can be obtained using the finite element method giving the mass, damping, and stiffness matrices denoted by
[M], [C], and [K], respectively.

Complex structure

equipped with a TMD

Equivalent problem 

for TMD 

optimization

Equivalent SDOF system 

equipped with a TMD

Fig. 1: MDOF system and corresponding equivalent SDOF system equipped with a TMD

In the case of base excitation (e.g., seismic motion), a common approach is to write the equations of motion in
terms of relative displacements, which are also the quantities of interest for design. In this case, however, and as
highlighted by Warburton in [13], the traditional single-mode approximation cannot be applied, because, as will be
demonstrated below, it would lead to an inconsistency in the transfer function to be minimized. The author in [13] did
not however propose a solution to this problem, and the aim of this paper is to solve this unresolved issue.

Let the complex structure shown in Fig. 1 be subjected to a horizontal ground acceleration Ẍo. The governing
equations of motion can be written as:

[M]{Ẍr} + [C]{Ẋr} + [K]{Xr} = −[M]{T }Ẍo (1)

where, {Xr} is the N × 1 vector of relative displacements of the system and is equal to {X} − Xo{T }. Here, {T } is a
Nx1 vector with ones at the DOFs corresponding to the imposed displacement (location and direction) and zeros
everywhere else. The equivalent force vector −[M]{T }Ẍo represents the base-excitation. Projection in the modal
basis leads to a set of decoupled equations of the type

ηiz̈ri + 2ξiηiωiżri + ηiω
2
i zri = −{ψi}

T [M]{T }Ẍo (2)
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where ηi is the modal mass of the ith mode (ηi = {ψi}
T [M]{ψi}, where {ψi} is ith mode shape vector), ξi and ωi are

the modal damping ratio and natural angular frequency of the ith mode.

As discussed in the introduction of Section 2, it is pertinent to only retain the mode to which the TMD will be tuned,
if there are no other modes which are close in frequency. For the sake of generality and although we stated that in
practice only the first mode is of interest for base-excited systems, we restrict the equations of motion to the ith mode.
The relative displacement response at the kth DOF when only the ith mode is retained is then xrik = zri(t)ψik, where ψik

represents the amplitude of the ith mode shape at the kth DOF.

Thus, substituting zri = xrik/ψik in Eq. 2 leads to

meq ẍrik + ceq ẋrik + keqxrik = −m̃eqẌo (3)

where,

meq = ηi/ψ
2
ik (4)

keq = ηiω
2
i /ψ

2
ik (5)

ceq = 2ηiξiωi/ψ
2
ik (6)

which are traditionally obtained with the single-mode approximation, and

m̃eq =
(
{ψi}

T [M]{T }
)
/ψik (7)

We note that Eq. 3 differs from the equation of motion of an SDOF system excited by the base, for which the
excitation term would be −meqẌo and for which analytical expressions have been established in [13], for the optimal
tuning of TMDs considering base motion and relative displacements (case 5 in [13]).

This inconsistency, preventing the use of these analytical formulae for general MDOF systems using the single-
mode approximation in the case of base excitation, was already identified in [13] where it was shown that in order to
use the analogy, one would need to have meq = m̃eq (Eqs. (35) and (36) in Appendix III of [13]), which is most often
not the case for general MDOF systems. We propose hereafter, instead of trying using the analogy, to develop new
tuning rules taking into account the fact that meq , m̃eq.

If a TMD is attached to the system at the kth DOF to alleviate the response in the ith mode of vibration, it introduces
an additional term fd = {ψi}

T {Fd}/ψik in the equation of motion where Fd is the force due to the TMD in physical
coordinates.

The equation of motion becomes

meq ẍrik + ceq ẋrik + keqxrik = −m̃eqẌo + fd (8)

Eq. 8 shows that on the contrary to the case where the host-system is a mass-spring system, the masses on the left
and right of the equality sign are different. In addition to the traditional mass ratio µ = md/meq (where md is the mass
of the TMD), we need to introduce a second mass ratio µ1 = m̃eq/meq. It is clear that in the determination of optimal
TMD parameters (stiffness kd and damping cd), these two mass-ratios will play a crucial role.

In summary, the process of reducing the MDOF host system to an SDOF system for base excitation shows that
the masses on the left and right of the equality sign may be different in the resulting SDOF equation. As of now, there
is no analytical solution in the literature to find the optimal parameters for such a system with two different mass ratios.
The next sections are therefore devoted to the derivation of such optimal parameters as a function of µ and µ1.

2.2 Dimensionless transfer function

The method we propose to apply to find the optimal parameters of the TMD when the host-system is a complex
structure under base excitation is the equal peak method, which is generally derived based on the equations of motion
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written in the frequency domain. It is a common practice to write these equations in a dimensionless form before
applying the method in order to obtain general formulae which do not depend on specific parameters of the model.
The transfer function resulting from Eq. 8 is therefore derived in its non-dimensional form in the frequency domain
below.

The equations of motion of the equivalent SDOF host-system with a TMD attached are given by Eq. 9 and reduce
to Eq. 10 in the frequency domain.[

meq 0
0 md

] {
ẍrik

ẍrd

}
+

[
ceq + cd −cd

−cd cd

] {
ẋrik

ẋrd

}
+

[
keq + kd −kd

−kd kd

] {
xrik

xrd

}
= −

[
m̃eq 0
0 md

] {
1
1

}
Ẍo (9)

[
−ω2meq + jω(ceq + cd) + keq + kd − jωcd − kd

− jωcd − kd −ω2md + jωcd + kd

] {
Xrik(ω)
Xrd(ω)

}
= ω2

{
m̃eq

md

}
Xo(ω) (10)

xrd is the relative displacement of the TMD with respect to the imposed base displacement, j is the imaginary number.

