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Abstract
Multi-input, multi-output (MIMO) testing is used in component qualification to reproduce operational
responses in the laboratory. It is often preferred to single-input and base-shake testing because of the
potential for equivalent or better tests using smaller actuators and shorter test suites. Given a target
response, two key steps in MIMO test design are selecting actuator locations and solving for input
loads. Actuator locations are often manually selected using expert judgment. If an automatic method is
used, locations are usually determined by simulating the vibration control problem and minimizing a
combination of the input energy and control residuals. To select a configuration, the relative importance
of input energy and residuals must be specified. Specifying relative weights is, in general, a manual and
subjective process. This paper develops an objective function that compares actuator configurations
based on control accuracy and required input energy without any manual parameter tuning. The
objective function uses an optimally selected tradeoff parameter for each candidate configuration. To
choose actuator locations using the new objective function, a pivoting algorithm for integer programming
problems is developed. Starting with an initial configuration (such as the one generated by a greedy
algorithm), the pivoting algorithm guarantees an objective function decrease in each iteration until
convergence is reached. In a simulation featuring a structure excited by a diffuse acoustic field,
electrodynamic shaker locations and regularized inputs are solved for without any analyst-specified
parameters. Simulations are performed in MIMO configurations where the number of target responses
is less than, equal to, and greater than the number of actuators.
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1 Introduction

Multi-input, multi-output (MIMO) testing has grown in popularity for aerospace and automotive applications in the
last two decades. By mimicking operational conditions in the laboratory, component and system qualification are
significantly improved. MIMO testing is most often performed by suspending a test article from low-stiffness bungees or
from cables [1, 2]. For some field loading configurations (especially aerodynamic and acoustic loading), well-designed
MIMO tests yield far better replication of operational responses than single-axis or shaker-table testing [3].

MIMO testing is typically performed using multiple electrodynamic shakers [4, 5], but it can also be performed
using piezoelectric actuators [6]. In either case, the location of actuators must be selected to yield a test that can
safely produce the most representative target response possible. In the simplest case, engineering judgment can be
used to place actuators on the structure, but a more repeatable and rigorous method is often desired. If a system
model is available (such as a finite element model or an experimental model from modal testing), actuator locations
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can be chosen from among candidates using frequency response functions (FRFs) or system mode shapes. Some
methods directly rely on modal analysis, including mode shape-based placement [7] and effective independence
[8, 9]. Other methods perform control simulations using sets of candidate locations. Beale et al. considered the
uncertainty of estimated inputs to assign weights to and subsequently downselect control locations [10], similar to
how the Kullback-Leibler divergence metric is used for sensor placement [11]. Most often, the residuals between
the simulated MIMO output and the target response are used as the objective. The residuals can be converted to a
scalar by simple least squares or by an RMS decibel difference of the autospectra across frequencies and degrees of
freedom [9, 12].

However, only considering control accuracy ignores the input energies. Often, as the number of actuators is
increased, the required inputs to control to the target response also increase [9, 13]. Instead of working together,
actuators can offset each other’s modal contributions for some modes, leading to lower residuals but very large inputs.
Mathematically, this corresponds to an increase in the condition number of the frequency response matrix (FRM).
Because the loads that actuators can provide are limited, the required input energies are often infeasible or risk
over-exciting unmeasured locations. Although inputs can be reduced by regularizing the control problem, there is no
guarantee that the actuator locations provided by the residual objective will yield good control or small input energies
when the regularization is applied. This motivates the inclusion of information about input energies during location
selection. Kondoh et al. used a multivariate objective function to balance control and input force to place sensors and
actuators [14]. Mayes et al. augmented this approach for shaker placement or control using electrodynamic models of
shakers [13]. A major disadvantage of using multiple objectives is that the trade-off parameter must be specified prior
to placing the actuators. Determining the weights on input magnitudes versus residuals is difficult, if not impractical,
without knowing the MIMO configuration.

Regardless of the objective, placing actuators given a set of candidate locations is a difficult integer programming
problem. Integer programming is a general descriptor for optimization problems with integer variables. In this case,
the domain of the optimization variables is the discretized candidate locations. If the number of candidates and
actuators are small, an exhaustive search can be performed. However, the number of unique configurations grows
combinatorially, and this approach becomes computationally infeasible even for modest problems [7, 15]. Integer
programming is a significant area of research in applied math and computer science, and probably the most commonly
used algorithm for actuator placement is the greedy algorithm [16, 13]. In the greedy algorithm, input locations are
selected one by one until a quota is filled. Each additional location is selected as the one minimizing an objective
(usually residuals or a balance of residuals and inputs) among all candidates. Algorithms used for condition number
minimization and effective independence can be considered a kind of “reverse greedy algorithm”, wherein locations
are progressively removed from a starting set until the quota is filled [10]. In other fields, greedy algorithms have been
augmented with, e.g., genetic algorithm crossovers [17], but these methods have not been used in MIMO testing.

After actuators are placed, they must be controlled to reproduce the output target response. Open and closed-loop
control are both used, and closed-loop control is more common for random vibration testing [9]. Closed-loop control
essentially involves solving the open-loop problem, applying the derived inputs, and adjusting inputs using the output
residuals [18]. In any case, initial system inputs must be solved. The system FRMs may be ill-conditioned, and output
target data are noisy, so a simple pseudoinverse often generates very large inputs. Regularization is typically used to
deal with this ill-conditioning. [19, 20, 9, 21, 22].

Three common types of MIMO tests are time waveform replication, random vibration, and sine control. Random
vibration involves control to a power spectral density (PSD) matrix [23, 24, 25]. Sine control [26] involves control to
sinusoids with prescribed frequencies, amplitudes, and phases at multiple control channels. Time waveform replication
(TWR) involves control to a time-domain waveform, typically solved in the frequency domain using the discrete Fourier
transform [27]. The problem form addressed in this paper is the TWR problem. However, the random control problem
can be converted to a TWR-like problem by synthesizing waveforms from the target PSD and controlling to the
waveforms directly. Likewise, transient sinusoids can be converted to time-domain waveforms, so our methods can be
applied to random and sine tests as well.

