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Abstract

Additive manufacturing has gained popularity for its ability to produce complicated geometries that
distribute material optimally and allow several parts to be consolidated into one. Part consolidation
often comes with a large reduction in damping, however, due to the elimination of frictional losses at
interfaces between parts. This reduction of damping can be problematic in applications where resonant
vibrations lead to early fatigue failure or undesirable noise emission. In recent years, a promising
technique for increasing damping in parts made by laser powder bed fusion (LPBF) has been introduced,
in which pockets of retained, unfused metal powder act as embedded dampers. This work presents an
experimental study of the nonlinear behavior of several 316L stainless steel rectangular beams made by
LPBF with embedded powder dampers. In addition to amplitude-dependent nonlinearity, a significant
memory effect is observed, thought to be caused by powder settling and unsettling in response to
external agitation. A procedure was developed to measure the full range of damping behavior by causing
the system to transition between high-damping and low-damping states. This procedure is applied
to six beams with varying pocket thicknesses, resulting in a rich dataset that provides insight into the
factors that most influence the effective modal damping and natural frequency of these parts. As pocket
thickness increases, the damping increases, together with the amount of nonlinearity and the variance
in damping and natural frequency. This uncertainty can be reduced by controlling the amplitude range of
interest, the powder state, the drive point, the impact force, and the hammer tip. The relative importance
of each of these factors is quantified, and each factor is found to be significant in certain cases. Some
of the parts are shown to exhibit significant modal interactions, as well as time-varying phenomena, for
some modes. Additionally, a study which varied the operating temperature is presented, confirming
that the behavior of trapped-powder dampers is largely temperature-independent. Implications of these
findings for design and modeling are discussed.
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1 Introduction

Additive manufacturing (AM) allows designers to create complicated geometries that would traditionally be manufac-
tured as assemblies of several simpler parts. While part consolidation can have many advantages [1], it generally
leads to a large reduction in damping because friction at interfaces between parts tends to be the primary source of
damping in an assembly [2]. Structures with low damping have high response amplitudes at resonance, which can
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lead to early fatigue failure [3] or increased noise emission. Reintroducing damping in these cases would be very
desirable.

Viscoelastic damping treatments, in which layers of rubber or some other viscoelastic material are adhered to a
part, dissipate mechanical energy through the hysteretic material damping of the viscoelastic. Though commonly
employed, these treatments are most effective in a narrow temperature range because viscoelastic material properties
are highly temperature-dependant [4]. Furthermore, the adhesives used to bond viscoelastics to a surface have
limited stiffness and strength. These factors make viscoelastic treatments less appropriate for applications where
the part is exposed to high temperatures or large accelerations. Particle impact dampers have been studied for use
in these more extreme applications [5, 6, 7, 8], and their potential costs, benefits and complexities are highlighted
in those works and in a recent review [9]. Particle dampers can be assembled and mounted on the structure to be
damped, or they can be embedded by machining a cavity in the structure, filling it with particles, and re-sealing it.
During vibration, the trapped particles dissipate energy, primarily by inelastic impacts and frictional losses, contributing
to significant increases in modal damping.

Particle dampers can be embedded in parts made by laser powder bed fusion (LPBF) without the need for any
post-processing by leaving cavities filled with unfused feedstock powder. While traditional particle dampers generally
use particles between 50 um and 5 mm [8] in diameter, this technique uses feedstock powder, which often has mean
particle diameters less than 50 um. This difference in particle diameter leads to significantly different rheological
behavior. To emphasize this distinction, the present work uses the term “trapped-powder damper” for particle dampers
utilizing fine powders, like AM feedstock, for the particles. Early studies of AM trapped-powder dampers [10, 11]
saw near order of magnitude decreases in response at resonance (i.e. increases in damping) with the addition of
thin pockets of trapped powder. In recent years, a few groups have begun to study the effect of varying placement,
geometry, and orientation of these LPBF powder dampers [12, 13, 14].

