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Abstract
Brake squeal is an instability that generates self-excited limit cycles which vary with time and operating
conditions in real experiments. To analyze test results, it is proposed to use a Harmonic Balance
Vector (HBV) signal model. It combines Harmonic Balance Method and analytic signal methodologies.
From the Harmonic Balance Method, one uses the space-time decomposition where spatial distribution
of each harmonic is described by a complex vector and frequency is common to all sensors. From
analytic signal, one keeps the assumption that quantities are slowly varying in time. Synchronous
demodulation and principal coordinate definitions are combined in a multistep algorithm that provides
an HBV estimation.

On an industrial brake test matrix, HBV estimation is shown to be robustly applicable. The HBV
signal being slowly varying, time sub-sampling reduces the volume of test data by two orders of
magnitude. Limit cycle frequency, amplitude and shapes can thus be added to the parallel coordinates
that associate to each time sample the operating parameters: pressure, velocity, temperature, torque,
disk position, disk/bracket distance, ... This opens a path to a range of analyzes otherwise difficult
to perform. Classification of squeal occurrences is first discussed showing pressure and amplitude
dependence. The effect of amplitude on both frequency and shape is next demonstrated. The
entry and exit of instability when parameters change are then analyzed by proposing a transient
root locus built from test. Thus squeal test results are related to the classical complex eigenvalue
analysis. Intermittent growth/decay events are shown to be correlated with wheel position. Furthermore,
distance measurements indicate that disk shape variations of a few microns play a clear parametric role.
Parametric testing and clustering are then used to map the instability region and its edges. Pressure is
shown to have an effect dominating other variations. Prospective uses of these results to combine test
results and finite element models are discussed last.
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1 Introduction

Brake squeal is a friction induced instability by mode coupling [1], that leads to high amplitude limit cycles. The
phenomenon has been extensively studied, experimentally, see references [2, 3] among many, and numerically from
minimal models [4] to industrial models [5]. Due to the phenomenon complexity, a characterization rationale has yet to
be defined.
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Extraction of squeal features for variable operating conditions, which will be described by parameters here, is a
clear need illustrated in [6]. Feature extraction for creep groan phenomenon classification has also been performed
in [7]. Features classically include frequencies of limit cycles, both acoustic and vibration amplitudes. Shape will also
be included here as it allows fine distinctions of occurrences and is useful to perform numerical correlation. Properly
selecting parameters and features is necessary for efficient datalakes feeding for further design studies.

Fig. 1: Left: measurement setup. Right: accelerometer positionning on the brake.

Figure 1 illustrates the industrial brake configuration considered here and the sensor configuration that is used to
define squeal shape vectors. More details about the setup and the experiments will be given in section 3, but at this
point one only notes that a non production pad design was chosen for its clear propensity to squeal.

Fig. 2: Acceleration spectrogram during an increasing pressure, constant velocity, experiment

Figure 2 illustrates a pressure sensitivity characterization experiment, where pressure is ramped manually in the
range P = [1.5 − 9] bar while velocity is kept constant (drag mode). The system changes slowly as piston pressure is
increased. The spectrogram clearly illustrates a first limit cycle near 1560 Hz and 4 harmonics shown using labels
(for instance o1560h3 refers to the third harmonic of squeal occurrence whose fundamental frequency is close to
1560Hz). Between 60 and 120s, harmonic 4 interacts with harmonic 1 of another limit cycle near 6440 Hz. Another
transition then occurs, ... Non-linear vibration studies typically focus on those transitions, and more details would be
expected. But the present work focuses on providing a signal model suitable for automated classification of squeal
experiments, so the purpose of the figure is only to illustrate requirements which are listed below.

110 | doi:10.25518/2684-6500.260 Etienne Balmes et. al

http://dx.doi.org/10.25518/2684-6500.260


Journal of Structural Dynamics, 3, (pp. 109-129) 2025
Squeal occurrence classification using a harmonic balance vector signal model

• Propose a signal model representing the main squeal features. Squeal induces limit cycles, thus the
response is close to being periodic and dominated by harmonics (that will be described by a Harmonic Balance
Vector HBV detailed later), but other broadband noise exists due to passage of asperities below the pad, as will
be illustrated in section 3.3. It is thus desirable to be able to separate both signal types in raw measurements.

• Track the squeal limit cycle changes. The frequency of the limit cycles is not known and evolves over time
faster than possible tracking using standard short time Fourier transform methods. It must thus be reliably
estimated with times scales that will be discussed in section 2.1. Squeal is not permanent so that tracking must
account for the fact that other excitation sources may dominate the response at certain times.

• Reduce data while preserving main vibration features. Keeping all channels of raw time data generates too
much data (10 GB for the 20 minutes discussed in section 3.1) and makes classification difficult. Obtaining
slowly varying features (limit cycle frequency, amplitude, and shape) sampled at the rate of parameter changes
is thus fundamental.

• Make the link between limit cycle changes and operational parameters. Parameters known to have a major
influence are pressure, temperature, wheel angle [8] and velocity, wear [9, 10], loaded pad settling position
which is influenced by the braking history, ... But, as discussed in section 2.1, those parameters vary slowly
enough to consider a frequency separation with the limit cycle.

• Relate test and FEM results. Experimental and numerical brake squeal state-of-the-art methods do not rely
on the same analyzes. Experimental results focus on non-linear high amplitude limit cycle measurements
wheareas numerical methods focus on unstable complex modes valid for low amplitude vibrations where the
model is linearized around a static state (even with FEM model reduction, transient simulation methods so far
remain too costly to be used in design). Despite the discrepancy, knowing the associated underlying shapes is
useful for remediation work based on an understanding of how components deform. However, since squeal
occurs at relatively high frequencies, analysis purely based on sensors is difficult and combining test and FEM
may be useful for understanding as discussed in section 3.5.