This paper is organized as follows. Section 2 provides relevant theory, including the problem definition, a new
actuator-placement objective function that enables simultaneous comparison of input magnitude and residuals
across input configurations, and an automatic method for selecting a Tikhonov regularization parameter for a given
configuration. The automatically selected parameter can be passed into the new objective function to evaluate
configurations without any parameter specification by the analyst. In Section 3, computational methods are discussed,
and a new integer programming algorithm is described for solving the actuator placement problem. Section 4 verifies
the new methods in a simulation wherein the output target is derived by applying a diffuse acoustic field to a shell with
an internal tiered structure. Section 5 gives concluding remarks.
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2 Theory

2.1 Problem setup

2.1.1 Problem definition and notation

The task addressed by this paper is to use Ni input channels to generate No known target responses. In some
cases, multiple waveforms may be tested using a single shaker configuration, corresponding (for example) to different
events in the life cycle of a structure. These “data frames” are represented by the index j = 1, 2, . . . ,Nr, and the
frequency-domain target responses are denoted y j (ωk) ∈ CNo , k = 1, 2, . . . ,N f . The collection of all target data is
denoted by Y (ωk) ∈ CNo×Nr . Accurate frequency response functions (FRFs), H (ωk) ∈ CNo×Ndof , are assumed known.
Ndof is the number of candidate locations available for actuator placement. For brevity, we denote dependence
on frequency using the subscript ◦k, so the jth data frame and kth frequency index of response data is denoted
y j (ωk) ≡ y jk. The symbol Y is used as shorthand for the collection of all response data.

Selected shaker locations are contained in the set L, and the respective columns in Hk are retained to produce
No × Ni frequency response matrices, denoted by Hk (L). The frequency-domain shaker inputs, denoted X, must
also be derived. Typically, two objectives are considered: the magnitude of squared residuals and the input energy.
Formally, the dual-objective optimization problem is described as

min
L,Xk

〈∑
k

||Yk −Hk (L) Xk ||
2
F ,
∑

k

||Xk ||
2
F

〉
s.t. card (L) = Ni

(1)

Here card (◦) denotes the cardinality (the number of elements in a set), and || ◦ ||F is the Frobenius norm. As is
standard for multi-objective optimization problems, a Pareto frontier can be produced by defining a tradeoff parameter
and solving

min
L,Xk

∑
k

||Yk −Hk (L) Xk ||
2
F ,+λ

∑
k

||Xk ||
2
F

s.t. card (L) = Ni.

(2)

Each solution to Eq. (2) is Pareto-optimal, and every Pareto-optimal solution to Eq. (1) is a solution to Eq. (2) for
some λ. Hence, the combined objective function captures every potentially desirable solution to the multi-objective
optimization problem. Although independent tradeoff parameters can be set at each frequency, unequal values
generally yield a non-Pareto-optimal solution. That is, if the tradeoff parameters are unequal, there will always be
another solution that yield lower inputs, lower residuals, or both. Defining λk as a function of frequency has the effect
of weighting some source components more than others. The resulting minimum is, in general, not a minimum value
for some fixed λ and is thus strictly dominated.

2.1.2 Discussion

For a fixed L, λ is the Tikhonov regularization parameter, and a closed-form solution is available for X. Methods for
selecting λ include the L-curve [28], the generalized cross-validation, and empirical Bayesian approaches [19]. These
approaches rely on a fixed Hk (L), but L is unknown during the experiment design. Hence, the input locations must
be selected prior to source estimation. But the choice of L depends on λ, leading to an apparent paradox: L must be
known to solve for λ, but λ must be known to solve for L.

Two approaches can be taken to address this problem. The first is to simply set λ = 0 and solve for L. Then,
the L-curve or other approaches can be used to update λ and X. The resulting configuration ignores the source
magnitude, so it can be sub-optimal when the regularization parameter is updated. Another method is to define a set
of values for λ and optimize input locations for each value. The resulting candidate sets can be used to build a Pareto
frontier. This approach can yield significant improvements over the least-squares approach, but the resulting Pareto
frontier is comprised of solutions from multiple Hk (L), so automatic parameter selection approaches fail. The only
option is to build the Pareto frontier and to manually select a location.

A reasonable improvement would be to automatically select λ for every candidate L during the optimization
procedure. In an appropriate optimization algorithm, such an approach would enable selection of L and X without
needing to specify λ prior to optimization. However, Eq. (2) is not applicable across different values of λ. Take as an
example two solutions for L that yield identical input and residual norms but use different regularization parameters.
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The configuration with the lower value of λ will be rated as superior even though the solutions are equivalent. Using
this objective, configurations that prefer smaller values of λ are always preferred, even if they yield larger input
magnitudes. Section 2.3 derives an alternative objective function that can be used to compare location sets without
any prior specification of λ.

2.2 Probability toolkit

Here, we provide a brief overview of probabilistic notation and identities used in the remainder of Section 2. For a
more comprehensive review and introduction, see Ref. [29]. First, assume we have random variables A and B. We
denote the conditional probability density function of A given B (with some shorthand) by

p (a |b ) ≡ p (A = a |B = b ) . (3)

This notation is fairly standard in engineering [29]. Denote in particular the circular complex Gaussian distribution [30]
by

N (x |µ,Ω ) ∝ |Ω|−1 e−(x−µ)HΩ−1(x−µ). (4)

Here ∝ denotes proportionality when constants can be ignored in probability density expressions, and ◦H is the
conjugate transpose. Ω and µ are the mean and covariance of the normal distribution, respectively. A basic operation
is multiplication of marginal distributions to form a joint distribution:

p (a, b |c ) = p (a |b, c ) p (b |c ) . (5)

We will also use Bayes’ rule, given by

p (b |a ) =
p (a |b ) p(b)

p(a)
∝ p (a |b ) p(b). (6)

The left side is called the “posterior”, p (a |b ) is the “likelihood”, p(b) is the “prior”, and p(a) is the “evidence”. The
evidence is typically neglected in favor of the proportional form on the right side of Eq. (6). Finally, an important
identity is marginalization, whereby a random variable is removed from a joint distribution,

p (a |c ) =
∫
B

p (a, b |c ) db, (7)

where B is the domain of b.