Although several studies have reported significant amplitude-dependent nonlinearity in the damping behavior of
AM trapped-powder dampers, this nonlinearity is still not very well understood. Kiinneke and Zimmer [10] performed
free vibration measurements on AM parts with embedded powder dampers, and the logarithmic decrement was found
to decrease by nearly an order of magnitude over the course of the ring-down. Guo et al. [13] studied the forced
response of AM trapped-powder dampers, and they found the loss factor to vary significantly with both excitation
frequency and amplitude. Westbeld et al. [15] performed forced vibration tests on powder-damped LPBF beams, and
they similarly found the loss factor to depend on the excitation amplitude, and the magnitude of that effect depended
on the mode being excited. Shu et al. [16] performed system identification to characterize the amplitude-dependent
nonlinearity of a bolted assembly of AM parts with trapped-powder dampers. While their treatment of the nonlinearity
was more rigorous than other studies, the presence of the bolted joint in this system makes it difficult to disambiguate
the effect of the trapped powder from that of the bolted joint nonlinearity. Much work has been done to understand the
nonlinear behavior of traditional particle dampers [9], which generally have particle diameters in the millimeter range,
but recent work by Kiracofe et al. [17] suggested that trapped-powder dampers behave differently from traditional
particle dampers because cohesive forces are relevant due to the small diameter of the feedstock powder particles.
This conclusion aligns well with the observation that trapped AM feedstock powder does not flow freely within a cavity
when the part is reoriented [12, 15]. The nonlinear behavior of AM parts with trapped-powder dampers merits further
study.

Even when accounting for amplitude-dependent nonlinearity, significant variability has been seen in the damping
of these parts. This variability, if left unexplained, could prove an obstacle to the application of this technology. In
a case study of an AM brake disk with trapped powder, Kiinneke and Zimmer [10] reported significant reductions
in sound intensity compared to a conventionally manufactured disk, but the AM disk had more than twice as much
variability in the measured sound intensity. They hypothesized that powder solidification may explain some of that
variability. Scott-Emuakpor et al. [18] performed high-strain fatigue testing on components with pockets of trapped
powder and observed a decrease in damping over the course of the experiment as the powder fused to the walls of
the cavity. Westbeld et al. [15] performed forced vibration tests on powder-damped LPBF beams and reported that
the modal damping decreased significantly over the course of the experiment for some modes. CT scanning revealed
that this decrease in damping over time was accompanied by powder settling.

Our recent studies of LPBF beams with trapped-powder dampers have begun to explain the sources of this
variability. In addition to amplitude-dependence, we observed a reversible memory effect: certain kinds of external
agitation were found to cause the system to transition between a high-damping state and a low-damping state [19].
The authors studied this memory effect carefully for the first bending mode of a single beam in [19], and the results
suggested that it was caused by powder settling and unsettling.

The goal of the present work is to provide an experimental database that thoroughly elucidates the effect of
trapped powder on the nonlinear response of beams with trapped-powder dampers. The present work extends that
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in [19] by studying six beams, each one having a trapped powder pocket of a different thickness. Furthermore, several
modes of vibration are studied, including bending in two directions and torsion, to see how the frequency and damping
of each mode are affected by the pocket of trapped powder. The present study varied the vibration amplitude, powder
state, and impact force and location, shedding further light on the effect of each of these factors on the damping
and natural frequency of each mode. Significant modal interactions are observed for some of the beams and these
are discussed. Additionally, one beam was tested at several temperatures to see if the operating temperature had
any discernible effect on the damping (see Section D). The results presented here provide a rich database for those
seeking to model the effects of trapped powder on the damping of additively manufactured parts.

2 Methods

As detailed by Teng [20], various rectangular beams were manufactured by LPBF on a Concept Laser M2 Cusing.
The feedstock was 316L stainless steel powder (GE CL 20ES) with a mean particle size of 29.9 um (15-45 um).
The beams were not subjected to any kind of heat treatment. Each of the beams had the same major dimensions,
nominally (180 x 18 x 6)mm, while the dimensions of a pocket of trapped, unfused powder were varied between
the samples. The beams tested in the present work had nominal pocket dimensions of 140 mm x 16 mm X H,,, with
H, € {0, 100, 500, 1000, 2000, 3000}pm. (Pocket thickness H,, = 0 refers to a fully-fused beam.) The measured mass
and dimensions of the beams are tabulated in section B, together with a labeled drawing.