The harmonic balance method [11, 12, 13, 14, 15] is a classical strategy to search periodic solutions of non-linear
systems. HBM is based on a space/time discretization of responses as a series of complex spatial vectors and
integer harmonics of a base frequency. HBM is typically considered as a numeric tool allowing the transformation
of non-linear differential problems into algebraic systems of equation, whose solution is a state vector combining
amplitudes of all kept harmonics. Frequency is either a driving parameter for forced responses or an additional state
in the case of self excited vibrations such as squeal [13]. Here, the state vector will be called Harmonic Balance
Vector (HBV) and will be used to analyze experiments.

Experimentally, harmonics are often analyzed using discrete Fourier transforms with very well known trade-off
between buffer length and frequency resolution, or wavelets that require fine-tuning. To go beyond these limitations,
analytic signals [16], assume a complex qa signal of the form

qa(t) = q1(t)eiφ(t) = q1(t)ei
∫

t ω(t)dt (1)

where the real part of the signal is the measured signal q(t), the imaginary part is the Hilbert transform of q(t),
q1(t) is the real amplitude and φ(t) the phase which can be interpreted as the integral of a variable frequency ω(t).
Demodulation strategies considered in many real time applications [17, 18, 19, 20, 21] have shown their practical
robustness and will be adapted here. Spectrum reassignment techniques [22, 23] are another class of methods
dealing with discrete Fourier limitations and might be considered.

The claim of section 2 is that it is relevant to combine HBM and analytic signal ideas, and consider the HBV as
a signal model to analyze experiments. While clearly inspired by developments of analytic signal methods [16, 24],
the HBV naming insist on specific signal features. The instantaneous frequency is common to all sensors. The
response associated to a single frequency is a complex vector, it should thus occur within a rank 2 manifold/subspace
corresponding to the real and imaginary parts of HBM solutions. If the system varies slowly, the instantaneous
frequency and shape also vary slowly, so that timescale separation can help proper estimation. Section 2 discusses
the combination of classical methodologies chosen to estimate a signal verifying these properties.

As a support of the claim that these considerations are useful, section 3 analyzes results of a squeal test campaign
on the industrial brake shown in Figure 1. Section 3.2 first discusses squeal parameters and features. Needs
associated with their estimation in realistic configurations are then addressed. Finally, their use for occurrence
classification using frequency amplitude and possibly shape clustering is detailed. Section 3.3 then seeks to a draw
a parallel between numerical parametric studies of complex modes, called root locus in control theory, and values
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to be extracted from experiments. To allow refined characterization of the instability area and its edges, section 3.4
proposes to use parametric testing by varying pressure, which is the parameter with first order influence. Section 3.5
finally discusses how the proposed results can be used in conjunction with finite element simulations.

2 HBV signal description

2.1 Definition and outline of estimation strategy

In the present case of a brake squeal limit cycle, and more generally for the periodic forced response of a non-linear
system, one expects that over a short enough time, the system can be considered invariant and harmonic balance
may allow a correct estimation of solutions. The Harmonic Balance state Vector (HBV), that will be used for signal
estimation, combines the response at model DOF or measured sensors {qh} (where the vector nature is show by the
{ } notation and h is the integer harmonic index) and the instantaneous frequency ω common to all spatial components
and harmonics. A key assumption is that these parameters vary slowly in time, leading to the signal model

{qHBV (ω(tslow), qh(tslow))} =
∑
h∈H

Re
(
{qh(tslow)} eihφ(t)

)
=
∑
h∈H

Re
(
{qh(tslow)} eih

∫ t
0 ω(tslow)dt

)
(2)

where the rapidly varying instantaneous phase is the time integral of the slowly varying instantaneous frequency
φ(t) =

∫ t
0 ω(tslow)dt.

The ability to distinguish slow and fast time scales depends on a frequency separation illustrated in Figure 3. The
limit cycle around 3 kHz defines the fast timescale. Slower variations are a drive shaft torsion mode around 30 Hz (in
one of the test bench used), the wheel spin typically below 1 Hz for the speeds of interest, the steps associated with
pressure ramps, and the gradual increase of temperature. The frequency separation, by two orders of magnitude
here, is a property that seems essential for the successful estimation of an HBV signal. Geometric changes that will
be illustrated in Figure 15 occur rapidly, but don’t seem to limit the proposed methodology.

Fig. 3: Fast and slow time scales with different characteristic frequencies for test shown in Figure 2.

The name HBV emphasizes the vector nature (multiple sensors/DOF) and the relation to the harmonic balance
method. These features make it different from traditional analytic signal descriptions, even though this work was
clearly motivated by the Hilbert Vibration Decomposition (HVD) [16], which cleanly discusses time-scales of frequency
and amplitude modulation.

When considering a time response, it is relevant to split the signal as

{q(t)} = qHBV

(
ω(tslow), qh(tslow)

)
+ qBroad(t) (3)

a harmonic contribution given by (2) and a wide frequency contribution qBroad(t). In the case of brake tests, this
harmonic content is linked to squeal instabilities, while the broad contribution is due to the passage of asperities under
the pad which generates broadband impulse responses. In the case of simulations [5, 25], the broad contribution
corresponds to transients and possibly asperities.

Figure 4 shows the spectrogram of a squeal response. Up to 14 s, the full response is shown. It is dominated
by harmonics, but also contains a qBroad(t) contribution in the form of random noise. Between 14 and 17s, the
spectrogram of the estimated qHBV is shown with black lines indicating the instantaneous frequency ω(tslow). The
presence of vertical bands is due to the time varying nature of the response.

In the 17 to 20s range, the spectrogram of qBroad(t) is shown. The blue bands close to the estimated qHBV

harmonics show that the estimation process seeks to reproduce the signal in a limited 100 Hz band. In the time
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response in Figure 4 right, qBroad(t) is shown as a red line. Its small amplitude indicates that the estimation using 3
harmonics is sufficient.

Fig. 4: Sample test of a real brake with limit cycles varying with applied pressure. Left: spectrogram with full signal [10-14s],
estimated HBV signal [14-17s], broadband residual signal [17-20s]. Right: overlay of initial microphone signal y(t) in blue and
residual yBroad(t) in red.