2.3 Regularization-agnostic objective function

In this subsection, we derive an objective function that can be used to directly compare configurations L for any given
value of the tradeoff parameter, λ. For a fixed tradeoff parameter, the objective is the same as in Eq. (2). First, define
the (prior) probability of the inputs X as

p (X |σx ) =
∏

j,k

N
(
x j,k | 0, σxΣx

)
. (8)

Because this Gaussian distribution is zero-mean, smaller inputs are preferred. Because the covariance is σxΣx,
smaller values of σx indicate a stricter penalty on the size of X. Σx is a user-defined matrix that determines the
relative penalties on the size of the inputs and correlations between the inputs. Next, define the likelihood of the target
response given a shaker configuration and inputs by

p (Y |L,X, σn ) =
∏

j,k

N
(
y j,k

∣∣∣Hk (L) x jk, σnΣn

)
. (9)

Here, σn scales the noise term (or more generally, the error between modeled and actual response). Σn is a
user-defined matrix that determines the covariance structure of the noise. If Σx and Σn are defined as functions
of frequency, they can be replaced by Σn (ωk) and Σx (ωk). In most applications, Σn = Σx = I uniformly. Now, set
p (L) ∝ 1. Applying Bayes’ Theorem yields

p (L,X |Y, σn, σx ) ∝ p (L,Y |X, σn ) p (X |σx )

∝ p (Y |L,X, σn ) p (X |σx ) .
(10)
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Eq. (10) gives the joint probability of the input loads and actuator locations. Next, define the variable λ = σn/σx,
which represents the ratio of noise energy to input energy [19]. We will later show that this parameter is the same as
λ in Section 2.1. Performing the change of variables σn = σxλ and multiplying by p (σx) ∝ 1 gives

p (L,X, σx |Y, λ ) ∝ p (L,X |Y, σn, σx )|σn=σxλ
. (11)

Substituting Eqs. (8) and (9) into Eq. (11), taking the negative natural logarithm, and removing constants yields

−ln p (L,X, σx |Y, λ ) =NiNrN f ln (σx) + NoNrN f ln (σxλ) +
1
σx

∑
j,k

xH
jkΣ
−1
x x jk

+
1
σxλ

∑
j,k

(
y jk −Hk (L) x jk

)H
Σ−1

n

(
y jk −Hk (L) x jk

)
.

(12)

Eq. (12) can be minimized to give the best shaker locations and inputs, as well as the most likely source level σx.
The minimizing values of X and σx have closed-form solutions. If we fix L and σx, the minimum of Eq. (12) over X is
a well-known solution:

X̂k (L; λ) = H+ (L; λ) Yk, (13)

where H+ (L; λ) is the “regularized pseudoinverse” of H(L), the standard solution to the Tikhonov regularization
problem in Eq. (2). See Table 1 for more details. Using this definition, define the inversely-estimated source metric (ŝ)
and residual metric (r̂) as

ŝ(L; λ) =
∑

j,k

x̂H
jkΣ
−1
x x̂ jk, (14)

r̂(L; λ) =
∑

j,k

(
y jk −Hk (L) x̂ jk

)H
Σ−1

n

(
y jk −Hk (L) x̂ jk

)
. (15)

Function arguments L and λ are hereafter neglected for brevity. Defining a = NoNrN f and b = NiNrN f , Eq. (12)
can be concisely rewritten as

−ln p
(
L, X̂, σx |Y, λ

)
= a ln (σxλ) + b ln (σx) +

r̂
σxλ
+

ŝ
σx
. (16)

Now, minimizing over σx by setting the derivative with equal to zero and solving yields

σ̂x =
r̂/λ + ŝ
a + b

. (17)

Substituting into Eq. (16) and simplifying yields the remarkably simple objective function,

f (L; λ) = ln (r̂ + λŝ) −
b

a + b
ln λ, (18)

which represents

f (L; λ) = arg min
X, σx

−ln p (L,X, σx |Y, λ ) . (19)

For a fixed value of λ and with Σn = Σx = I, Eq. (18) reduces to the simple Tikhonov objective in Eq. (2). However, it
includes an additional term that penalizes smaller values of λ, removing the erroneous effect discussed in Section
2.1.2.

2.4 Selecting the regularization parameter

A simple strategy for selecting λ is to maximize the joint distribution, p
(
L, X̂, σ̂x, λ |Y

)
∝ p
(
L, X̂, σ̂x |Y, λ

)
, with respect

to λ. The objective in words is then to pick the L, σn, σx, and X that maximize the joint density of X and Y. However,
f → −∞ as λ → ∞ because as σx → 0, the density of X = 0 is infinite, but r̂ is bounded. The optimal solution is
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Quantity Expression

L̂ arg minL ln
(
r̂ + λ̂ŝ

)
− b

a+b ln λ̂

X̂k Σ1/2
x Vk

(
S2

k + λ̂I
)−1

SkUH
k Σ
−1/2
n Yk

λ̂ arg minλ Nr
∑

k,l ln (dkl + λ) + (a − 2) ln
∑

k,l
zkl

dkl+λ

r̂
∑

j,k

(
y jk −Hkx̂ jk

)H
Σ−1

n

(
y jk −Hkx̂ jk

)
ŝ

∑
j,k x̂H

jkΣ
−1
x x̂ jk

a, b a = NoNrN f , b = NiNrN f

dkl

[
SkS

H
k

]
ll
, l = 1, 2, . . . ,No

zkl
∑

j
[
uk
]H
l Σ

−1/2
n y jk

Uk, Sk, Vk Σ−1/2
n HkΣ

1/2
x = UkSkVH

k = UkSkV
H
k

Table 1: Relevant quantities and objective functions for determining input locations, L̂, and loads, X̂. Here ◦ and ◦ denote the
compact and standard singular value decompositions, and

[
uk
]
l is row l of u.

then to set λ = ∞ and X = 0, in which case all L are equivalent. Clearly, then, λ must be specified independently of
Eq. (18).

Any existing method could be used to select λ, e.g., the L-curve or generalized cross validation. In this paper, a
Bayesian method is used. The derivation is based on Ref. [19], but it is modified to identify a single regularization
parameter over multiple frequencies. The explicit details are omitted from this section but are shown in Appendix A.
The principle is to select

λ̂ = arg min
λ
−ln p (λ |Y ) . (20)

This is equivalent to minimizing

g (λ) = Nr

∑
k,l

ln (dkl + λ) + (a − 2) ln
∑
k,l

zkl

dkl + λ
. (21)

The quantities zkl and dkl, l = 1, 2, . . . ,No, are given in Table 1. In the special case wherein N f = 1, Eq. (21) is the
same objective function as the one given by Ref. [19]. An algorithm for efficient minimization of Eq. (21) is given in
Appendix B. Using Eq. (18), L̂ and X̂ are found by minimizing f

(
L; λ̂ (L)

)
over L. Table 1 summarizes all relevant

quantities in computationally efficient forms and is intended to aid implementation.