2.1 Experimental setup

Holes drilled in the top corners of the beams facilitated hanging them from fishing line, which was then suspended
from bungee cables, as shown in Fig. 1. This low-stiffness support system approximates free-free boundary conditions
and minimizes the energy lost in the form of waves traveling along the supports. Two PCB 352C22 accelerometers
were glued near the corner of the beam with Loctite Super Glue. The accelerometer wires were taped near a node line
of Mode 1 to minimize the added damping due to the wiring. Fig. 2 explains the coordinate system and abbreviations
that will be used to refer to points on the beams at which impacts were applied with instrumented hammers.

(a) Suspension system. (b) Close-up on the beam. Compare with Fig. 2.

Fig. 1: Photos of the experimental setup.
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Fig. 2: Diagram of beam, showing hit locations. The “Drive point key” explains the abbreviations that will be used to refer to points
on the beam. The X position coordinates are given in millimeters.

2.2 Nonlinear system identification

As we have previously observed significant nonlinearity in these parts, we collect acceleration time histories and
identify nonlinear system parameters by a variation on Feldman’s FREEVIB method [21]. The system identification
method decomposes the measured free response into a sum of damped oscillations, each of which is assumed to
have the following form:

q(t) = Re{Ag exp (=B(1)) exp (ip(1))} (1)

where Re {-} denotes the real part, Ay exp (—=4(¢)) is the decay envelope with potentially time-varying decay rate, and
() is the phase angle. While acceleration measurements are used in the present study, the method can be applied
to free ring-down measurements of position, velocity, or acceleration.

First, the measured signal must be decomposed into unimodal ring-downs. This is done with digital Butterworth
band-pass filters in the present work, as illustrated in fig. 3. Next, the complex, analytic signal representation of the
measured signal is constructed as follows:

Q1) = q(1) +1g(1) )

where §(r) is the Hilbert transform of the measured signal ¢(¢). This analytic signal Q(r) can then be used to identify
the parameters in eq. (1) as follows:

£0(1) = ¢(1) @)

In(IQ(®)]) = In(Ag) — B(1) (4)

where ZQ and |Q| represent the argument and modulus of Q, respectively, and In (-) is the natural logarithm.
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Fig. 3: Band-pass filtered acceleration signal for an example ring-down measurement. The Fast Fourier transform (FFT) of the
acceleration is also plotted, along with the FFT of the band-pass filtered response.

Next, time-varying parameters w,(r) and () are defined and identified in analogy to the natural frequency and
damping ratio of a linear system. For a linear time-invariant system, the damped natural frequency is the rate of
change of the phase angle, so ¢(t) = w,t. For a nonlinear system, the instantaneous frequency w,(t) is defined

analogously as follows:

a do() _ d
= —— = — 4
wy(1) o t( o) 5)
The instantaneous natural frequency w,(t) and damping ratio £(¢) are then found by the following equations.
a B0 _ d
a(t) = g d (In(QMD) (6)

wa(t) £ wy ()41 = (1) )

(D) = Nt + CO0) = o7 + al)? (8)

a(t) = ¢, (1) ©)
_ e
=" (10)
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The derivatives in egs. (5) and (6) are prone to accentuating noise in the signal. Our implementation fits ZQ(¢)
and In |Q(1)| to piecewise linear functions with manually defined endpoints to smooth over noise, as illustrated in fig. 4.
The spacing of the endpoints can be chosen to give higher resolution in regions with high signal-to-noise ratio and
lower resolution in noisier regions.

102
® — — — Signal
'\Q‘ Hilbert
\,' *"'#‘*\“‘ PWL Fit
& 0 '| +  endpoints
‘\é’ 10 ”*IH ﬁm“\‘ O  midpoints
'E' ‘!‘ l Ih il I fu\\\ lnrlw f“ \f\ 5|H| \“'J”I'li"mmﬂ““"”\h""
) . M \‘ w '. nl H il ”J| ig'y f' ) h i \, '\'M| i
2 i i ” Jf f"”}l"!'“}iwlh
= /- M i | ' jIHl’l u nﬂ Vuu”lf { ‘. | I
= H‘ ‘\ “ | . | ] |-‘ y h\‘ n,w w i
€102 MH\ ‘M‘ . H‘ AR | " ) l“w‘l P s M\‘
< } Lt 'w\“ll‘ ‘\‘l | ke -g.- i
‘ S A ALk b
} o I 1R “”\““}W“
\ | |
10 . . A 1, IR T
0 0.05 0.1 0.15 0.2 0.25 0.3
Time [s]

Fig. 4: Piecewise linear fit of the amplitude |Q(r)| of the filtered acceleration signal ¢(¢) from an example ring-down measurement
(the same as shown in fig. 3). The line labeled “Signal” is the absolute value of the filtered signal ¢(¢). The line labeled “Hilbert” is
the amplitude |Q(7)| of the analytic signal Q(z), and the piecewise linear fit to In|Q(r)| is shown in green. The phase ZQ(z) of the
analytic signal is fitted in the same way, though not shown in this figure.