The proposed estimation process considers the following phases :

• initial scalar estimation of analytic signals associated with harmonic 1 in each measurement, discussed in
section 2.2. The proposed use of demodulation only requires selection of an initial frequency band for variations
by analysis of spectrograms.

• the second step is to refine the frequency that is known to be common to multiple measurement channels.
Section 2.3, shows how a Singular Value Decomposition (SVD) is used to define experimental principal
coordinates and use the first one to define a unique phase.

• having an estimated phase, the amplitudes are reestimated considering a smaller capture band corresponding
to the physical extent of the limit cycle content.

For the shortened automated test matrix considered here, acquisition is done at 40960 kHz, thus 24 channels
stored using single precision correspond to 225 MB/mn. The complete test campaign considered corresponds to 300
GB which becomes impractical for standard PC available to test groups. Going through the demodulation process, it is
possible to use the slowly varying assumption to decimate results (a fairly detailed 1 kHz was retained here although
300 Hz or 10 times the drive torsion mode period is certainly sufficient). It is also possible to reduce the number of
significant digits as oscillations are now only contained in the instantaneous phase information. Data decimation by a
factor 100 is thus achieved in practice and this makes it practical to implement interactive viewing of large parts of a
campaign.

2.2 Estimation of scalar amplitudes using synchronous demodulation

To initialize and later refine the HBV estimation, it is proposed to simply use the well known synchronous demodulation
procedure [16, 18] illustrated in Figure 5. This choice is shared with non-linear testing methodologies [17, 19, 20, 26]
that use phase locked loops to track the limit cycle phase, with the notable importance of considering a vector signal
as will be detailed in section 2.3.
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2 cos(φ(t))

x(t)

−2 sin(φ(t))

q1c(tslow)

q1s(tslow)

x(t) ≈ Re
(
q1(tslow)e

i
∫
ω(tslow)dt

)

Fig. 5: Synchronous demodulation algorithm

To understand the effect of demodulation, one considers a simple single harmonic signal of the form

x(q1(tslow), t) = Re(q1(tslow)eiω(tslow)t) = Re
(
(q1c + iq1s)eiωt

)
= q1c cos(ωt) − q1s sin(ωt) (4)

where the dependence of q1c, q1s on tslow will be dropped to alleviate notations. For a constant frequency, φ = ωt, the
product of the signal x(t) with quadrature signals 2 cos(φ) and −2 sin(φ) is

2x(t) cos(ωt) = 2 (q1c cos(ωt) − q1s sin(ωt)) cos(ωt) = q1c − q1s sin(2ωt) + q1c cos(2ωt)
−2x(t) sin(ωt) = −2 (q1c cos(ωt) − q1s sin(ωt)) sin(ωt) = q1s − q1s cos(2ωt) − q1c sin(2ωt) (5)

Passing these signals in a low pass filter to eliminate the 2ω frequency component, one obtains estimates of q1c

and q1s.

Classical constraints apply to the demodulation low pass filter. Bandwidth corresponds to the band in which one
seeks to reproduce the harmonic signal (in Figure 4 the blue band in the qbroad(t) is 100 Hz wide because a 100 Hz
low pass frequency was used). If another harmonic component is present within this band, the result is unclear and
methodologies discussed in the HVD developments [16, 21] should be adapted.

Forward/backward filtering should be applied to obtain zero phase filtering when possible. This is in particular
used here for a posteriori analysis of long squeal transients (> 1 s), but not for analysis of short transients obtained
when scanning the brake with a 3D vibrometer (10 to 30 ms). Filter order can be set to a high value to diminish the
level of oscillations in the estimate.

Since demodulation requires an assumed phase φ(t), it is initialized by taking a peak in a few spectrogram lines
and keeping the associated frequency constant ω0(tslow) = ωpeak. When parameters change, the limit cycle frequency
is expected to change, as visible in Figure 4 and using a constant demodulation requires that the capture band be
larger than the physical frequency shift. A second step is thus needed to estimate a unique HBV frequency.

2.3 Estimation of a unique HBV frequency

Choosing a start value for the phase, typically ω0(tslow) = ωpeak, and φ0(t) = ω0t, enables the initial estimation of
harmonic scalar signals by demodulation. Classical analytic signal theory uses a scalar signal and defines a phase
correction φ(t) = φ0(t) +

∫
δω(t)dt = φ0(t) + δφ(t) with

δφ(t) = tan−1
(

q0
1s(t)

q0
1c(t)

)
=

∫
(δωdt). (6)

In other words, phase evolution of harmonic 1 signal q0
1 = q0

1c+ iq0
1s is interpreted as an error on the frequency estimate

to be corrected to achieve constant phase.
This does not account for the HBV signal model (2) constraint that the frequency is common to all spatial

components and that the shape is a complex vector {qh} (tslow). Thus rather than selecting a single sensor as
reference, which was found to be unreliable, it is proposed to correct the HBV frequency by seeking to have a principal
coordinate close to zero phase.

A principal signal and the associated coordinates is obtained by computing the Singular Value Decomposition
(SVD) of the demodulated harmonic h = 1 signals q0

1(tslow) = q0
1c(tslow) + iq0

1s(tslow) at NS sensors and for NT time
steps. To further achieve the use of a real vector with a complex amplitude, as when combining sequential limit cycle
tests [27], the real and imaginary parts are reordered sequentially to obtain real valued left principal vectors

{
u j

}
in the

following decomposition[
q1c(tslow) q1s(tslow)

]
NS×(2NT )

=
∑

j

{
u j

}
NS×1

(
σ j

{
vH

jc vH
js

})
1×2NT

=
[
u j

] {
q1c, j(tslow) q1s, j(tslow)

}
(7)
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resulting in
{
u j

}
principal shapes defined at sensors and, for each principal shape j, a generalized amplitude vector{

q1c, j(tslow) q1s, j(tslow)
}
, function of time, that is approriately reordered as a complex generalized amplitude function of

time

q1R, j(tslow) = q1c, j(tslow) + iq1s, j(tslow) (8)

where the R index is used to indicate the fact that this corresponds to a reduction of the signal dimension. Note that
the names reduced and principal are used interchangeably by different communities.