3 Computation

Minimization over L is a nonlinear integer programming problem. In MIMO testing, Eq. (2) is often minimized using a
greedy algorithm. Starting with the empty set, the greedy algorithm evaluates L ∪ c for each candidate input location
c. The best location is appended to L, and the procedure continues until Ni locations are selected.

3.1 Improvements to the greedy algorithm using optimal pivoting

An initial estimate of L can be significantly improved by replacing entries iteratively to improve the objective function.
Let Lt {n} be the nth item in the set in iteration t. A reasonable value of L0 is the output from a standard greedy
algorithm. Define L−n

t = Lt\Lt {n} to be the location set with the nth entry removed. We define the “removal affinity” as

at (n, ∅) = f
(
L−n

t
)
− f (Lt) . (22)

The removal affinity is the change in objective if L{n} is removed from L. It is generally positive, meaning the objective
is worse if a location is removed from the set. Also, let c ∈ {1, 2, . . . ,Ndof} and define the “replacement affinity” as

at (n, c) = f
(
L−n

t ∪ c
)
− f (Lt) . (23)

114 | doi:10.25518/2684-6500.273 Keaton Coletti et. al

http://dx.doi.org/10.25518/2684-6500.273


Journal of Structural Dynamics, 3, (pp. 109-126) 2025
Automated shaker placement and regularized input estimation for MIMO testing

The replacement affinity is the change in objective function if L{n} is replaced with c.
The pivoting algorithm is described as follows. For each n in iteration t, ĉ(n) is defined as the c with the minimum

replacement affinity (since we are minimizing), minc {at(n, c)}. This is the best replacement for the nth entry in Lt,
which may be Lt{n} itself. Then, at (n, ∅) is calculated for each n. The n with minimum removal affinity such that
at (n, ĉ(n)) < −ε is selected to be replaced and is named n̂. By construction, this forbids ĉ (n̂) = L {n̂} and guarantees
improvement by ε in each iteration. The location set is updated by Lt+1 = L

−n̂
t ∪ ĉ (n̂). Iterations stop when n̂ cannot

be selected, i.e., at (c, n) ≥ −ε for all c and n, or when an iteration limit is reached.
Each step in the pivoting algorithm amounts to picking the “least-important” shaker location in L, removing it, and

adding the best available alternative. If the best alternative is the location that was just removed, the second least
important is removed instead, and so on.

In general, ε is specified near machine precision, and in most cases ε = 0 is appropriate. The constraint provided
by ε prevents replacing an input location with itself because at (n̂,L {n̂}) = 0: allowing such a replacement would lead
to infinite iteration. It also prevents infinite iteration when multiple configurations yield identical objective function
values or values that differ only by numerical error. Convergence in finite time is guaranteed (the discrete combinations
of locations are finite, and repetition is prohibited), but a backup iteration limit prevents excessive computational cost.
The pivoting algorithm is summarized in Algorithm 1.

Algorithm 1 Pivoting algorithm for integer programming with objective f and cardinality No

Initialize L0 using greedy algorithm or random selection
for t = 0, 1, . . . , tmax − 1 do

for n = 1, 2, . . . ,No do
Calculate at(n, c) for each candidate c
Select ĉ (n) = arg minc {at(n, c)} and retain at (n, ĉ(n))
Calculate at (n, ∅) and retain

end for
Assign n̂ = arg minn {at (n, ∅) | at (n, ĉ(n)) < −ε}
if n̂ is empty then

Terminate for-loop
else

Assign Lt+1 = L
−n̂
t ∪ ĉ (n̂)

end if
end for

3.2 Fast computation of the least-squares objective

Although this paper does not restrict f to a least squares objective (Eq. (2) with λ = 0), it is a common method for
placing actuators. In this special case, computation of f (L ∪ c) can be greatly accelerated if multiple c are to be
evaluated. This acceleration is applicable to the pivoting algorithm and to the greedy algorithm, which progressively
builds L by starting with the empty set and then evaluating f (L ∪ c) for each c not already in L. For the least-squares
case, the only component of f to calculate is r̂, the sum of (weighted) squared residuals. In each frequency bin,
because X̂k is given by the non-regularized pseudoinverse, we can write the residuals as

Rk(L) = Yk −Hk(L)X̂k = Yk − projHk(L) Yk (24)

Here, projAB denotes the projection of the columns of B onto the column space of A. The projection is given by
projAB = col (A) col (A)H B, where col (◦) outputs an orthonormal basis for the column space. Acceleration is achieved
by applying the identity

Rk (L ∪ c) = Rk(L) − projNk(c) Rk(L), (25)

using the definition

Nk(c) = projnull (Hk(L))Hk(c), (26)

which is proven in Appendix C. This calculation is very fast, even when Ndof is large. For a fixed L, the residuals
and nullspace of Hk(L) need only be calculated once. Recall also that Hk(c) is the cth column of Hk, so Nk(c) is a

115 | doi:10.25518/2684-6500.273 Keaton Coletti et. al

http://dx.doi.org/10.25518/2684-6500.273


Journal of Structural Dynamics, 3, (pp. 109-126) 2025
Automated shaker placement and regularized input estimation for MIMO testing

column vector whose orthonormal basis is itself multiplied by a constant. Calculating the residuals for frequency bin
k across all c (which could be thousands) then amounts to one residual calculation, one nullspace calculation, one
matrix multiplication, Ndof vector subtractions, and two times Ndof vector multiplications. Without this procedure, Ndof
pseudoinverse calculations would be required. The computation steps are summarized in Algorithm 2 for the case
when Σn = I. Other cases are not addressed in this paper, but a similar computational approach could be combined
with a noise-whitening step.

Algorithm 2 Calculating the updated least-squares objective, f (L ∪ c; λ = 0), for c = 1, 2, . . . ,Ndof .

for k = 1, 2, . . . ,N f do ▷ Loops can be parallelized or computed with multi-axis arrays
Calculate Rk = Yk − projHk(L)Yk

Calculate Nk = projnull(Hk(L))Hk ▷ Hk ∈ CNo×Ndof is the global FRM
Normalize Nk so that diag

(
NH

k Nk

)
contains ones ▷ Set column norms to 1 for projection operation

for c = 1, 2, . . . ,Ndof do
Calculate Rk(c) = Rk − Nk(c)NH

k (c)Rk ▷ Nk(c) is column c of Nk

end for
end for

for c = 1, 2, . . . ,Ndof do
Output f (L ∪ c; λ = 0) =

∑
k ||Rk(c)||F

end for

3.3 Solution methods

The remainder of this section describes high-level procedures used to estimate input locations and loads. The simplest
solution approach is to evaluate f

(
L; λ̂(L)

)
directly and optimize over L. The input to the pivoting algorithm (L0) is

derived using the greedy algorithm. When L̂ is determined, X̂ is immediately available. This approach is hereafter
named “automatic Tikhonov” or “auto”.