The transfer function hed(ω), giving the ratio of the relative displacement of the host-structure at the location of the
TMD and the imposed acceleration at the base (including the TMD) can be written as:

hed(ω) =
Xrik(ω)
ω2Xo(ω)

=
m̃eq(−mdω

2 + kd + jωcd) + md(kd + jωcd)
(−mdω2 + kd + jωcd)(−ω2meq + kd + keq + jω(ceq + cd)) − (kd + jωcd)2 (11)

Now, using the two mass-ratios (µ and µ1), frequency ratio ( f = ωd/ωn, where ωd =
√

kd/md and ωn =
√

keq/meq),
damping ratio (r = cd/(2mdωd)), and assuming that the host-system is lightly damped (ceq ≈ 0), Eq. 11 leads to the
dimensionless transfer function Hed(g) as a function of the normalized frequency (g = ω/ωn):

Hed(g) = ω2
nhed(ω) =

µ f 2 + µ1( f 2 − g2) + 2 jg f r(µ + µ1)
(1 − g2)( f 2 − g2) − µg2 f 2 − 2 jg f r(g2 − 1 + µg2)

(12)

To obtain the optimal TMD parameters f and r, the approach consists in minimizing some norm of Hed(g). The more
common approaches are to minimize the H∞ or the H2-norm. The later is best suited when the excitation is a random
noise, and its aim is to minimize the variance of the output quantity of interest (here the relative displacement), while
the former is aimed at minimizing the maximum of the transfer function for harmonic excitation. It is important to
understand that real excitations, such as seismic activity are neither a pure random noise, nor an harmonic excitation.
As input spectra for earthquakes vary with the region considered in the world, as well as the type of soil, analytical
solutions are difficult to generalize.

The authors understand that the choice made in this paper to work with the H∞-norm is debatable, so that one
has to understand the optimality of the parameters only in the sense of the norm considered, and with the idea in
mind that the aim here is to decrease the amplitude of the main resonant mode, for which an H∞ approach, leading
to equal peaks of reduced amplitude, is judged appropriate. The approach we follow is therefore to minimize the
maximum of Y = |Hed(g)|:

Y =

√
(µ f 2 + µ1( f 2 − g2))2 + (2g f r(µ + µ1))2

((1 − g2)( f 2 − g2) − µg2 f 2)2 + (2g f r(g2 − 1 + µg2))2 (13)

Note that the case where µ1 = 1 corresponds to the case where the host system is a mass-spring SDOF system. In
this case, Eq. 13 reduces to Eq. 14 which is the same as the one obtained by Tsai and Lin [15] for the case of an
undamped SDOF system subjected to a steady-state harmonic base-acceleration and corresponds to case number 5
in [13].

Y =

√
( f 2(µ + 1) − g2)2 + (2g f r(µ + 1))2

((1 − g2)( f 2 − g2) − µg2 f 2)2 + (2g f r(g2 − 1 + µg2))2 (14)
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2.3 Orders of magnitude

Before digging into the derivation of optimal TMD parameters, it is important to give orders of magnitude of realistic
values for the design parameters in the dimensionless transfer function (Eq. 13). While there are no practical
limitations on the values of the stiffness kd and the damping cd, it is generally admitted that the mass md must remain
within a few percent (typically 1 to 3 %) of the mass of the main structure.

One has to be careful not to confuse this actual physical mass ratio with the value of µ = md/meq in (Eq. 13),
which considers meq, which depends on the location of the TMD and the shape of the mode considered, and is always
lower than the actual total mass of the structure. Hence values higher than a few percent can be encountered, but we
consider that µ = 0.1 is a maximum value for practical applications.

A look at Eq. 7 shows that m̃eq is inversely proportional to ψik, while meq (Eq. 6) is inversely proportional to ψ2
ik. µ1

is therefore proportional to ψik, which means that it will have a low value close to the nodes of the mode shapes, and
a high value near the maxima of ψik.

In much the same way, it can be shown that the mass ratio µ is proportional to ψ2
ik, highlighting the fact that the

location of the TMD should be chosen so that it is close to the maxima of ψik and as far away as possible from the
nodes of the mode shape, in order for the TMD to have efficiency in damping the targeted mode (if µ is small and
close to zero, the efficiency of the device is very poor).

It is clear from this discussion that small values of µ1 are not of practical significance as they would occur due
to the very poor choice of the location of the TMD. At this stage, it is difficult however to give practical values of this
parameter without considering a specific example, as will be done in Section 4.

3 Equal-peak approach for single-mode approximation and base excitation

The tuning of the TMD parameters aims at minimizing the maximum of Y defined in Eq. 13. A simple yet effective
approach is to use the so-called equal peaks method initially presented by Den Hartog [4]. Although this approach
has been developed for different configurations (different types of excitations and different quantities of interest [13]),
it has never been applied to the non-dimensional transfer function given by Eq. 13.

As stated in the introduction, the equal peak approach does not strictly lead to the optimum set of parameters but
has been found to lead to solutions very close to it, with much simpler analytical formulae. It is a two-step procedure
that consists first in finding the stiffness of the TMD, which leads to so-called fixed points being at equal height, and
second, in finding the best value of damping, which makes these two fixed points very close to the extrema of the
transfer function.

Our goal is therefore here to apply this simplified method in order to minimize, in the frequency domain, the
maximum of the relative displacement response due to base excitation when a structure is reduced to an SDOF
system using the single mode approximation. This will allow to determine the optimal parameters of a mass-spring
tuned mass damper as a function of two parameters µ and µ1 instead of just µ. Although the introduction of this
new parameter leads to increased complexity, we will show that in practical applications, it is important to follow this
approach for base-excitated systems in order to get an accurate tuning of the TMD.

3.1 Determination of the optimal frequency ratio

The non-dimensional transfer function of Eq. 13 is of the form:

Y =

√
Ar2 + B
Cr2 + D

(15)

Note that C should not be confused with the damping matric [C]. The equal peaks method is based on the existence
of invariant points in this transfer function, i.e. points where the response does not change when the damping varies.
As the damping in this transfer function is represented by the variable r, we can find these invariant points by taking
two specific values of r = ∞ and r = 0 which leads to the equality A/C = B/D. For this specific transfer function,
A,B, C, and D can all be expressed in the form of A = a2, B = b2, C = c2, and D = d2 so that there are two possible
solutions a/c = b/d and a/c = −b/d. Replacing by the exact terms from the transfer function, one finds

µ + µ1

(1 + µ)g2 − 1
= ±

(g2 − f 2)µ1 − µ f 2

µ f 2g2 − (g2 − 1)(g2 − f 2)
(16)
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3.1.1 P and Q at equal height

The solution with the + sign leads to:

(µ(µ1 + 1) + 2µ1) g4 −
(
2µ1 + µ + 2(µ + 1)(µ + µ1) f 2

)
g2 + 2(µ + µ1) f 2 = 0 (17)

This biquadratic equation in g has two positive solutions g1 and g2, corresponding to the abscissas of the two fixed
points, which we will call P and Q. For the ordinates of the points P and Q to be identical (which is the idea behind the
equal peaks method), one needs to find f so that Y( f , g1) = Y( f , g2), which will be true for all values r.