The SVD gives an ordered set of principal amplitudes, since the singular values σ j are positive real with decreasing
amplitude for increasing j. If the response is dominated by two singular components, the whole test interval is properly
described by a single complex shape. If a few more are needed, this may be an indication that the harmonic 1 shape
q1 does not simply come from the combination of two real shapes. In Figure 6, the first two principal coordinates
dominate when the amplitude is large (as expected from the SVD), but a third component, shown in grey, has notable
contributions in the lower amplitude regimes when q1R,2 is below 10g. Note that the use of principal coordinates is
clearly linked to the notion of modal filters used in [18] for example.

Fig. 6: Principal amplitudes during three intermittent squeal occurrences. q1R,1 in blue, q1R,2 in red, the following in gray. Vertical
lines indicate a complete wheel revolution.

As mentionned in the motivation, the HBV frequency is corrected by seeking to have the first principal coordinate
q1R,1(tslow) close to zero phase. Note that in 1R, 1 the second 1 refers to the first principal coordinate (indicated by
the R for reduced), while the first 1 to the fact that this has been applied to the first harmonic (although using higher
harmonics might clearly improve frequency estimation accuracy). The instantaneous frequency correction (and not
phase correction shown in (6)) is then given by

δω(tslow) ≈ LP
(

1
dt tan−1

(
q0

1R,1(tn+1)

q0
1R,1(tn)

))
(9)

Using a ratio of succesive samples q0
1R,1(tn+1)/q0

1R,1(tn) provides a phase increment. As suggested in [16], this avoids
phase wrapping issues since increments are small.

The division by dt gives a frequency correction that forces q1R to be exactly real and an updated instantaneous
frequency given by ω1(tslow) = ω0(tslow) + δω(tslow). The zero phase constraint is not inherent to the harmonic balance
methodology, so that it is preferred here to enforce the constraint that ω is expected to be a function of tslow by applying
a Low Pass (LP) filter, set with a cutoff frequency based on frequency content considerations shown in Figure 3. Later
integration then recovers the phase correction (6).

As an illustration, one will consider a measurement with multiple accelerometers. As shown in Figure 6, amplitudes
tend to vary notably.

Figure 7 left is a zoom on a high amplitude area. The raw estimate of individual sensors, between grey dotted line,
is relatively consistent, but the estimate based on the principal coordinate (unfiltered in dashed red and filtered in solid
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red) has been found to give reliably consistent estimates. In the right plot, a low amplitude area is chosen. Individual
sensors give very noisy estimates, but the principal coordinate gives a proper result. The use of principal coordinates
(the vector nature of the HBV signal), thus gives access to much lower amplitude parts of the test, which is helpful to
bridge the gap between low amplitude complex modes and high amplitude limit cycles.

Fig. 7: Estimated frequency error. Bounds on individual sensors shown in grey. Filtered correction (9) in solid red. Without lowpass
in dashed red. Left: high amplitude area. Right: low amplitude area.

The use of the largest number of sensors for the principal coordinate computation gives the best result unless
some of those have problems. In the present test, saturation of the IEPE circuits led to some wrong measurements,
which clearly bias the instantaneous frequency estimation, and were thus discarded.

The corrected instantaneous frequency ω1(tslow) = ω0(tslow) + δω0(tslow), could be used to update the estimate by
correcting its phase q1

1 = q0
1ei
∫

(δω0dt), but the choice made here was to iterate once by restarting the demodulation
procedure using the updated instantaneous frequency in other words get q1

1 = demod(q(t), ω1(tslow)). This shape
estimation phase might not be necessary, but the cost is small.

When tracking large frequency ranges (as in the parametric test of section 3.4), the bandwidth of the first
demodulation must be larger than the total frequency excursion (about 300 Hz in the case of section 3.4). But at
any instant the limit cycle content is actually narrower, so that a lower band is more desirable (100 Hz was used).
Of course an initialization based on a few spectrogram lines might be more adapted than the constant choose for
initialization. Another question left open is the convergence of this multistep algorithm towards a fixed point.

It is finally worth mentioning computing the SVD is not compatible with real time applications, but weighting
individual phase corrections by the amplitude of each sensor achieved similar results. This is similar to modal filtering,
which can be used in real time [18].

3 Squeal illustrations

3.1 Test configuration and experiments

The full brake shown in figure 1 is mounted on a dyno test bench which imposes the disc rotation through a shaft
transmitting the torque. The system is equipped with 17 accelerometers, 1 microphone and 6 sensors measuring
the following brake environment parameters: brake pressure, wheel speed, friction pad temperature, torque and
disk/bracket distance The accelerometer positions are shown in Figure 1 right. The caliper is equipped with 2 tri-axes
accelerometers at the top of each "finger" in contact with the top pad, two accelerometers at the bottom of caliper pins
and one below the piston chamber. Each side of the bracket is equipped with two accelerometers close to the top and
bottom on the pinholes and one close to the attachment with the knuckle. Three accelerometers are finally placed on
the knuckle.

To ensure that the proposed methodologies are compatible with industrial-scale measurements, a small certification
experiment was designed with the following braking events:

• 40x Drag events: Constant brake pressure (12-18 bar) at constant speed (2-10 km/h)
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• 40x Pressure stops: Stop from initial speed (15-30 km/m) at constant pressure (12-18 bar)

• 40x Deceleration stops: Stop from initial speed (15-30 km/h) at constant deceleration (1-3 m/s²)

• 40x Pressure rampings: Linear increase-decrease in pressure (12-18 bar) at constant speed (2-10 km/h)

For each type of brake event, the corresponding parameters are randomly chosen in the parameter ranges (which
have been defined with the brake manufacturer to focus on specific braking conditions). A temperature range (40-100
°C) is also imposed using a thermocouple placed in the friction pad below the pad backplate. Because temperature
cannot be controlled while braking, this temperature corresponds to the one at the beginning of braking events: it is
managed by heating (braking) or cooling (waiting or air-cooling)between braking events. These 160 brake events
resulted in 20 minutes of recorded time data sampled at 40 960Hz, representing 10 GB.