If the FRM is well-conditioned, the inverse solution is less sensitive to regularization, and the unregularized solution
(λ = 0) may be reasonably close to the regularized solution (λ = λ̂). In such cases, the combined greedy and pivoting
algorithms can be applied to f (L; λ = 0) at great computational advantage. After L̂ is determined, λ̂

(
L̂
)

and X̂
(
L̂
)

are calculated from Table 1. In other words, the shaker locations are determined assuming that no regularization will
be used, and then the parameter is updated using the selected locations. This approach is hereafter named “least
squares” or “LSTSQ”.

Although the pivoting algorithm offers improvement over an initial estimate, it does not guarantee optimality
because local minima are possible. It may be beneficial in some cases to increase diversity by drawing several
candidate local optima and choosing the best one. Along these lines, a set of regularization parameters can be
pre-defined by the analyst, and the greedy-pivoting combination algorithm can be applied to f (L; λfixed). This results
in as many configuration candidates as pre-defined λ. Then, f

(
L; λ̂(L)

)
can be evaluated for each configuration. The

values of λ are defined in this paper on a logarithmic grid between 10−5 × λ̂LSTSQ and 105 × λ̂LSTSQ. This method is
hereafter named “fixed Tikhonov” or “fixed”.

4 Simulation demonstration

4.1 Simulation setup

The simulation structure is a cylindrical shell with diameter 50 cm, length 65.75 cm, and thickness 0.75 cm. Fixed to its
base is an internal tiered structure. The assembly is pictured in Fig. 1. The material properties of the entire assembly
are similar to steel, with a Young’s modulus of 200 GPa, Poisson’s ratio of 0.29, and density of 7800 kg/m3. The
cylinder is fixed along both rims but is free on the lower surface for radii less than the outer radius minus 0.75 cm. The
first 100 modes are solved, and 1% modal damping is assigned. The natural frequency of the 100th mode is 1892 Hz.
The response targets, y jk, are randomly synthesized using the cross-power spectral density Syy (ωk) = HkSxx (ωk) HH

k ,
where Hk has No rows and as many columns as finite element (FE) nodes on the exterior surface of the cylinder.
Off-diagonal terms are not neglected, so the target response includes correlations between control channels. Sxx (ωk)
is defined using the cylindrical scattering function for diffuse acoustic fields [31]. This simulation setup is created to
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(a) (b)

Fig. 1: Simulation structure and FE nodes. Red markers indicate triaxial accelerometer locations for the two-accelerometer cases
in Fig. 3 and Fig. 4, and both red and black markers show locations in the eight-accelerometer cases. The cylindrical shell contains
three black dots and one red dot.

demonstrate academic principles, but it is inspired by real structures, such as a rocket fairing with an internal circuit
board tower.

Integer frequencies between 10 Hz and 1600 Hz are considered. To apply the diffuse acoustic field to the
unevenly spaced FE mesh, the mode shapes are interpolated to the center points of a 30-longitudinal-division
by 80-circumferential-division rectangular grid, and surface-normal components are calculated. Modal loads are
calculated by premultiplying the surface-normal interpolated mode-shape matrix by diffuse field pressures at each
center point times the area of each patch. Noise is added at a 30 dB signal-to-noise ratio, so the variance of the
added noise for each entry in Yk equals 10−3 1

NoN f

∑
k tr
(
Syy (ωk)

)
. In Fig. 2, an example sum of target magnitudes for

24 accelerometer channels is plotted versus frequency. The plot appears jagged mostly because system inputs are
randomly sampled from the diffuse field in each frequency bin, not because of added noise.

Candidate shaker inputs are restricted to the outer surface of the cylinder in the normal direction only. A total of
9, 383 nodes are available as input locations. Only a subset of these nodes are considered for actuator placement,
so random samples are drawn without replacement. Cases shown in this section use one realization (Nr = 1).
Measurements are simulated at No/3 randomly placed triaxial accelerometers or No uniaxial accelerometers which
can be located on the cylindrical shell or on the internal tiered structure.

4.2 Pareto optimality curves

To compare shaker configurations without directly inspecting the derived inputs, Pareto optimality curves are con-
structed. Constructing each curve involves first solving for shaker locations using the “LSTSQ”, “fixed”, and “auto”
methods. The plot markers in Fig. 3 show the input energy and residuals for each method, using the greedy algorithm
and greedy plus pivoting. Then, using the same shaker configurations, the residuals and input energy are plotted
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Fig. 2: Example sum of target accelerations for the simulation case with eight triaxial accelerometers.

for various values of λ. Fig. 3 shows several values of No and Ni with Ndof = 500. Fig. 4 shows the corresponding
frequency-domain residuals and input energies for “LSTSQ greedy” and the subjective “best” cases, chosen manually
by position relative to the other Pareto optimality curves. In the left column of Fig. 4, the squared residuals are
normalized by the target PSD, resulting in a dimensionless error measure. For the “fixed” method, an intermediate
output is a set of plausible configurations corresponding to λfixed. The corresponding optimality curves are shown in

Fig. 5, and the curve minimizing f
(
L̂

∣∣∣∣λ̂ (L̂) ) is marked in black.

In the even-determined and under-determined cases (Fig. 3a and Fig. 3c), the target response is theoretically
exactly achievable with any shaker configuration if a very large input is allowed. The least-squares objective, then, is
quite meaningless. As a result, the “LSTSQ greedy” and “LSTQ pivot” algorithms give the same input configurations.
For the “auto” and “fixed” methods, pivoting yields improvement, and control accuracy and input energies are improved
after regularized inputs are solved. Fig. 3b in particular showcases the sub-optimality of the least-squares objective.
The “LSTSQ” residuals are the lowest among all methods, but the input energy is much higher. “LSTSQ” only seeks
to move the upper-left tail of the Pareto curve to the left, no matter the effect when regularized controls are solved.