Thus, taking r = ∞ leads to Y2 = A/C and we obtain the condition

µ + µ1

(1 + µ)g2
1 − 1

= ±
µ + µ1

(1 + µ)g2
2 − 1

(18)

In the above condition, only the choice of the negative sign gives meaningful solutions; otherwise, g1 = g2 and the
two fixed points are not distinct. This condition can be rewritten as:

g2
1 + g2

2 =
2

1 + µ
(19)

which gives the sum of the roots of the biquadratic Eq. 17, also given by the ratio of the terms in g2 and g4 in this
equation, multiplied by (-1). We have

2
1 + µ

=
2µ1 + µ + 2(µ + 1)(µ + µ1) f 2

µ(µ1 + 1) + 2µ1
(20)

This leads to the direct solution for the frequency ratio f = fopt, which results in P and Q being at the same height.

f = fopt =
1

1 + µ

√
µ − µ2 + 2µ1

2(µ + µ1)
(21)

Note that when the main structure is an SDOF system, µ1 = 1, and Eq. 21 gives f = 1
1+µ

√
1 − µ/2, which corresponds

to the case of the SDOF system subjected to harmonic base-acceleration when relative displacement response is
minimized [13]. The new expression derived here is therefore a generalization to the case when µ1 , 1, which occurs
when the host-structure is an MDOF system reduced to an SDOF using the single mode approximation approach.

We can now derive the exact expression of the roots g1 and g2 and compute the value of Y at these two points.
Starting again from Eq. 17 in which we replace f 2 by the optimum found for P and Q at equal height (Eq. 21), we have

(µ(µ1 + 1) + 2µ1) g4 − 2
µ(µ1 + 1) + 2µ1

µ + 1
g2 +

µ − µ2 + 2µ1

(µ + 1)2 = 0. (22)

The discriminant of this quadratic equation in g2 is given by

∆ =
4µ(µ + µ1)(µ + 2µ1 + µ1µ)

(1 + µ)2 (23)

so that the values of g2
1 = g2

+ and g2
2 = g2

− are given by

g2
± =

1
1 + µ

1 ±
√

µ(µ + µ1)
µ + 2µ1 + µ1µ

 (24)

Substituting these values in Eq. 15, taking r = ∞ for simplicity (which leads to Y =
√

A/C), we get the value of the
equal ordinates Ypq of the points P and Q.

Ypq = ±
1
µ

√
µ(µ + µ1)(µ + 2µ1 + µ1µ). (25)

Let K = µ(µ + µ1)(µ + 2µ1 + µ1µ), we have

g2
± =

1
1 + µ

1 ± √
K

µ + 2µ1 + µ1µ

 , (26)

Ypq = ±
1
µ

√
K. (27)

94 | doi:10.25518/2684-6500.252 Shashank Pathak et. al

http://dx.doi.org/10.25518/2684-6500.252


Journal of Structural Dynamics, 3, (pp. 88-108) 2025
Optimum Tuned Mass Damper Parameters for Complex Structures Subjected to Base-Excitation Using Single-Mode Approximation

3.1.2 P and R at equal height

The negative sign in Eq. 16 leads to :

µg2[(µ1 − 1)g2 + 1] = 0 (28)

which gives only one non-trivial positive solution

g3 = 1/(
√

1 − µ1) (29)

Note that this solution will lead to a real finite value of g3 only when µ1 < 1, and that when µ1 = 1, g3=0 so that there
are only two fixed points. We will call this third point R in the following.

The analysis presented above shows the potential existence of 3 fixed points when µ1 < 1, while in previous
applications of the fixed point method, only two points existed. This raises the question as to which two points should
be considered to optimize the TMD.

We already discussed the condition of having P and Q at the same height. If we wish to set P and R at the same
height, we have the condition

µ + µ1

(1 + µ)g2
1 − 1

= ±
µ + µ1

(1 + µ)g2
3 − 1

(30)

where, as before, only the negative sign gives a meaningful solution (g1 , g3). Substituting this time the explicit
solution for g3 = 1/(

√
1 − µ1) in Eq. 30 gives:

g2
1 =

1 − µ − 2µ1

(1 + µ)(1 − µ1)
(31)

Since g1 is also a root of Eq. 17, substituting g1 from Eq. 31 into Eq. 17 and solving for f leads to the optimum
frequency ratio ( fopt) for which the two ordinates will be equal:

f = fopt =
1

1 + µ

√
1 − µ − 2µ1

1 − µ1
(32)

It is important to recall that this value of fopt exists only for the case when µ1 < 1 (existence of point R), but the
equation also shows that in addition, we need to have 1 − µ − 2µ1 > 0 which is equivalent to µ1 > (1 − µ)/2. We know
that when P and R are at equal height, g1 is given by Eq. 31 and g3 = 1/(

√
1 − µ1). Taking again r = ∞ for simplicity,

we obtain the value of Y at points P and R:

Ypr =
√

1 − µ1 (33)

3.2 Determination of optimal damping

3.2.1 Optimal damping ratio for P and Q at equal height

The next step in the equal-peak method is to find the optimal damping that leads to the transfer function being
maximum at the two points (either P and Q, or P and R) considered. As it is not possible to enforce this condition
exactly at these two points, an approximation will be made as in the initial method developed by Den Hartog. Eq. 21
can be used to determine the frequency ratio, which ensures that points P and Q are at equal height. The next step
for the equal peaks methods is to determine the optimal damping. Although the idea is to minimize the maximum
(H∞-norm) of the transfer function Y, such a closed-form solution is tedious to derive (as it involves a minimization
with respect to both f and r) and generally leads to very long expressions.

The approximation in the equal peak method originally proposed by Den Hartog is to first set the frequency ratio f
to have the invariant points P and Q at equal heights, and then in a second step, to find the damping values r for which
Y is maximum at points P and Q. As these two values are slightly different but close, the average value (computed as
the square root of the mean of the square values) is used to get the best compromise. The transfer function is thus
not strictly maximum at neither P nor Q, but is very close to the true H∞ minimum.

We seek to determine r as a function of µ and µ1 so that the tangent to the graph of Y as a function of g is either
horizontal at point P or at point Q. The corresponding calculation can be simplified by the observations below.