Because many nonlinear systems display amplitude-dependent natural frequency and damping ratio, the quantities
w, (1) and (1) are typically plotted against vibration amplitude A(r) £ |Q(r)|. This suggests a correspondence with
amplitude-dependent parameters in the quasi-linear system (11). It should be noted, however, that this analogy is
only approximate. The response form assumed in eq. (1) does not exactly satisfy equation of motion (11) unless w,(f)
and {(r) are constant [22]. If w,(r) and {(¢) change slowly, however, then this difference can be neglected.

§ +2{(A)wn(A)g + w,(A)?g =0 (11)

If the response was generated by a system with uncoupled modes, each of which can be described by eq. (11),
then repeated measurements should produce the same curves for (A) and w,(A). Whenever repeated measure-
ments identify significantly different amplitude-dependent system parameters for a given mode, this indicates: 1.)
the presence of modal interactions, 2.) that the system is time-varying or 3.) noise or other variability in the mea-
surements. When modal interactions are present, the quantities w,(A) and {(A) in eq. (11) are functions not only of
the corresponding modal amplitude A, but also of the amplitudes of other modes as well. The possibility of modal
interactions will be discussed in sections 2.4 and 3.3. We have observed time-varying damping and frequency with
these beams, which we attribute to powder settling and unsettling, as discussed in Section 2.3. This work addresses
that concern by attempting to measure the behavior of the system across the full range of powder states.

2.3 Controlling powder state

An exploratory study confirmed that the system could be made to transition between a high-damping state and a
low-damping state by repeatedly tapping the beam. That study focused on Mode 1 of B3000, the beam with a 3 mm
powder pocket. The powder in the beam was agitated by tapping the beam at various locations and with various
force levels. The methods and results of that study are described in detail in [19], but the most relevant findings are
summarized here because they greatly influenced the design of the procedure described in section 2.4.

Tapping the beam from above with relatively small forces proved to be the kind of agitation that led to the largest
decreases in damping ratio; an example demonstrating this is included here in fig. 5. Before the measurements
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labeled “Y_meas1_hit1” and “Y_meas2_hit1”, the beam was struck ten (10) times from above, similar to the “settling
hits” depicted in fig. C.1a. Each of the measurements in fig. 5 was obtained by tapping the beam at Z090M (the
center of the front face) with an instrumented hammer, and each is labeled “hit1”, “hit2” and “hit3”. Note that each
round of agitation led to a decrease in the damping ratio and an increase in the low-amplitude natural frequency.
We attribute this decrease in damping to the powder settling in response to the agitation hits. Also, some additional
settling appears to have occurred within each group of three measurements because of the Z-direction impacts used
to excite vibrations in the beam.
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Fig. 5: Damping and natural frequency of Mode 1 versus acceleration amplitude from measurements 0, 1, & 2 of the series
of tests for which the beam was agitated by being struck ten times in the Y-direction before each measurement. This was
similar to the settling procedures used in the present work. For each measurement, the transient vibration was recorded in
response to three hits at Z090M, the results of which are shown in the figure. Note the steady progression towards a low-damping,
near-constant-frequency state.

The effect of holding the beam upside down in between measurements is shown in Fig. 6. Note that the decreases
in damping observed in Fig. 5 are largely reversed by holding the beam upside down. Additionally, it was found that
tapping the beam from above while held upside down, as shown in fig. C.1b, led to further increases in damping.
(Those results are not shown here, but are discussed in [19].) Thus, we conclude that the decreases in damping
observed in Fig. 5 were not the result of an irreversible process like powder fusing to the walls of the cavity or
polishing of internal cavity surfaces. Instead, we suggest powder settling and unsettling as the mechanism behind
these changes. This explanation agrees with the work of Westbeld et al [15], in which a decrease in damping was
correlated with powder settling. Accordingly, in this work we refer to the state reached after repeatedly tapping the
beam while hanging normally as the “settled” state (abbreviated “set”) and the state reached after tapping the beam
while upside-down as the “unsettled” state (abbreviated “uns”).