4.3 Performance study

This section compares the performance of the previously described methods for simultaneous shaker placement and
input estimation. Fig. 6 shows squared residuals and input energy for placement of five and eight shakers for several
uniaxial accelerometer counts. All values are divided by r̂

(
L̂
)

and ŝ
(
L̂
)

for the “LSTSQ greedy” algorithm, a method
commonly used in practice. The means of the resulting ratios across ten trials are plotted.

The “LSTSQ pivot” method reduces residuals but does not improve results in general because it ignores input
energy. This phenomenon is discussed in Section 4.2. The “auto” and “fixed” greedy methods are ommitted from
Fig. 6, but their results are consistently worse than the pivot methods. The “auto pivot” and “fixed pivot” algorithms
consistently improve control accuracy and reduce total input energy across all frequency bins. With some exceptions,
input energy is decreased the most when No ≥ Ni, and residuals are decreased the most when No < Ni. For all tested
configurations, optimizing f

(
L
∣∣∣λ̂ ) is significantly better than setting λ = 0 for experiment design.

In this simulation study, the FRFs were assumed to be known without error. In practice, there is always some
error associated with structural FRFs. The effect of model uncertainty on the performance of the different methods is
unknown, and future work should investigate this.

4.4 Computational cost

Fig. 7 shows the computational cost of the six solution methods for a range of Ndof . This case corresponds to
the placement of six shakers using eight triaxial accelerometers, and an Intel 12900K processor and a MATLAB
implementation were used. For this example, pivoting costs about six times as much as the greedy algorithm. The
“fixed” method is significantly faster than the “auto” method when ten values of λfixed are used. This is because
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Fig. 3: Pareto optimality curves and optimal inputs (marked). No/3 triaxial accelerometers are used to place Ni shakers, and
subfigures show problems that are (a) even-determined: Ni = 6, No = 6 (b) over-determined: Ni = 3, No = 24 (c) under-determined:
Ni = 8, No = 6 (d) over-determined: Ni = 8, No = 24.
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Fig. 4: Example of (left) squared control residuals and (right) input energies versus frequency for the cases in Fig. 3. Row 1
corresponds to (a) in Fig. 3, row 2 to (b), 3 to (c), and 4 to (d).
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Fig. 5: Demonstration of an intermediate output of the “fixed pivot” method. The ten curves shown are the Pareto optimality curves
for the configurations produced by applying the pivoting algorithm to ten values of λfixed. Then, the joint objective in Eq. (18) is
applied to select a curve and input solution, marked in black.
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Fig. 6: Performance of experiment design methods for several control channel counts when placing (a) five shakers (b) eight
shakers. Squared residuals and inputs are divided by values for the “LSTSQ greedy” method, and the mean ratios over ten trials
are shown. Input locations are chosen from 1000 candidate locations. “LSTSQ pivot” is identical for No = 3 and No = 5 on both
plots.
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Fig. 7: Computational cost of various methods versus the number of candidate input locations. This example is the placement of
six shakers using eight triaxial accelerometers, and “fixed” methods use ten candidate values of λfixed.

minimization of g(λ) does not need to be performed to evaluate each candidate. Based on the similar performance of
the two methods, the “fixed pivot” method is recommended when computational cost is a limitation.

5 Conclusion

The major contributions of this paper are summarized as follows. First, an objective function is developed that can be
used to place actuators to optimally balance input energy and residuals without any analyst input. Second, an integer
programming algorithm is developed to select a set of actuator locations. The algorithm is more computationally
expensive than the greedy algorithm, but it is guaranteed to decrease the objective function, yielding generally
improved solutions.

The new methods are tested in a simulation with varying numbers of accelerometer measurements and shakers
to be placed. Three solution procedures are compared: least squares, direct optimization using the new objective
function, and application of the new objective function to a greatly reduced candidate set produced by looping over
the regularization parameter. Each of these procedures is solved using the greedy algorithm and the new pivoting
algorithm, for a total of six solution methods. The methods are compared by inspecting the Pareto optimality curves
for their respective shaker configurations and by direct comparison of the input energy and control accuracy for the
full inverse solutions. Pivoting yields better results than the greedy algorithm, and the fully automated and looped
parameter methods yield the best results overall. The looped parameter method is recommended in most applications
because of its computational efficiency.

Appendix

A Derivation of the regularization parameter selection method

Here we show that −ln p (λ |Y ) = g(λ) + constants. Begin with an application of Bayes’ rule with uniform priors,

p (σn, σx |Y ) ∝
∏

k

p (Yk |σn, σx ) . (A.1)

Note that Yk = HkXk + Ek with x jk ∼ N (0, σxΣx) and ε jk ∼ (0, σnΣn) as an error term. Eq. (A.1) can be rewritten as

p (σn, σx |Y ) ∝
∏

j,k

N
(
y jk

∣∣∣ 0, σxHkΣxHH
k + σnΣn

)
. (A.2)
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A change of variables from σn to λ is applied, with |∂σn/∂λ| = σx. Then the noise covariance matrix is whitened.
Performing these two steps gives

p (λ, σx |Y ) ∝ σx

∏
j,k

N
(
Σ−1/2

n y jk

∣∣∣ 0, σxΣ
−1/2
n HkΣxHH

k Σ
−1/2
n + σxλI

)
. (A.3)

If Σ−1/2
n HkΣ

1/2
x = UkSkV

H
k , with U

H
k Uk = V

H
k Vk = I, then the distribution above can be rewritten as

p (λ, σx |Y ) ∝ σx

∏
j,k

N

(
U

H
k Σ
−1/2
n y jk | 0, σxDk + σxλI

)
, (A.4)

with Dk = SkS
H
k . The covariance is diagonal, and the normal distributions can be written as the sums of univariate

complex normal distributions. Substituting the normal distribution formula and rewriting gives

p (σx, λ |Y ) ∝ σ1−NoNr N f
x

∏
k,l

(dkl + λ)−Nr exp

− 1
σx

∑
k,l

−zkl

dkl + λ

 , (A.5)

in terms of quantities in Table 1. Next, the resulting distribution is integrated over σx:

p (λ |Y ) ∝
∫ ∞

0
p (σx, λ |Y ) dσx. (A.6)

Applying the integral identity∫ ∞
0

xbea/xdx = (−a)1+bΓ(−1 − b), b < −1, (A.7)

and taking the negative natural logarithm gives g(λ) up to an additive constant.