95 | doi:10.25518/2684-6500.252 Shashank Pathak et. al

http://dx.doi.org/10.25518/2684-6500.252


Journal of Structural Dynamics, 3, (pp. 88-108) 2025
Optimum Tuned Mass Damper Parameters for Complex Structures Subjected to Base-Excitation Using Single-Mode Approximation

1. The derivative dY
dg will vanish if and only if the derivative of Y2 with respect to g also vanishes. Therefore, one

can ignore the large square root in the expression of Y.

2. The expression of Y only involves g through g2. On the other hand, dY
dg = 2g dY

d(g2) so that the derivatives vanish
simultaneously since we are working with g > 0. We can therefore work with the variable g2 instead of g. To
simplify the notations, we will designate the derivative with respect to g2 with a prime.

3. The derivative of Y (written in the general form of Eq. 15) with respect to g2 will vanish if and only if (A′r2 +

B′)(Cr2+D)−(C′r2+D′)(Ar2+B) = 0. At points P and Q, this amounts to asking that (A′r2+B′)−(C′r2+D′)Y2
pq = 0.

We therefore obtain the value sought for r in the form:

r2 =
Y2

pqD′ − B′

A′ − Y2
pqC′

(34)

The expressions of A, B,C,D and therefore their derivatives A′, B′,C′,D′ with f 2 given by Eq. 21 and g2
± given by

Eq. 26 as a function of µ and µ1, as well as the expression Eq. 27 of Y2
pq as a function of µ and µ1, are all of the form:

F(µ, µ1) +G(µ, µ1)
√

K, where F and G are rational functions (quotients of polynomials). As the value sought for r2 is
obtained by combining these expressions with the 4 operations (addition, substraction, multiplication and division),
we deduce below that the expression for r2 is itself of this form. It is obvious that the sum and the difference of such
expressions have the same form. For the product, we have

(F1 +G1
√

K)(F2 +G2
√

K) = (F1F2 +G1G2K) + (F2G1 + F1G2)
√

K (35)

For the quotient, we have (via multiplication and division by the conjugated binomial)

F1 +G1
√

K

F2 +G2
√

K
=

(F1F2 −G1G2K)
F2

2 −G2
2K

+
(F2G1 − F1G2)

F2
2 −G2

2K

√
K (36)

The objective is therefore to reduce to an expression of the form F +G
√

K at each stage of the calculation to avoid
having to handle overly complicated expressions. Noting that the values of g2 in P and in Q differ only by the sign in
front of

√
K, we can perform both calculations at the same time and will show that the expression of r2 for P and Q

also only differ by the sign in front of
√

K, hence if r2
P,Q = F ±G

√
K, the average value r2 = 1

2

(
r2

P + r2
Q

)
is equal to

F. The detailed calculation is given in Section 7.1 (Annex A) and leads to the following expression for the optimal
damping:

r2 = r2
opt =

µ(µ1µ
2 + 6µ2

1 + 13µ1µ + 5µ2 − µ)
8(µ − µ2 + 2µ1)(µ + µ1)(µ + 1)

(37)

It is worth noting that when µ1 = 1, the expression for ropt reduces to the one given by Warburton [13]:

r2
opt =

3µ
8(1 + µ)(1 − µ/2)

(38)

3.2.2 Optimal damping ratio for P and R at equal height

As in the case for P and Q, we seek to determine r as a function of µ and µ1 so that the tangent to the graph of Y
as a function of g is either horizontal at point P or at point R. The same observations as for the case with P and Q
apply; therefore, the procedure consists in computing the value of r2 using Eq. 34. In this case, however, the two
roots g1 and g3 cannot be expressed in a compact, uniform manner with a ± sign to differentiate them, so a separate
calculation is needed for each point. The calculations are given in Section 7.2 (Annex B) and lead to the following
optimal values for r2:

r2
P =

µ(1 − µ1)
2(µ + 1)(1 − µ − 2µ1)

. (39)

r2
R = −

1
2(µ + 1)2(1 − µ − 2µ1)

(5µµ1 + µ
2µ1 − µ + µ

2 + 2µ2
1)(µ + µ1). (40)

The optimal damping is given by r2
opt =

1
2 (r2

R + r2
P). We obtain

r2 = r2
opt =

1
2

(r2
R + r2

P) =
µ − 3µµ1 − µ

2µ1 − µ
2
1

2(1 + µ)2(1 − µ − 2µ1)
(41)
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3.3 Choice of the invariant points for the TMD optimization

We aim at finding the intervals of the parameters µ and µ1 in which we need to use either the formula for P and
Q (Eqs. 21 and 37) at the same height or the formula for P and R (Eqs. 32 and 41). Fig. 2 shows the evolution of
the roots (frequencies) corresponding to the invariant points at equal height, for a value of µ = 0.1 and values of µ1
between -1 and +1. The grey curves show the two roots of Eq. 17 when f is given by Eq. 21 (P and Q at the same
height). As µ1 increases, points P and Q tend to get closer together until µ1 = −µ (-0.1 in the present case), where the
two points merge. Looking at the expression of the roots (Eq. 26), we see that this happens when
√

K =
√
µ(µ + µ1)(µ + 2µ1 + µ1µ) = 0 (42)

hence when µ1 = −µ. The expression of the roots also shows that they tend to ∞ when µ + 2µ1 + µ1µ = 0, hence the
roots reappear at ±∞ when µ1 >

−µ
2+µ . Note that this is also the point after which f 2 is positive again.

Fig. 2: Evolution of the roots corresponding to equal height of invariant points as a function of µ1 (µ = 0.1), for the cases when P
and Q, or P and R are set at equal height.