The small certification experiment is used in sections 3.2 to demonstrate applicability to general tests. In section 3.3
a specific test is used to focus on the intermittent squeal occurrences and their relation with parametric root locus.
Section 3.4 then focuses on parametric testing using slow variations of pressure. Finally, section 3.5 discusses steps
taken when coupling test and FEM results.

Note that temperature is measured with a single thermocouple placed in the pad friction below the pad backplate
whereas a temperature gradient is expected, with the highest temperature close to the sliding contact. Precisely
taking into account the effect of temperature is out of the scope of this paper, and would probably require additional
information such as measuring the temperature gradient with a thermal camera. The current single temperature
point is a first step to take into account thermal influence and is a hint to avoid misinterpreting limit cycle parameter
dispersion that would appear purely random without it.

3.2 Classification of occurrences using features and parameters

Brake characterization is performed using a wide test matrix covering a range of operating parameters. Figure 8
illustrates a sample 20 mn test matrix (real ones are often notably longer). Epistemic controlled parameters are
pressure, wheel speed. Epistemic measured parameters are temperature, relative disk/bracket position, torque, ... A
test matrix is usually defined by those parameters and shown in plots such as Figure 8 left. Position of the wheel is
often considered random as it is typically ignored in computations, but it was here estimated by integration of the
wheel speed and will be shown in section 3.3 to have a major effect on intermittent squeal (integration however does
not provide a clean way to really position the disk). Pad wear is another parameter known to have a clear effect.

Features first considered are high amplitude occurrences shown in a spectrogram. Distinction between acoustic
and vibration amplitude is useful to answer distinct questions : is noise going to be considered an end user quality
issue? Is vibration indicating the proximity to an instability area? When an occurrence area is identified, the next issue
is to diagnose its extent.

Classification seeks to group similar squeal occurrences. Similarity is judged by output features: limit cycle
frequency, amplitude and shape, but also by input parameter. Epistemic input parameters are associated with time
scales shown in Figure 3, which indicates that one needs to at least consider fractions of a wheel turn (20 Hz) or
even fractions of a drive torsion period (300 Hz to have 10 points per period). Unmeasured parameters such as the
pressure distribution field, can be considered random even though they are correlated to measurements such as the
torque (see Figure 15).

The test matrix analyzed in this section contains 24 channels, discussed in section 3.1. Sampling at 40kHz with
32bits generates 220 MB/mn of data throughput. The HBV signal model estimation allows data size reduction: the
slow time variations allow sampling at 1kHz and data throughput drops to 5.5 MB/mn, interest on high values would
also allow reduction of the number of significant bits. Nevertheless, the end data set is still more than a million points
and navigation is thus critical. Using the mean pressure/temperature over each wheel turn as shown in Figure 8
left is often used in industry. The parallel coordinate plot shown in Figure 8 right is another classical tool used help
navigation and visual detection of correlations.
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Fig. 8: Left: pressure and temperature for 350 time segments corresponding to wheel turns. Right: parallel coordinate plot
associated with the test matrix.

With so much data, efficient characterization must rely on classification techniques. Aggregating operational points
into clusters with comparable features gives a synthetic view of the overall sensitivity and parametric regression by
groups [28]. The most common clustering for squeal is to build cluster with high amplitudes at similar frequencies.
Figure 9 left shows the maximum microphone and vibration amplitudes from two spectrograms. It shows that the
classification may not be trivial. Occurrence OccA spreads between 3.1 and 3.4 kHz depending on the operating
condition. It has strong levels of harmonics labeled h2 and h3 in Figure 9. Occurrence OccB in between 4.7 and 5.2
kHz, is only visible in the vibration amplitudes and only during 30 s out of 1200 in the test. Occurrence OccC in the
10.6 to 10.8 kHz range has the highest level, but is associated with short intermittence (33s spent above 10% of
maximum level).

Further refinement of sensitivities can be performed trying to highlight trends. The 2D histogram shown in 9 right,
uses the demodulation result and corresponds to a cumulative amplitude (ap(pixel) =

∑
t∈pixel a(t)dt) associated

with frequency and pressure bands shown as pixels. Transparency is set to ap(pixel)0.2 to highlight the area in poor
contrast displays, but furtherwork on this integral criterion is clearly needed. Occurrence frequency increase with
pressure is the first order trend. The spread of frequencies at a given pressure corresponds to the effect of other
parameters and need further analysis. One can see multiple horizontal lines at 12, 13, ... 18 bars. They result
from drag experiments, where pressure is kept constant for a long time and thus should be seen as a bias for the
interpretation of results. Finally, it is unclear whether there is a separation between the lower left corner (<3200 Hz,
<11.3 bar) and the rest of the responses. Answering this will require using shapes for clustering efforts.
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Fig. 9: Left: maximum amplitudes on microphone and vibration. Right: histogram of instantaneous frequency and amplitude
OccAh1.

Histograms of other occurences are illustrated in figure 10. The differences between OccAh1 and OccAh2 show
that the relative amplitudes of harmonics evolves with pressure, but detailing the trend is beyond the scope of this
paper. For OccBh1 the sensivity to pressure is smaller and the number of occurences is much smaller (this would be
qualified as rarely occuring). For OccCh1 the frequency is mostly insensitive to pressure.