The state of the powder inside the pocket gives the system memory of previous inputs, presenting some challenges
for designers hoping to implement this technology. First, it means that, even if amplitude-dependence is controlled
for, a single measurement of the damping and natural frequency may be insufficient for understanding the full range
of possible system behaviors. In the worst-case scenario, a part could be manufactured and measured to have a
high damping ratio which then decreases dramatically over the life of the product due to powder settling, resulting
in failure due to resonance. Second, this memory effect means that erroneous conclusions could be drawn when
comparing several parts with particle dampers. For example, if two versions of a design incorporating a trapped
powder pocket are manufactured, but the powder state is not carefully controlled for when testing them, then one
could draw erroneous conclusions regarding which design provides better performance.

The approach taken in the present work to account for this memory effect is to attempt to observe the upper and
lower bounds of possible system behaviors for each part studied. This is done by intentionally driving the system to
the most settled and unsettled states and measuring the damping and natural frequency at each extreme. Although
the state of the powder is not fully characterized by a binary classification as “settled” or “unsettled”, this approach
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Fig. 6: Damping and natural frequency curves for Mode 1 from the series of tests for which the beam was held in an inverted
position for one second before “IY_meas1_hit1” and five seconds before “IY_meas2_hit1”. This had a similar effect as the
unsettling procedures used in the present work, although in the present work the beams were also tapped lightly from above
while inverted, which further promoted unsettling. Note that the low-amplitude damping increased and the low-amplitude natural
frequency decreased, the opposite of the changes seen in Fig. 5

should allow us to identify the upper and lower bounds on the damping ratio and natural frequency and give us some
understanding of how much the system behavior is affected by the powder state.

2.4 Bounding system behavior

The four-phase procedure summarized in Table 1 seeks to quantify the dependence of modal frequency and damping
on amplitude and powder state for a given part. The second phase determines whether powder settling and unsettling
has a significant effect on any mode, and when it is found to have a significant effect the third phase adjusts the
settling and unsettling procedures to ensure that the full range of settled and unsettled states are observed. Finally,
measurements are acquired for all modes of interest.

Table 1: Summary of four-phase procedure for characterizing modal frequency and damping for a given part.

Phase Description Output
1 Linear EMA (low-amplitude) Natural frequencies and mode shapes
2 Memory effect detection Which mode, if any, is most affected by powder state
3 Optimize powder settling and unset- Procedures for repeatable settling and unsettling
tling
4 Measure all modes in every powder Amplitude-dependent frequency and damping for all
state modes

Phase 1 consists of standard, linear experimental modal analysis (EMA) to identify natural frequencies and
mode shapes of the modes of interest. The hammer used was a PCB 084A14 with PCB 086E80. Very low force
amplitudes (mostly 1-5 N) are used in this phase to avoid exciting the amplitude-dependent nonlinearity. The natural
frequencies identified in this phase will later be used to determine the frequency range over which to band-pass filter
the measurements for nonlinear system identification (see section 2.2).

Phase 2 seeks to determine whether powder state has a significant effect on the (amplitude-dependent) damping
and frequency of any mode, and which mode is most strongly affected. This is done by performing two consecutive
rounds of settling, followed by two rounds of unsettling, followed by two more rounds of settling. The frequency and
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damping of each mode are measured after each round of settling or unsettling. The details of the procedure for Phase
2 are given in Appendix C.

If no significant memory effect is observed in Phase 2, then we skip to an abbreviated version of Phase 4, in which
all modes of interest are measured, but no attempt is made to control the powder state. This abbreviated procedure is
significantly less labor intensive, so it is desirable to identify cases where the powder state has a negligible effect.

If, however, Phase 2 determines that the powder state has a significant effect, then Phase 3 is performed to
determine suitable settling and unsettling procedures for the given beam. The number of hits, location of hits, and
force levels used for agitation are variables which Phase 3 seeks to optimize by iteration, with the goal of maximizing
the difference between the “settled” and “unsettled” states. This should make it possible to measure the upper and
lower bounds on damping and natural frequency. The procedure for Phase 3 is discussed in more detail in section C.