Fig. 3: Evolution of r2 as a function of µ1 (µ = 0.1), using (Eq. 37) (PQ) and (Eq. 41) (PR)
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Fig. 4: Transfer function Y when the TMD is optimally tuned - µ = 0.1, µcrit,−
1 = −0.375, µcrit,+

1 = 0.12 (left:µ1 = −0.6, right:µ1 = 0.4)

The orange curves show the evolution of the two roots corresponding to equal height when f is given by Eq. 32 (P
and R at equal height). Note that by using Eq. 21, point P changes. Starting from µ1 = −1, we notice that the roots
are more separated than in the case when P and Q are set at equal height, until they merge with the grey curves.
This is the point where the roots taken either from Eq. 21 or Eq. 32 are the same, which means that f has the same
value, thus

1
µ + 1

√
1 − µ − 2µ1

1 − µ1
=

1
µ + 1

√
µ − µ2 + 2µ1

2(µ + µ1)
(43)

which can be simplified to

µ2
1 +

5µ + µ2

2
µ1 −

µ − µ2

2
= 0 (44)

The roots of this equation are given by

µcrit,±
1 =

−5µ − µ2 ±
√

8µ + 17µ2 + 10µ3 + µ4

4
(45)

and are marked with two vertical dashed lines on the plot (when µ = 0.1 as in the figure, we have µcrit,−
1 = −0.375

and µcrit,+
1 = 0.12). Again, we see that after the second root (second vertical line), the solutions given by the orange

curves are more distant than the grey curves. The solutions for P and R cease to exist when (1 − µ − 2µ1) < 0 and
(1 − µ1) > 0 that is, in our plot, between µ1 = 0.45 and µ1=1.

Fig. 3 shows the evolution of r2
opt as a function of µ1 for the same fixed value of µ = 0.1, using the formula for

optimal damping when choosing P and Q at the same height (Eq. 37) or P and R at the same height (Eq. 41). The
figure shows that for some values of µ1, r2 is negative, so that there is no possibility to optimally tune the damping.
For values of µ1 < µ

crit,−
1 and µ1 > µ

crit,+
1 , the value of r2 computed according to Eq. 37 is always positive. When tuning

to have P and R at the same height for values of µ1 between µcrit,−
1 and µcrit,+

1 , the values of r2 computed according
to Eq. 41 are also always positive. Note that there is a small region around each critical values of µ1 where both
equations could be used for the tuning, as f exists and r2 is positive.

In Fig. 4, we represent the transfer function of the host system Y when optimal tuning is done according to the P
and Q rules for values of µ1 used in outside of the range [µcrit,−

1 , µcrit,+
1 ] (µ1 = −0.6 and µ1 = 0.4). In both cases, we

see that the use of tuning rules for P and Q lead to equal peaks.
As stated above, there are small intervals close to µcrit,−

1 and µcrit,+
1 where the value of r2 is positive for both

cases so that tuning is possible according to the two equations. Different examples are shown in Figs. 5 and 6. The
figures show that choosing P and R at the same height when µ1 is between µcrit,−

1 and µcrit,+
1 is a better choice as

the maximum of Y(g) is lower, and that choosing P and Q when µ1 is outside of this interval leads also to a lower
maximum for Y(g). It can also be seen in these figures that when the non-optimal choice is made for the tuning rule,
the transfer function does not show strictly equal peaks. We can conclude that the critical values of µ1 set the limit for
the choice of the tuning rules (P and R inside the interval of critical values, and P and Q outside). Following up on our
discussion in Section 2.3, where we stated that small values of µ1 are not of practical interest, we can deduce that the
equations for P and Q will generally be used in practice.
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Fig. 5: Comparison of transfer function Y when the TMD is optimally tuned with P and Q or P and R at equal height - µ = 0.1,
µcrit,−

1 = −0.375, µcrit,+
1 = 0.12 (left:µ1 = −0.43, right:µ1 = −0.3, values close to µcrit,−

1 )

Fig. 6: Comparison of transfer function Y when the TMD is optimally tuned with P and Q or P and R at equal height - µ = 0.1,
µcrit,−

1 = −0.375, µcrit,+
1 = 0.12 (left:µ1 = 0.05, right:µ1 = 0.16, µ = 0.1, values close to µcrit,+

1 )

Although, as discussed before, of little practical use, we represent in Figs. 7 and 8 cases where µ1 lies between
the critical values and only the tuning rules for P and R can be used. The curves confirm that the tuning rules allow to
reach equal peaks. Note that for µ1 = −0.101 the roots coallesce and we have a single highly damped peak.

Fig. 7: Transfer function Y when the TMD is optimally tuned - µ = 0.1, µcrit,−
1 = −0.375, µcrit,+

1 = 0.12 (left:µ1 = −0.25, right:µ1 =

−0.101)
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Fig. 8: Transfer function Y when the TMD is optimally tuned - µ = 0.1, µcrit,−
1 = −0.375, µcrit,+

1 = 0.12 (left:µ1 = −0.04, right:µ1 = 0)

4 Practical example: high-rise building

As TMDs are mostly installed on tall buildings, we consider the simplified model of a high-rise building with a large
concrete core of height L = 140 m (Fig. 9(a)). The concrete’s mechanical properties are given by its Young’s modulus
E = 30 GPa, Poisson’s ratio ν = 0.2, and density ρ = 2200 kg/m3, already used in [16]. The building is modelled
as a vertical cantilever beam with a hollow box-type cross-section of external cross-section of 20 m × 20 m and a
thickness of 30 cm. The modal damping ratios of the building are assumed to be very small. The cross-sectional

Fig. 9: (a) High-rise building modeled as a cantilever beam excited horizontally at its base (left figure), and (b) frequency response
function of the relative displacement of top floor of the example building model (right figure)

area of the beam is Across = 202 − (20 − 2 × 0.3)2 = 23.64 m2, and the total mass is Mtot = Across × ρ × L = 7.28 × 106

kg. The finite element model of the beam is constructed in the Structural Dynamics Toolbox under Matlab [17] using
Euler-Bernoulli beam elements with shear correction factors for thick beams. The beam model contains 21 nodes;
the first node represents the ground to which base acceleration is imposed, and the remaining 20 nodes have two
degrees-of-freedom each (one translation and one rotation as the motion is restricted in one plane for this simple
example). The model has 40 DOFs in total. The frequency response function of the top floor’s (or tip of the cantilever)
relative displacement divided by the unitary input acceleration, noted |hr,top(ω)| is represented in Fig. 9(b). The first
10 natural frequencies are 0.82, 4.32, 10.07, 16.45, 23.08, 29.77, 36.50, 43.25, 50.04, and 56.87 Hz. Note that the
ratio of the consecutive frequencies for the first three modes is, respectively, 5.3 (Mode-2 to Mode-1), 2.3 (Mode-3
to Mode-2), and 1.6 (Mode-4 to Mode-3). The figure also shows that the first mode is much more excited than the
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following ones, and that the general trend is a decrease of the contribution of the modes, as can be expected and
already discussed, for base excitation.

As discussed by Warburton in [18], the equivalent SDOF approach (for the fundamental mode) is valid when the
ratio of the two consecutive modes is higher than 2-3 depending on the damper mass. The criteria is satisfied in our
example, at least for the fundamental mode. For higher modes, the frequency ratio suggests that there may be effects
of modal interactions.