Fig. 10: Histograms of instantaneous frequency and amplitude. Left: OccAh2 harmonic. Center : OccBh1. Right : OccCh1

Using HBV estimates of the harmonic 1 shapes, a first empirical shape clustering technique is illustrated in
Figure 11. The instant ti with the highest vibration amplitude is chosen as reference. Instants whose shape has a
correlation by the MAC (Modal Assurance Criterion)

MAC({qr(t)} , {qr(ti)}) =

∣∣∣{qr(t)}H {qr(ti)}
∣∣∣2

{qr(t)}H {qr(t)} {qr(ti)}H {qr(ti)}
(10)

above a given threshold (0.8 here) are considered within the same cluster. The process is repeated until new clusters
have too few points (here 500 out of 1.6e6). The point used as reference for each cluster is marked by a ci (it does
not correspond to a cluster centroid). The first cluster c1, in blue in Figure 11 left, corresponds to instant frequencies
in the 3200 to 3400 Hz range. This shape rarely corresponds to low amplitudes. The transition between low and
high amplitudes is seen as a yellow cluster c3. For test/analysis correlation this means that computations, based on
complex eigenvalue analysis of a system linearized around the static sliding state, would correspond to the yellow
cluster. Then, as amplitude increases, limit cycles would come close to the blue cluster.

The second cluster c2 corresponds to occurrences between 3080 and 3160 Hz. It is separate from the blue cluster
and most transitions occur with amplitude raising from zero (intermittent squeal), even if some happen as transitions
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between the two limit cycles. The two shape clusters thus confirm the intuition from Figure 9 right (histogram analysis):
two different mode couplings occur below and above 11 bar, resulting in two different shapes.

It is important to note that the use of thresholds hides the fact that transitions occur smoothly. As modal
combinations evolve with parameters, it is more relevant to use a norm measuring the distance between shapes,
such as expansion based mechanical deviation energy [27], or more simply by considering the angle between
the subspaces spanned by each complex shape [29]. Taking the dimension two real subspaces associated with[
Re(q1(t)) Im(q1(t))

]
, one computes the subspace angle with respect to the subspace at maximum amplitude (point

labeled c1). Figure 11 right illustrates that the evolution of shapes is notably dependent on frequency and amplitude.
Compared to the subspace of the higher amplitude points noted c1 in the Figure 11, the angle clearly increases,
implying that the shapes evolve, as the operating condition changes. Note that subspace angles are classically used
in the k-means clustering technique with additional strategies to choose the center point [30].

Fig. 11: Frequency vibration amplitude map for the limit cycle in the 3080 to 3450 Hz range (Amean is taken to be ∥q1(tslow)∥, the
11.7% corresponds to the relative width of the frequency window, which is a useful indicator of sensitivity). Left: clustering as
MAC<0.8 boundaries. Right: color indicating subspace angle to point c1.

Figure 11 highlights a clear correlation between frequency and amplitude/shape evolution. The next section will
seek to draw a parallel, with classical control theory where the evolution of poles and complex modes with parameters
leads to a root locus.

3.3 Transient root locus: using numerical insight for experimental analysis

The literature on non-linear vibration often highlights that vibration amplitudes play a critical role and can be usefully
considered as an environmental parameter characterizing how the system behaves [31]. The Hoffman model is a well
known phenomenological model of squeal [32], where a varying parameter, the friction coefficient, induces evolution
of poles both in terms of frequency and damping.

A variant of this functional model has been detailed in [33]. The main change is the consideration of a non-linear
contact stiffness leading to an operation point that depends on static pressure and dynamic pressure fluctuations.
Introducing a sensitivity to applied pressure is thought to be more representative of the present situation illustrated by
Figure 9 right. Note that the model has been tuned to obtain limit cycles representative of brake squeal, but is not a
model corresponding to the experimental configuration illustrated in this paper. The following simulation results are
not to be compared directly with previous experimental results, but only illustrate the trends and provide clues for
deeper analysis of tests.

The left view of Figure 12 shows frequencies as a function of pressure. But the only area measurable with squeal
occurrence tests is the unstable zone and its edges, which can be seen in test as stable/unstable transitions. The
right view emphasizes another key aspect of parametric coupling of modes : the frequency and damping ratio evolve
simultaneously. This corresponds to root locus analysis, a classic notion of control theory, where system transition
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from stable to unstable by mode lock-in typically occurs with a real and imaginary parts of poles, as well as mode
shape depending on a gain parameter.

A classical property of HBM solutions is that a non-linear relation between gap and pressure in the contact area
will generate a nonlinear coupling between harmonics 0 and 1 of gap (static penetration and vibration amplitude), and
harmonics 0 and 1 for pressure (static and harmonic 1 pressure). This non-linear relation can be seen as an amplitude
and pressure dependent equivalent stiffness [33]. In Figure 12, one thus varies a contact stiffness parameter that
leads to the modal interaction where frequencies, damping, and shapes evolve. In transients, one expects, and finds
numerically, convergence to the stability edges, corresponding to points L2 and R2 of Figure 12 right in this simple
case.

Fig. 12: Evolution of the linearized system poles as a function of the static load Fpres. Left: natural frequency. Right: root locus
(damping as a function of frequency) for the same variation. Color giving a ratio of contact stiffness to horizontal stiffness [33].

To confirm that this expected trend is measurable in tests, one considers a brake event leading to squeal
occurrence measured close to 18 bars and classified into OccCh1 in Figure 9 left. This brake event has been chosen
over other occurence frequencies because squeal is intermittent: in a short time period, system switches between
stability and instability, and a high range of amplitude growth/decay is covered. In the functional model, intermittent
squeal corresponds to crossing of the stability boundary due to parameter changes, illustrated by the black lines in
Figure 12. The short length of occurrences makes the analysis using a spectrogram such as shown in Figure 13 left
quite sensitive to parameter choices (buffer length, overlap, window, ...). Using the HBV estimation, the HBV signal
model makes it easier to see in Figure 13 right that each occurrence happens with a coupling of frequency decrease
for growing amplitude followed by a smaller frequency increase for decaying amplitude.

In the Linear Time Invariant (LTI) complex mode analysis, a pole λ is used to explain growth/decay events with, for
lightly damped poles, slow time amplitude varying with exp

(
Re
(
λ
)

t
)
. For growth phases, the real part of the pole is

positive, for decay phases it is negative. Using an amplitude estimate A(tslow), the principal coordinate (8) or the norm
of the HBV vector, one thus defines a decay ratio using

{ζD(t)} = −
1

ω(tslow)
∂log(A(tslow))

∂t
(11)

which would correspond to the damping ratio in the case of a single degree of freedom system. Note that this inspired
by the classical logarithmic decrement method and work done on damping in bolted joints [24].