While there is no guarantee that the settling and unsettling procedures will produce the most settled and unsettled
states possible or that the powder will be in exactly the same state every time one of these procedures is run,
performing Phase 3 can develop procedures that approach those two ideals. In any case, the measurements in Phase
4 are all repeated several times, ensuring that a wide array of data is collected and allowing the repeatability of the
measurements to be quantified.

Once the settling and unsettling procedures are determined to be appropriate—capable of causing the powder
to transition between fully settled and fully unsettled states—Phase 4 can be executed. The goal of Phase 4 is to
measure the upper and lower bounds of the amplitude-dependent damping and natural frequency for each mode in
the frequency range of interest. This is done by intentionally driving the system between the settled and unsettled
states, using the procedures developed in Phase 3, and then exciting the beam at multiple points so that all modes of
interest are measured. Each combination of powder state, hammer type, and drive point is measured four times, with
the order being randomized, to provide statistical confidence in the results.

Four drive points were chosen, each of which excites different modes. See Fig. 2 for a diagram showing the
location of those four points and the key to hit location abbreviations. Since it is known that measurement hits can
affect the powder state, we randomize the hit order between the four drive points. While it would have been possible
to excite all modes of interest with just two drive points (Z002B and Y077), the additional two drive points (Z039B and
Z090M) will enable the detection of modal coupling. Z039B was chosen to be at the node of the first soft direction
bending mode, so it excites all torsion modes and all soft direction bending modes besides the first one. Z090M
excites only the odd-numbered soft direction bending modes. For each mode that is excited by two or more of the
three Z-direction drive points, we will be able to detect whether its apparent damping and frequency are affected by
the presence of other modes, which would indicate the presence of modal interactions.

Comparing measurements taken with two different hammers will also facilitate the detection of modal coupling.
The medium hammer (PCB 086C01) is equipped with a plastic tip, so it will impart more energy to the lower frequency
modes than the small hammer (PCB 084A14 with PCB 086E80), which has a metal tip. Varying the hit force and
hammer tip, therefore, provides another way to change the extent to which the various modes are excited.

After processing the acceleration signals as described in Section 2.2, the identified natural frequency and damping
can be plotted as functions of amplitude. Inspecting these plots allows conclusions to be drawn about the ranges of
damping and frequency that can be expected for a given mode and how those values depend on various factors.

3 Results and discussion

The four-phase procedure described in Section 2.4 was carried out for six beams, resulting in a rich set of nonlinear
damping and frequency measurements. Section 3.1 presents results for a single beam in order to demonstrate the
typical behavior of the nonlinearity for all modes of interest, and Section 3.2 summarizes the results for all beams.
Sections 3.3 and 3.4 discuss and quantify the contributions of amplitude-dependence, powder state, and modal
interactions to the total variability.

In this section, abbreviations are used to refer to the various modes of interest. The soft direction bending modes
are abbreviated “Mode Z#”, and the stiff direction bending modes are abbreviated “Mode Y#”, in reference to the
direction of motion and the coordinate system in Figure 2. The torsional modes are abbreviated “Mode T#”. Hence,
the first mode, mentioned in Figures 5 and 6, will be denoted “Mode Z1” from this point forward.

3.1 Results for one beam

This section will present results for B1000, the beam with a 1 mm powder pocket. The naming convention for the
beams is that the number following the letter “B” refers to the thickness of the powder pocket in microns.
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Figures 7 to 9 show the mode shapes and natural frequencies found in Phase 1 for the first few modes of each
kind. The modes in the Y- and Z-directions were processed independently, using only the relevant drive points and
accelerometer. Each mode shape is very similar to the corresponding analytical mode shape expected for a free-free
Euler-Bernoulli beam. Some deviation is expected, in part because the stiffness and density of the beam vary with
position due to the powder pocket, but the mode shapes of every beam tested were found to be qualitatively very

similar to these.
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Fig. 7: Experimentally measured mode shapes for the first 4 soft direction bending modes of B1000. The scaling is arbitrary.
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Fig. 8: Experimentally measured mode shapes for the first 2 stiff direction bending modes of B1000. The scaling is arbitrary.
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Fig. 9: Experimentally measured mode shapes for the first 2 torsion modes of B1000. The scaling is arbitrary.