In order to demonstrate the practically relevant cases, we need to identify the critical modes by analysing the
modal participation and modal amplitudes. The participation of different modes in the overall response for a base

excitation is shown in Fig. 10(a), which is assessed using the relative participation factor of ith mode defined as
|Γi|

|Γ|max
,

where Γi = {ψi}
T [M]{T }, {ψi} is the ith mode-shape vector, {T } the influence vector, and |Γ|max = the maximum absolute

value of modal participation vector amongst all the modes. As shown in Fig. 10, the maximum contribution comes
from the first two modes and reduces drastically after that. Hence, we will focus on the first two modes only. The first
two mode shapes are plotted in Fig. 10(b).

Node 9

Top storey Top storey

Mode 1 Mode 2

Fig. 10: (a) Relative modal participation factors (left figure) and (b) first two modes of the high-rise building (right figure)

4.1 Equivalent SDOF parameters and location of the TMD

In order to tune the TMD device for the example building model, a practical value of damper mass md is assumed
to be 1% of the total building mass (md = 0.01 × Mtot = 7.28 × 104 kg). The mass of the equivalent SDOF system
meq (and, hence, the mass ratio µ and the critical values µcrit,±

1 ) depend on the mode to be tuned and the location
of the attachment of the TMD (see Eq. (6)). The second mass ratio µ1 also depends on the modal amplitudes and,
in addition, on the modal participation factor. The variation of µ, µcrit,+

1 , µcrit,−
1 , and µ1 with TMD location is shown in

Fig. 11 for the first two modes. Based on this analysis, some interesting observations can be made:

1. The equivalent mass ratio µ changes with the TMD location. The choice of the maximum mass of the TMD
should however be made based on practical considerations of maximum acceptable added mass. It is clear that
after this mass has been chosen, the TMD should be located at the maximum of the mode shapes in order to
have a higher equivalent mass ratio µ, hence a better efficiency of the device.

2. The second mass ratio µ1 follows the same trend as the mode shape and is maximum where the mode shapes
are maximum (as µ). As discussed above, this is where the TMD should be placed to have good efficiency;
therefore, only these values of µ1 are of practical interest. In particular, the figures show that

• in the case of Mode 1, µ1 > µ
crit,+
1 and therefore Eqs. (21) and (37) will be used to tune the TMD.

• In the case of Mode 2, there are two possible locations for optimal placement of the TMD. One is at node 9
(first maximum of the mode shape), and the other one is at node 20 (second maximum). In both cases,
the values of µ1 do not lie in the critical range.

The observations above show that only the formulae for µ1 outside of the critical range (Eqs. (21) and (37)) are
of practical use, as already discussed in Section 3.3.
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Fig. 11: Variation of the two mass ratios (µ and µ1) and the critical limits (µcrit,+
1 , µcrit,−

1 ) with the location of attachment of TMD when
target mode is: (a) first mode (left figure) and (b) second mode of example building (right figure)

4.2 Illustration for different modes and TMD locations

Three example cases are considered where the TMD is placed at th top of the building (node 20) to damp modes 1 or
2, or at node 9 to damp mode 2 (first maximum of second mode shape). For each case, optimal tuning and damping
ratios are computed using the new approach developed in this paper in Section 3 (New) and compared with the result
using Warburton’s formulae (WB) which only takes into account one mass ratio µ:

f =
1

1 + µ

√
1 − µ/2 r2

opt =
3µ

8(1 + µ)(1 − µ/2)
(46)

The optimum parameters are also evaluated using numerical optimization in MATLAB, where the objective function to
minimize is the maximum of the transfer function computed with the two DOFs model using the equivalent parameters
for the host system.

The results for the three cases are given in Table 1 where the optimum damping and stiffness parameters of
the TMD are given using the three optimization methods. The results show that the new approach gives optimum
parameters very close to the true optimum obtained with numerical optimization, while the parameters obtained with
Warburton’s formulae are slightly different.

Table 1: Optimal parameters for the three cases using Warburton(WB) formulae, the new proposed formulae (New) and numerical
optimization (Num)

Mode DOF µ1 µ bwb kwb bnew knew bnum knum

N/(m/s) N/m N/(m/s) N/m N/(m/s) N/m
1 39 1.5574 0.0386 8.511 104 1.750 106 8.517 104 1.762 106 8.489 104 1.762 106

2 39 -0.8327 0.0333 41.99 104 49.31 106 41.64 104 51.23 106 41.82 104 51.23 106

2 17 0.6538 0.0205 33.59 104 50.89 106 33.54 104 50.62 106 33.48 104 50.62 106

The frequency response functions Y(g) obtained with these three sets of optimum parameters are compared in
Fig. 12 for the three different configurations considered. It is clear that for all cases, the new formulae lead to an
equal-peak design, and the transfer function matches exactly with the numerical optimum, on the contrary to the WB
approach. Note that as highlighted in Section 2.3, the effective mass ratio ranges from 2 to 4 % depending on the
location of the TMD and mode to be damped, while the physical mass ratio was set to 1%.

It is important to note that this result is obtained with the reduced two DOFs system where the building is repre-
sented only by the contribution of the targeted mode. As already discussed before, while this is usually a very good
approximation for the first mode, the modal interactions can become more important with increasing mode number. It
is especially the case for base excitation, as evidenced by the modal participation factors represented in Fig. 10(a). In
Fig. 13, we compare the transfer function obtained with the full model, using the parameters obtained with the new
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(a) (b)

(c)

Fig. 12: Comparison of FRFs of relative displacement at the location and in the direction of the TMD, considering the equivalent
SDOF host-system for : (a) Case-1 (Mode 1, node 20, µ = 0.039, µ1 = 1.58), (b) Case-2 (Mode 2, node 20, µ = 0.033, µ1 = −0.83)),
and (c) Case-3 (Mode 2, node 9, µ = 0.02, µ1 = 0.65))

approach (New), to the case where numerical optimization is performed using the full model (resulting in equal peaks).

It is clear from the figures that we preserve almost equal-peaks only in the case of the first mode, where modal
interactions are not important. For the second mode, the influence of the first mode is important and results in an
imbalance of the peaks. This is more pronounced when the TMD is attached to the tip of the beam as this is where
the contribution of mode 1 is the highest (Fig. 13(b)).