Growth phases are thus associated with a negative decay ratio, as a negative damping ratio describes an unstable
LTI system. The values in the [−0.12 0.06]% range are related to the frequency range of 0.6% as in root locus analysis
evolution of real and imaginary parts of the poles have similar amplitudes. The decay ratio evolution is strongly
correlated with a frequency evolution which corresponds to the expected behavior in the functional model of Figure 12
right.
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Fig. 13: Left: spectrogram illustrating the intermittent squeal. Right: amplitude evolution as a function of frequency.

In the simple functional model, all changes are represented by the scalar pressure parameter, but many other
parameters are involved in the operating conditions of the measured brake system. To understand the physical
mechanism leading to intermittent squeal in the real measurements, Figure 14 focuses on the disk (or wheel) position
(WP) associated with squeal occurrences. Figure 14 left shows that repetitions correspond to different parts (each
color being associated with a different quadrant). In Figure 14 right, the decay ratio is shown on a spiral of radius
growing with time. It thus appears that the growth/decay events are consistently positioned in space for multiple wheel
turns.

Fig. 14: Left: decay ratio as function of frequency (color indicates wheel angle). Right: decay ratio shown as color positioned on a
spiral to emphasize the angular repetability.

Figure 15 left focuses on a displacement sensor placed between the bracket and the disk. Although the disk was
selected to be as flat as possible, one clearly sees that fluctuations of several microns occur regularly. This implies
that pad pressure and pad guiding springs see varying loads. Figure 15 right further shows the measured torque. The
correlation between wheel position, bracket/disk distance and torque fluctuations is very clear. This is consistent with
the assumption that pressure distribution under the pad is strongly affected by the geometrical disk defects and also
highlights that torque impulses are a source of broadband background noise. One can also note that although the
velocity is maintained constant, the torque is diminishing over the 10 seconds of the experiment (as shown by the time
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labels in the Figure 15).

Fig. 15: Left: disk/bracket distance shown as color on a spiral (black line is an indication of pad extent). Right: torque as a function
of wheel position (WP), distance (Disp) shown as color. Time labels show slow decrease of torque during the test, each line
corresponding to a complete revolution.

3.4 Parametric testing and clustering of occurrences

Operating at a fixed condition in speed/pressure does not give a good understanding of the stability boundary. It is
thus desirable to analyze experiments where parameters are varied. Such variation can be motivated by physical
operating conditions (the speed slows as the car stops, the pressure changes as the driver presses or releases the
pedal) or simply seek to cover the parametric space. In Figure 16 pressure is varied from 15 to 10 Bar and back up
with 0.5 Bar increments lasting between 2 and 9s.

Figure 16 illustrates that intermittent squeal occurs in the 14.5-15 Bar range (yellow areas in the right figure) and
the 11-11.5 Bar range (lighter blue areas). These thus correspond to the edges of the parametric instability domain.
The edges are not sharp as the disk is not flat which, as shown in the previous section, is sufficient to have the
system transition between stable and unstable behavior. In the intermediate pressure area 11.5 to 14.5 bar, squeal is
permanent but still subject to parametric variation, which can go up to being intermittently stable, associated with the
wheel position.

Fig. 16: Left: spectrogram of microphone measurement. Right : harmonic 1 acceleration amplitudes as a function of time,
pressure as color and pad temperature shown in the upper horizontal bar (independent color scale).
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Figure 17 seeks to analyze these results as an experimental root locus. In the left plot amplitude is shown as
function of frequency. Intermittent squeal corresponds to areas with notable amplitude changes. In the right plot,
one seeks to emphasize the relation with poles and thus displays decay ratio as a function of frequency. As before
frequency and decay ratio evolve simultaneously. The stability boundary at high pressures is close to 3260 Hz, while
for low pressures it is close to 3150 Hz. The transitions are also different at low and high pressure indicating that the
associated mechanism has changed. The comparison with poles is imperfect as frequency, amplitude, damping and
shapes are evolving simultaneously. But showing this evolution seems important to address the question of relations
between limit cycles and complex modes.

During the developements, it was also realized that improper instant frequency tracking, for example using a first
demodulation low pass filter set too low, generated amplitude decays linked to frequency error. Future work will thus
be needed to fully control distorsions due to instant frequency estimation.

The repeatability for increasing and decreasing pressure is good but not perfect (this is very visible in the
amplitude/frequency plot). This is expected as torque decreases over time (as shown in Figure 15 right), the pad
temperature increases from 78 to 93 C (as shown by the upper colorbar), and pressure steps vary in length. In terms
of the certification experiment of figure 9 right, this corresponds to the horizontal width of the instability area.

Fig. 17: Left: harmonic 1 amplitudes as a function of frequency and pressure as color. Right: decay ratio as a function of instant
frequency and pressure as color (transient root locus)

When computing a root locus, it is known that interacting modes will change shape. When doing parametric
computations of instabilities, it has been found useful to use clustering techniques such as the k-means to clarify
parametric areas of similar behavior. Clustering as discussed in section 3.2 can be done here using the shapes
defined in this case by 16 accelerometer measurements.

The resulting clusters are shown as colors in Figure 18. The highest amplitude cluster c1 in blue corresponds the
stable limit cycle. Intermittent squeal at high pressure is cluster c2 close to 3100 Hz, 30-45s interval for downward
pressure and 60-90s for upward pressure. Cluster c3 close to 3250 Hz corresponds to the other edge of the instability
area.
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Fig. 18: Left: instantaneous frequency as a function of time, shape clusters (MAC<0.9 tolerance) as colors and pressure shown in
the upper horizontal bar (independent color scale). Right: transient root locus with cluster colors.