B Efficient minimization of the regularization objective function

Algorithm 3 Efficient minimization of g(λ)

Initialize a logarithmic grid in the domain of plausible λ, e.g., 200 points between 10−10 and 1010

Initialize dkl and zkl using Table 1
Compute g for each λ and select λ0 with the lowest objective
if λ0 is the first grid point then

Set λ̂ = 0
else

Perform Newton’s method starting at λ0. Output λ̂
end if

Derivatives of g(λ) are given by

g′(λ) =
∑
k,l

Nr

dkl + λ
+ (2 − a)

∑
k,l

zkl

(dkl + λ)2


∑

k,1

zkl

dkl + λ

−1

, (B.1)

g′′(λ) = −
∑
k,l

Nr

(dkl + λ)2 + (a − 2)


∑

k,l

zkl

(dkl + λ)3


∑

k,1

zkl

dkl + λ

−1

−

∑
k,l

zkl

(dkl + λ)2

2
∑

k,1

zkl

dkl + λ

−2 (B.2)
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C Derivation of formulas for accelerated least squares computation

Consider a single frequency line, and define R(L) = Y − projH(L)Y. Here, the projection of a matrix denotes the
projections of its columns. We seek to show that R(L ∪ c) = R(L) − projN(c)R(L), where N(c) = projnull(H(L))H(c).

Proof. For conciseness, the notation A, B is used to represent subspaces in CNo . Begin with the identity

projA∪BY = projAY + projBY if A∩B = ∅. (C.1)

Because A∪B = A∪ (B ∩Ac),

projA∪BY = projAY + projB∩Ac
(
Y − projAY

)
⇐⇒ Y − projA∪BY =

(
Y − projAY

)
− projB∩Ac

(
Y − projAY

)
.

(C.2)

Taking A = col (H(L)) and B = col (H(c)) yields the desired result.

Authors’ Contributions

Keaton Coletti derived the methods, performed simulation studies, and wrote the manuscript. R. Benjamin Davis and
Ryan Schultz advised the project and provided funding. All authors contributed to revising the manuscript.

Acknowledgements

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engi-
neering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration (DOE/NNSA) under contract DE-NA0003525. This
written work is authored by an employee of NTESS. The employee, not NTESS, owns the right, title and interest in
and to the written work and is responsible for its contents. Any subjective views or opinions that might be expressed
in the written work do not necessarily represent the views of the U.S. Government. The publisher acknowledges that
the U.S. Government retains a non exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the
published form of this written work or allow others to do so, for U.S. Government purposes. The DOE will provide
public access to results of federally sponsored research in accordance with the DOE Public Access Plan.

References
[1] P. M. Daborn, C. Roberts, D. J. Ewins, and P. R. Ind. Next-generation random vibration tests. In Topics in Modal Analysis II,

volume 8, pages 397–410, 2014.

[2] P. M. Daborn. Scaling up of the impedance-matched multi-axis test (IMMAT) technique. In Shock & Vibration, Aircraft/Aerospace,
Energy Harvesting, Acoustics & Optics, volume 9, pages 1–10. Springer International Publishing, 2017. doi:10.1007/978-3-319-
54735-0_1.

[3] C. Roberts and D. Ewins. Multi-axis vibration testing of an aerodynamically excited structure. Journal of Vibration and Control,
24(2):427–437, 2018. ISSN 1077-5463. doi:10.1177/1077546316642064.

[4] D. J. Ewins. Modal Testing: Theory, Practice and Application. Research Studies Press Ltd., Hertfordshire, England, 2 edition,
2000.

[5] M. Behling, M. S. Allen, R. L. Mayes, W. J. DeLima, and J. Hower. Influence of shaker limitations on the success of MIMO
environment reconstruction. In Dynamic Environments Testing, Volume 7, pages 115–129. Springer, Cham, 2023. ISBN
978-3-031-34930-0.

[6] W. Li, Z. Yang, K. Liu, and W. Wang. MIMO multi-frequency active vibration control for aircraft panel structure us-
ing piezoelectric actuators. International Journal of Structural Stability and Dynamics, 23(14), 2023. ISSN 0219-4554.
doi:10.1142/s0219455423501572.

[7] N. Niedbal and E. Kusowski. Optimal exciter placement and force vector tuning required for experimental modal analysis. In
Dynamics Specialists Conference. American Institute of Aeronautics and Astronautics, 1990. doi:10.2514/6.1990-1205.

124 | doi:10.25518/2684-6500.273 Keaton Coletti et. al

http://dx.doi.org/10.1007/978-3-319-54735-0_1
http://dx.doi.org/10.1007/978-3-319-54735-0_1
http://dx.doi.org/10.1177/1077546316642064
http://dx.doi.org/10.1142/s0219455423501572
http://dx.doi.org/10.2514/6.1990-1205
http://dx.doi.org/10.25518/2684-6500.273


Journal of Structural Dynamics, 3, (pp. 109-126) 2025
Automated shaker placement and regularized input estimation for MIMO testing

[8] D. S. Li, H. N. Li, and C. P. Fritzen. The connection between effective independence and modal kinetic energy methods for
sensor placement. Journal of Sound and Vibration, 305(4-5):945–955, 2007. ISSN 0022-460X. doi:10.1016/j.jsv.2007.05.004.

[9] R. Schultz. Improving Efficiency of Multi-shaker and Combined Shaker-acoustic Vibration Tests. PhD thesis, University of
Massachusetts Lowell, 2019.

[10] C. Beale, R. Schultz, C. Smith, and T. Walsh. Degree of freedom selection approaches for MIMO vibration test design.
In Special Topics in Structural Dynamics & Experimental Techniques, volume 5. Springer International Publishing, 2022.
doi:10.2172/2001541.

[11] C. Papadimitriou, J. L. Beck, and S.-K. Au. Entropy-based optimal sensor location for structural model updating. Journal of
Vibration and Control, 6(5):781–800, 2000. ISSN 1077-5463. doi:10.1177/107754630000600508.

[12] C. Schumann, M. S. Allen, M. Tuman, W. DeLima, and E. Dodgen. Transmission simulator based MIMO response reconstruc-
tion. Experimental Techniques, 46(2):287–297, 2022. ISSN 0732-8818. doi:10.1007/s40799-021-00454-4.

[13] R. Mayes, L. Ankers, P. Daborn, T. Moulder, and P. Ind. Optimization of shaker locations for multiple shaker environmental
testing. Experimental Techniques, 44(3):283–297, 2020. ISSN 0732-8818. doi:10.1007/s40799-019-00347-7.