Figure 10 shows the identified damping and frequency curves from Phase 4 for the first two soft direction bending
modes (Modes Z1 and Z2). The acceleration amplitude on the abscissa of these plots is in physical, not modal
coordinates. It corresponds to the acceleration measured at the corner of the beam, after band-pass filtering so that
only the mode in question remains in the response. See Fig. 2 for the location of the accelerometers. The colors of
the lines distinguish the individual measurements. The legends were omitted in these plots, but the details regarding
the drive point and powder state etc. for each measurement are available in the supplementary files. The damping
and natural frequency clearly depend on vibration amplitude: both generally increase with amplitude. However, the
high variability between measurements suggests that amplitude is not the only relevant variable, as will be discussed
further in Section 3.3.
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Fig. 10: Damping ratio and natural frequency for the first two soft direction bending modes of B1000. The dashed black line is
the median, and the transparent turquoise envelopes show the interquartile range and the full range, excluding outliers. As in a
traditional box and whisker chart, points are considered outliers if they fall more than 1.5 x IQR above the third quartile (¢3) or
below the first quartile (¢;), where IQR is the interquartile range (¢ — q1)-

Fig. 11 presents the results for Modes Z3 and Z4. In contrast to the first two, the damping of these modes
decreases with amplitude, while the frequency increases with amplitude. These modes also show smaller changes
in damping with amplitude, both decreasing by a factor of one-third to one-sixth of their peak damping values. In
contrast, the damping of Modes Z1 and Z2 increased by an order of magnitude. Note that these graphs do not include
measurements taken with the medium hammer, as it did not excite these higher-frequency modes well enough for
them to be separated from noise and the influence of nearby modes by band-pass filtering.
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The results for the stiff direction bending modes are plotted in Fig. 12. The damping for Mode Y1 increases by
more than an order of magnitude and then decreases by a similar amount. This contrasts the behavior of the first four
soft direction modes in Figs. 10-11, which either increased or decreased. Few trends can be identified in Mode Y2,
due to high variability between trials, although the damping and frequency appear to decrease at high amplitude, and
the variability in both becomes small at high amplitudes.

Mode Y1 also exhibits an interesting dip in damping near the high end of the amplitude range, and while the shape
of this dip is consistent, it does not occur at a consistent amplitude between measurements. Rather, the dip seems
to come shortly below the maximum amplitude of each measurement, suggesting that the damping is a function of
time since the impact, and hence that the powder properties are changing with time. The magnitude of this effect is
relatively small, however, so it could likely be treated as noise in practice.
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Fig. 12: Damping ratio and natural frequency for the first two stiff direction bending modes of B1000. The dashed black line and
the transparent envelopes are interpreted as in Figure 10.
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The results for the torsional modes are presented in Fig. 13. Both torsional modes increase in frequency with
amplitude. Mode T1 appears to be nearly linear in damping, albeit with considerable variability, while the damping of
Mode T2 decreases with amplitude.
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Fig. 13: Damping ratio and natural frequency for the first two torsional modes of B1000. The dashed black line and the transparent
envelopes are interpreted as in Figure 10.

Plots like these for every beam and mode considered, along with the data used to make them, are available in the
supplementary files.

3.2 Summarized results for all beams

Instead of amplitude-dependence plots for each mode for all six beams tested, summary box plots are given in
Figures 14 to 18. The colored boxes show the median and interquartile range. The whiskers show the full range,
excluding outliers, which are plotted as colored dots. Points are considered outliers if they fall more than 1.5 x IQR
above the third quartile (¢3) or below the first quartile (¢;), where IQR is the interquartile range (g3 — q1).

For each beam and mode, box plots are generated for three amplitude ranges, labeled “low”, “all”, and “high”. The
range labeled “all” was chosen to be as large as possible while ensuring that there would be data everywhere in
that range for every beam measured. The “low” and “high” ranges were taken to be the lower and upper quarters,
respectively, of the full amplitude range. Those quarters are measured in log space, so for example, if the full amplitude
range measured for a mode was 1072 g to 10? g, the “low” quarter of the data would be the range from 1072 g to 10!
g. It should be noted that there are generally fewer points in the high amplitude range because the hits varied in
force, and soft hits generate data only in the lower half of the amplitude range, whereas hard hits generate data in the
entire amplitude range. This means that the statistics for the full amplitude range (“all’) tend to be skewed towards the
low-amplitude behavior.
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The clearest trend that can be observed across all modes as pocket thickness increases is an increase in the
median damping. Along with this increase in damping, however, comes an increase in the variability for both damping
and natural frequency. This increase in uncertainty is especially pronounced starting with B500 or B1000, depending
on the mode.