To analyze the shape transition, the first harmonic of the HBV signal {q1(t)} is decomposed into j real valued
principal shapes

{
u j

}
and their associated complex principal coordinates q1R, j(t) using (8). Figure 19 left shows the

evolution of the principal coordinates in the time interval [9-44]s which contains 3 clusters. In the [15-40]s band, the
squeal is constant, close to its highest amplitude, and it is reasonable to analyze its complex shape as a combination
of the two main real shapes.

Taking the first generalized coordinate q1R,1 as reference, Figure 19 right shows the amplitude ratio |q1R,2/q1R,1|

and the phase difference arctan(q1R,2/q1R,1) evolving with pressure – the main driver of instantaneous frequency. In
the permanent squeal time window (12.5-14.5 bar pressure range), the amplitude of the second shape grows with
pressure, up to becoming predominant at highest pressure. The phase difference between the two real shapes is
fairly stable. At low (11-12 bar) and high (15 bar) pressure, squeal is intermittent which explains the horizontal spread
in Figure 19 right. The study of these transition zones would require a more detailed analysis, as the contributions of
the other shapes are no longer negligible.

The analysis of shape transitions in terms of subspace of low order is useful for both testing and test/FEM
correlation. During test, it is often difficult to stay precisely at the same operating condition: uncontrolled parameters
such as bracket/disc distance or temperature evolve during a 3D-SLDV scanning; several braking events may be
necessary to measure batches of accelerometers. Test/FEM correlation can seek to analyze global trends (are the
measured principal shapes present in the frequency band of interest in the model?) or detailed behavior (does the
mode coupling evolve with parameters the same way in test and simulation?).
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Fig. 19: Left: participation of real generalized coordinates to the complex shape for stabilized squeal [19-35]s. Right: evolution with
frequency and pressure of the two first generalized coordinates (amplitude ratio and phase difference).

3.5 Towards hybrid Test/FEM models

In many cases, squeal mitigation is performed testing a range of classical counter measures : viscoelastic shims,
friction cuts and chamfers, ... This however does not really use initial experimental results to guide the design process.
The usual alternative is to use tests to gain an understanding of involved shapes. Figure 20 illustrates typical shapes
obtained from test. Figure 20 left shows that the number of accelerometers is only sufficient to have very coarse
information.

Laser vibrometer measurements are then typically used to obtain a detailed shape, as illustrated in Figure 20 center.
This requires an assumption of invariant subspace at reference accelerometers to merge the batch experiments
corresponding to each laser measurement. The methodology discussed in [27, 34] typically gives better results than
the Polytec FastScan procedure, the latter being more adapted to time invariant cases as presented in [35].

Regarding squeal cluster analysis in Figure 11, both model and test indicate that multiple modes exist within
the band of interest. Further work is needed to ensure that the measured shapes are reliably constant during the
sequential test used for shape characterization. Finally, it is worth noting that the use of HBV estimation was found to
give more reliable results than the FFT based FastScan. Fully understanding the reasons for this improvement is still
an open point.

Figure 20 right presents an estimation of the test shape on the FEM using the minimum dynamic residual expansion
method [27, 36]. This inverse problem resolution provides richer insights on the test results using a shape known at
all FEM DOF. Here, FEM display uses plane cuts, to give a better visualization of relative motion of internal parts
(such as the relative displacements of the pins). With too few accelerometers, model correction is fairly limited for
the frequency of interest, so that the estimation hugely relies on the model. With vibrometer measurements, spatial
information is notably richer and can be exploited for design orientation [37].

Fig. 20: Left: accelerometer positions on the FEM mesh. Center: sample 3D-SLDV measured shape. Right: expanded test result.
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4 Conclusion

Estimation of a HBV signal model provides a methodology to separate slowly varying squeal limit cycle characteristics
from remaining broadband noise. The concept is consistent with the expected physical behavior at multiple sensors
and was found to be more appropriate than FFT based alternatives. Vibration features (instant frequency and complex
shapes) can thus be sampled at a lower frequency (here still a rich 1 kHz is kept) and using lower number of digits, as
one does neither expect nor seek high relative precision. This leads to data volume reduction by close to two orders
of magnitude.

The methodology is sufficiently robust to be used on full industrial squeal characterization test matrices combining
constant torque stops, constant deceleration stops, constant velocity with variable pressure tests, ... The resulting data
was used to propose classification strategies with a novel level of detail. In particular, measuring shape continuously
enables the clustering of occurrences, not only by frequency and acoustic amplitude, but also by shape.

The definition of a decay ratio leads to the proposition of transient root locus analysis. This motivates continuous
parametric tests giving a characterization of the edges of the instability areas where squeal is intermittent. For the
retained case, these transients are very correlated with wheel position, which affects the contact pressure fields as
indicated by the bracket/disc distance and torque measurements. The importance of disk micro-geometry has been
documented in other studies and the results shown here indicate that relative displacement measurements may be a
relevant characterization strategy.

In classical control theory, root locus corresponds to the study of the evolution of poles with changing control
gains. Here, the terminology root locus was retained to insist on the fact that the evolution of limit cycle characteristics
is coherent with a distributed contact stiffness change (which plays the role of a gain). Simulation results on
functional [33] and reduced FEM models could be analyzed using the same HBV estimation procedure than test. This
enables consistency analyzes and novel model validation procedures. The associated results will be documented in
future publications.

Effects of irregularities viewed as torque impacts, and laser vibrometer dropouts are two sources of measured
signal that cannot be represented by the HBV, but their impulsive nature is sufficiently different from the nearly-periodic
limit cycle response that one can expect signal estimation techniques to be able to provide an improved estimate.
Kalman filter based techniques [24] could probably be used in conjunction with the methodology proposed here to
improve initial results in specific configurations, while retaining the advantage of always producing a result.

Outside the experimental characterization of squeal limit cycle, the HBV signal model has many other uses. For
non-linear transient computations, it was successfully used to obtain evolution of pad pressure distributions with limit
cycle amplitude. For noisy tests with sweep shaker excitation, engine run-up, variable speed imbalance cases, clean
estimates of HBV signals could be obtained with a single pass when FFT based methodologies required averaging.
Finally, combination of multiple harmonics were used to analyze modulations within the period [38].
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