The influence of modal interactions for the tuning of TMDs was already raised by Krenk and Høgsberg in [19],
however, we found that the solution proposed in their paper does not address the problem adequately for equal-peak
approaches. Further research is needed to address the problem related to modal interactions, which lies outside of
the scope of this paper.

5 Conclusions

The work presented in this paper deals with the optimal tuning of tuned mass dampers (TMDs) for complex base-
excited systems. It starts with the observation that there is no satisfactory analytical approach in the literature to deal
with this problem. This is essentially because the traditional single mode approximation is not valid for base-excited
systems.

We therefore propose an improved version of the single mode approximation, which leads to the appearance of a
second mass ratio in the transfer function of the host-system. With this modified transfer function, we find analytical
formulae for the optimal stiffness and damping coefficients of the TMD using the equal peak method. The resulting
formulae are a function of the typical mass ratio µ and of a second mass ratio µ1, and reduce to the well-known
formulae of Warburton when µ1 = 1, which shows their consistency. In the derivation of the analytical formulae,
we show that for certain values of the set of parameters (µ, µ1) there are three and not two invariant points, and a
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(a) (b)

(c)

Fig. 13: Comparison of FRFs of relative displacement at the location and in the direction of the TMD using the full and the reduced
model : (a) Case-1 (Mode 1, node 20), (b) Case-2 (Mode 2, node 20), and (c) Case-3 (Mode 2, node 9)

discussion on the adequate choice of the two invariant points to be set at equal height leads to the derivation of two
sets of equations, depending on the set of values of (µ, µ1). A further discussion shows that in practice, due to the
choice of the optimal location of the TMD in order to have a sufficient effect on the host-structure, only the first set of
tuning rules is to be used in practical cases.

The use of the analytical formulae for the tuning of a TMD attached to a MDOF model of a high-rise building
excited through its base is then illustrated. The results show that, on the contrary to the approach of Warburton
(corresponding to µ1 = 1, which is not adequate when single-mode approximation is used for a base-excited system),
the new approach developed in this paper leads to equal peaks when using the reduced two DOFs system of the
host-system with the TMD attached. When using the full model of the structure and the optimal parameters derived
analytically based on the improved single mode approximation, the results are good when tuning the TMD to the
first mode of the building, but the peaks are unbalanced for the second mode, in particular when the TMD is placed
at a position where the response of the first mode is important. This is due to modal interactions, which are not
taken into account in the analytical formulae. The tuning of the TMD for base-excitation taking into account modal
interactions would result in the modification of the transfer function being minimized and hence requires additional
lengthy calculations, which are out of the scope of this paper but are seen as a possible continuation and further
improvement of this work.

6 Supplementary material

The software developed in this paper to produce the theoretical curves as well as the results of the numerical
example is available in the Zenodo archive of the Journal of Structural Dynamics with the following linkhttps:
//doi.org/10.5281/zenodo.15524406. The code is shared under a MIT licence in the form of Matlab executable
files.
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7 Annex

7.1 Annex A : Calculation of optimal damping r for P and Q at the same height
We differentiate with respect to g2 the 4 functions appearing in Eq. 15:

A = 4 f 2g2(µ + µ1)2,

B =
(
µ1g2 − (µ + µ1) f 2

)2
,

C = 4 f 2g2
(
(1 + µ)g2 − 1

)2
,

D =
(
µ f 2g2 − (g2 − 1)(g2 − f 2)

)2
,

to get

A′ = 4 f 2(µ + µ1)2,

B′ = 2µ1

(
µ1g2 − (µ + µ1) f 2

)
,

C′ = 4 f 2((1 + µ)g2 − 1)
(
(1 + µ)g2 − 1 + 2(1 + µ)g2

)
= 4 f 2((1 + µ)g2 − 1)(3(1 + µ)g2 − 1),

D′ = 2
(
µ f 2g2 − (g2 − 1)(g2 − f 2)

)
(µ f 2 − 2g2 + f 2 + 1)

=
2

µ + µ1
((1 + µ)g2 − 1)

(
µ1g2 − (µ + µ1) f 2

) (
(µ + 1) f 2 + 1 − 2g2

)
.

which gives for Y2
pqC′:

Y2
pqC′ = 4 f 2 (µ + µ1)(µ + 2µ1 + µ1µ)

µ

(
(1 + µ)g2 − 1

) (
3(1 + µ)g2 − 1

)
= 4 f 2

(
3(µ + µ1)2 ± 2

(µ + µ1)
µ

√
K
)
.

where we have used the expression of g2 at point P and Q given by Eq. 26 and Ypq by Eq. 27. This leads to A′ − Y2
pqC′:

A′ − Y2
pqC′ = 4 f 2

(
(µ + µ1)2 − 3(µ + µ1)2 ∓ 2

(µ + µ1)
µ

√
K
)
.

= −4
µ − µ2 + 2µ1

(µ + 1)2

(
µ + µ1 ±

1
µ

√
K
)
.

where we have replaced f 2 using Eq. 21. We then express 1/(A′ − Y2
pqC′) :

1
A′ − Y2

pqC′
= −

(µ + 1)2

4(µ − µ2 + 2µ1)

(
µ + µ1 ∓

1
µ

√
K
)

×
1

(µ + µ1)2 −
(µ+µ1)(µ+2µ1+µ1µ)

µ

=
µ(µ + 1)2

4(µ − µ2 + 2µ1)2(µ + µ1)

(
µ + µ1 ∓

1
µ

√
K
)
.

On the other hand, we calculate the expression Y2
pqD′:

Y2
pqD′ =

2(µ + 2µ1 + µ1µ)
µ

± √
K

(µ + 2µ1 + µ1µ)

 (µ1g2 − (µ + µ1) f 2
)

×
(
(µ + 1) f 2 + 1 − 2g2

)
=

2
µ + 1

(
µ1g2 − (µ + µ1) f 2

) (
−2(µ + µ1) ±

µ + 2µ1 − 1
2(µ + µ1)

√
K
)
.
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We calculate the factor µ1g2 − (µ + µ1) f 2 separately, replacing g2 and f 2 by their expressions in terms of µ and µ1 as previously:

µ1g2 − (µ + µ1) f 2

=
1

(1 + µ)2

(
µ(µ + 2µ1 − 1)

2
±

µ1(1 + µ)
µ + 2µ1 + µ1µ

√
K
)
.