[14] S. Kondoh, C. Yatomi, and K. Inoue. The positioning of sensors and actuators in the vibration control of flexible systems. JSME
international journal. Ser. 3, Vibration, control engineering, engineering for industry, 33(2):145–152, 1990. ISSN 0914-8825.
doi:10.1299/jsmec1988.33.145.

[15] P. S. Holmes, J. R. Wright, and J. E. Cooper. Optimum exciter placement for normal mode force appropriation using an a
priori model. In Proceedings of IMACXIV, the 14th International Modal Analysis Conference, 1996.

[16] D. P. Rohe, G. D. Nelson, and R. A. Schultz. Strategies for shaker placement for impedance-matched multi-axis testing.
In Sensors and Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing, Volume 7, pages
195–212. Springer International Publishing, 2020. ISBN 978-3-030-12676-6.

[17] C. Lu, Q. Liu, B. Zhang, and L. Yin. A pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed
hybrid flowshop. Expert Systems with Applications, 204:117555, 2022. ISSN 0957-4174. doi:10.1016/j.eswa.2022.117555.

[18] D. O. Smallwood. Multiple shaker random vibration control - an update. Sandia National Laboratories SAND98-2044C, 1999.

[19] A. Pereira, J. Antoni, and Q. Leclère. Empirical Bayesian regularization of the inverse acoustic problem. Applied Acoustics,
97:11–29, 2015. ISSN 0003-682X. doi:10.1016/j.apacoust.2015.03.008.

[20] R. L. Mayes and D. P. Rohe. Physical vibration simulation of an acoustic environment with six shakers on an industrial
structure. In Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, volume 9, pages 29–41. Springer
International Publishing, 2017. doi:10.1007/978-3-319-30087-0_4.

[21] R. Schultz and P. Avitabile. Shape-constrained input estimation for efficient multi-shaker vibration testing. Experimental
Techniques, 44(4):409–423, 2020. ISSN 0732-8818. doi:10.1007/s40799-020-00361-0.

[22] R. A. Schultz. A demonstration of force estimation and regularization methods for multi-shaker testing. In Sensors and
Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Environments Testing, volume 9, pages 229–243. Springer
International Publishing, 2019. doi:10.1007/978-3-030-12676-6_21.

[23] U. Musella, G. D’Elia, S. Manzato, B. Peeters, P. Guillaume, et al. Analyses of target definition processes for MIMO random
vibration control tests. In Special Topics in Structural Dynamics, volume 6, pages 135–148. Springer International Publishing,
2017. doi:10.1007/978-3-319-53841-9_12.

[24] U. Musella, G. D’Elia, A. Carrella, B. Peeters, E. Mucchi, et al. A minimum drives automatic target definition procedure
for multi-axis random control testing. Mechanical Systems and Signal Processing, 107:452–468, 2018. ISSN 0888-3270.
doi:10.1016/j.ymssp.2018.01.039.

[25] D. O. Smallwood. Multiple-input multiple-output (MIMO) linear systems extreme inputs/outputs. Shock and Vibration, 14(2):
107–131, 2007. ISSN 1070-9622. doi:10.1155/2007/701837.

[26] Y. Ma, H. Chen, and R. Zheng. Control strategy for multi-axial swept sine on random mixed vibration testing. Journal of Sound
and Vibration, 527:116846, 2022. ISSN 0022-460X. doi:https://doi.org/10.1016/j.jsv.2022.116846.

[27] R. Schultz and S. Carter. A MIMO time waveform replication control implementation. In Dynamic Environments Testing,
volume 7, pages 131–140. Springer Nature Switzerland, 2024. doi:10.1007/978-3-031-34930-0_13.

125 | doi:10.25518/2684-6500.273 Keaton Coletti et. al

http://dx.doi.org/10.1016/j.jsv.2007.05.004
http://dx.doi.org/10.2172/2001541
http://dx.doi.org/10.1177/107754630000600508
http://dx.doi.org/10.1007/s40799-021-00454-4
http://dx.doi.org/10.1007/s40799-019-00347-7
http://dx.doi.org/10.1299/jsmec1988.33.145
http://dx.doi.org/10.1016/j.eswa.2022.117555
http://dx.doi.org/10.1016/j.apacoust.2015.03.008
http://dx.doi.org/10.1007/978-3-319-30087-0_4
http://dx.doi.org/10.1007/s40799-020-00361-0
http://dx.doi.org/10.1007/978-3-030-12676-6_21
http://dx.doi.org/10.1007/978-3-319-53841-9_12
http://dx.doi.org/10.1016/j.ymssp.2018.01.039
http://dx.doi.org/10.1155/2007/701837
http://dx.doi.org/https://doi.org/10.1016/j.jsv.2022.116846
http://dx.doi.org/10.1007/978-3-031-34930-0_13
http://dx.doi.org/10.25518/2684-6500.273


Journal of Structural Dynamics, 3, (pp. 109-126) 2025
Automated shaker placement and regularized input estimation for MIMO testing

[28] H. W. Engl and W. Grever. Using the L–curve for determining optimal regularization parameters. Numerische Mathematik, 69
(1):25–31, 1994. ISSN 0029-599X. doi:10.1007/s002110050078.

[29] K.-V. Yuen. Bayesian Methods for Structural Dynamics and Civil Engineering. Wiley, 2010. doi:10.1002/9780470824566.

[30] D. R. Fuhrmann. Digital Signal Processing Handbook, chapter Complex Random Variables and Stochastic Processes. CRC
Press LLC, 1999.

[31] R. B. Davis. Spatial correlation function of cylinders in diffuse acoustic fields. AIAA Journal, 55(11):4005–4010, 2017. ISSN
0001-1452. doi:10.2514/1.j055805.

126 | doi:10.25518/2684-6500.273 Keaton Coletti et. al

http://dx.doi.org/10.1007/s002110050078
http://dx.doi.org/10.1002/9780470824566
http://dx.doi.org/10.2514/1.j055805
http://dx.doi.org/10.25518/2684-6500.273

	Introduction
	Theory
	Problem setup
	Probability toolkit
	Regularization-agnostic objective function
	Selecting the regularization parameter

	Computation
	Improvements to the greedy algorithm using optimal pivoting
	Fast computation of the least-squares objective
	Solution methods

	Simulation demonstration
	Simulation setup
	Pareto optimality curves
	Performance study
	Computational cost

	Conclusion
	Appendix
	Derivation of the regularization parameter selection method
	Efficient minimization of the regularization objective function
	Derivation of formulas for accelerated least squares computation