We finally get the expression of Y2
pqD′ − B′

Y2
pqD′ − B′

=
2

µ + 1

(
µ1g2 − (µ + µ1) f 2

)
×

(
−2(µ + µ1) − (µ + 1)µ1 ±

µ + 2µ1 − 1
2(µ + µ1)

√
K
)

=
2

(µ + 1)3
(−µ(µ + 2µ1 − 1)(µ + µ1)

±

(
µ(µ + 2µ1 − 1)2

4(µ1 + µ)
−

(2µ + 3µ1 + µ1µ)µ1(1 + µ)
µ + 2µ1 + µ1µ

)
√

K
)
.

Using Eq. 34, we get r2:

r2 =
Y2

pqD′ − B′

A′ − Y2
pqC′

=
µ

2(µ − µ2 + 2µ1)2(µ + µ1)(µ + 1)

(
µ + µ1 ±

1
µ

√
K
)

×

(
− µ(µ + 2µ1 − 1)(µ + µ1)

±

(
µ(µ + 2µ1 − 1)2

4(µ + µ1)
−

(2µ + 3µ1 + µ1µ)µ1(1 + µ)
µ + 2µ1 + µ1µ

)
√

K
)
.

And expressing it as a function of the type r2 = F ±G
√

K, the average value is given by F, which gives

r2
avg =

µ

8(µ − µ2 + 2µ1)2(µ + µ1)(µ + 1)

×

(
− 4µ(µ + 2µ1 − 1)(µ + µ1)2 − µ(µ + 2µ1 − 1)2(µ + 2µ1 + µ1µ)

+4(2µ + 3µ1 + µ1µ)µ1(1 + µ)(µ + µ1)
)
.

By expanding the polynomial expression to µ and µ1 between the large parentheses of this expression, we obtain

−4(µ2 + 2µ1µ − µ)(µ2 + 2µ1µ + µ
2
1)

−(µ2 + 2µ1µ + µ1µ
2)(µ2 + 4µ2

1 + 1 + 4µ1µ − 2µ − 4µ1)

+4(2µ1µ + 3µ2
1 + µ

2
1µ)(µ2 + µ + µ1µ + µ1)

= −5µ4 − 12µ1µ
3 − 4µ2

1µ
2 + 6µ3 + 23µ1µ

2 + 32µ2
1µ

−µ2 − 2µ1µ − µ1µ
4 + 12µ3

1

This last expression can be factorized into

(−µ2 + µ + 2µ1)(µ1µ
2 + 6µ2

1 + 13µ1µ + 5µ2 − µ)

We therefore deduce the expression in simplified form of r2
avg:

r2
avg = r2

opt =
µ(µ1µ

2 + 6µ2
1 + 13µ1µ + 5µ2 − µ)

8(µ − µ2 + 2µ1)(µ + µ1)(µ + 1)
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7.2 Annex B: Determination of optimal damping ratio r for P and R at equal height
We differentiate with respect to g2 the 4 functions appearing in Eq. 15:

A = 4 f 2g2(µ + µ1)2,

B =
(
µ1g2 − (µ + µ1) f 2

)2
,

C = 4 f 2g2
(
(1 + µ)g2 − 1

)2
,

D =
(
µ f 2g2 − (g2 − 1)(g2 − f 2)

)2
,

to get

A′ = 4 f 2(µ + µ1)2,

B′ = 2µ1

(
µ1g2 − (µ + µ1) f 2

)
,

C′ = 4 f 2((1 + µ)g2 − 1)
(
(1 + µ)g2 − 1 + 2(1 + µ)g2

)
= 4 f 2((1 + µ)g2 − 1)(3(1 + µ)g2 − 1),

D′ = 2
(
µ f 2g2 − (g2 − 1)(g2 − f 2)

)
(µ f 2 − 2g2 + f 2 + 1)

=
2

µ + µ1
((1 + µ)g2 − 1)

(
µ1g2 − (µ + µ1) f 2

) (
(µ + 1) f 2 + 1 − 2g2

)
.

By replacing f by fopt from Eq. 32 and g by gR = 1/(
√

1 − µ1), we calculate the expression A′ − Y2
prC

′ at point R:

A′ − Y2
prC

′ = −8 f 2
opt(µ + µ1)(µ + 1).

Similarly, we calculate the expression Y2
prD′ at the point R:

Y2
prD′ =

2(2µ + 3µ1 + µµ1)(5µµ1 + µ
2µ1 − µ + µ

2 + 2µ2
1)

(1 − µ1)(µ + 1)3 .

Finally, we calculate B′ at point R:

B′ =
2µ1

(1 − µ1)(µ + 1)2 (5µµ1 + µ
2µ1 − µ + µ

2 + 2µ2
1).

This leads to Y2
prD′ − B′:

Y2
prD′ − B′ =

4
(1 − µ1)(µ + 1)3 (5µµ1 + µ

2µ1 − µ + µ
2 + 2µ2

1)(µ + µ1).

By dividing the expressions obtained, we get r2
R:

r2
R = −

1
2(µ + 1)2(1 − µ − 2µ1)

(5µµ1 + µ
2µ1 − µ + µ

2 + 2µ2
1)(µ + µ1).

We proceed in the same way by replacing f by fopt from Eq. 32 and g by gP from Eq. 31. We first get A′ − Y2
prC

′ at point P:

A′ − Y2
prC

′ = 8 f 2
opt(µ + µ1)(1 − µ − 2µ1).

Similarly, we calculate the expression Y2
prD′ at point P:

Y2
prD′ =

2µ(1 − µ − 2µ1)(2µ + µ1 − µµ1)
(µ + 1)3 .

Finally, we calculate B′ at point P:

B′ = −
2µµ1(1 − µ − 2µ1)
(1 − µ1)(µ + 1)2 .

We deduce Y2
prD′ − B′:

Y2
prD′ − B′ =

4µ(1 − µ − 2µ1)
(µ + 1)3 (µ + µ1).

By dividing the expressions obtained, we get r2
P:

r2
P =

µ(1 − µ1)
2(µ + 1)(1 − µ − 2µ1)

.

In analogy with the previous case (significant points P and Q), we define the square of the optimal damping by the average of the
square of optimal damping at P and R, r2

opt =
1
2 (r2

R + r2
P). We obtain

r2
opt =

µ − 3µµ1 − µ
2µ1 − µ

2
1

2(1 + µ)2(1 − µ − 2µ1)
.
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