The solid beam (B000) has very repeatable damping ratio and natural frequency, and it is effectively linear, having
nearly the same behavior across all amplitudes. For Mode Z1, for example, the median damping ratio of BO0O
changes with vibration amplitude from 3.25 x 10~* to 3.43 x 107, and the natural frequency shifts from 908.29 Hz to
908.25 Hz (see Figure 14). These small nonlinearities are likely due to cable damping, aerodynamic drag, and acoustic
dissipation, which are expected to be slightly amplitude-dependent. We consider these sources of nonlinearity to
be negligible relative to the nonlinearity added by the trapped powder. The damping ratio of Mode Z1 of B3000, for
example, changes with amplitude from 5.11 x 1073 to 5.96 x 10~2. This shift in damping is over 3000 times larger than
the shift for BO0O, so it seems justified to neglect any nonlinearity due to sources other than the powder.

With respect to vibration amplitude, Mode Z1 has consistently higher damping at high amplitudes, while the
opposite trend is seen in most of the other modes, which tend to have lower damping at high amplitudes. Damping
that decreases with amplitude is unfortunate because damping is most sorely needed when the vibration amplitude
and hence the stresses in a part are highest. In Figures 14 to 18, both trends are seen, depending on the mode,
and for a particular mode the trend can change as the pocket thickness increases. Many of the modes exhibit small
variability in frequency and damping at the highest amplitudes; it appears that the dominant physics governing the
high-amplitude regime are less sensitive to powder state and other sources of variability than those that govern lower
amplitude vibrations.

Each mode in Figures 14 to 18 generally shows consistent amplitude-dependent behavior, with some scaling as
pocket thickness increases, but each mode behaves in a distinct manner. This variety in nonlinear behavior between
modes suggests that various physical mechanisms may be at play. For example, some prior works [9, 23] have
suggested that particles trapped in a cavity behave as a secondary mass, which bounces in the pocket at higher
vibration amplitudes, in effect becoming separate from the structure. This causes the effective mass of the mode to
go down and its frequency to increase, while the collisions with the structure dissipate energy, increasing damping.
Another possible explanation for frequency that increases with vibration amplitude is that the powder may stiffen at
large strains, due to chains of particles binding, causing the effective stiffness of the powder to increase. Cohesive
effects, such as van der Waals forces have also been proposed [17] as a relevant governing mechanism for these
parts, due to the small particle diameter of LPBF feedstock.

It is also interesting to note in Figures 14 to 18 that the linear natural frequency of the various modes changes very
little as the pocket size increases. The torsion mode (Mode T1) shows the largest change in frequency, decreasing in
frequency by 5.3% as the pocket thickness goes from 0 to 3 mm, and the rest of the modes have nearly constant or
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even slightly increasing natural frequency with pocket thickness. The powder pocket location was chosen to be at
the center of the beam in part because that region contributes relatively little to stiffness, especially in the bending
modes. The decreases in stiffness due to replacing fused metal with loose powder seem to be largely counteracted
by the decreased mass. Table B.1 gives the mass of each beam, showing how the overall mass decreases with
pocket thickness. Note that these decreases in mass are accompanied by small decreases in the moments of inertia,
which could be estimated’ using the dimensions from Table B.1 and the bulk densities of the fused and unfused metal
powder regions?.

3.3 Explaining variability: settling and coupling

Such wide error bars as are seen in Section 3.2 could be discouraging to designers hoping to apply this technique
for increasing the damping of LPBF parts. One approach could be to use the lower bound of damping, designing
conservatively. For example, for B3000 the minimum damping is 0.1-0.3% for most modes, so this value could be
used to conservatively predict the life of the structure. Unfortunately, this value is only a little higher than typical
material damping. One would like to exploit more of the available damping. If the sources of the variability could be
identified, then the uncertainty could be greatly diminished.

If the amplitude of vibration is held constant, then the uncertainty in damping decreases. For example, if it were
known that Mode Z1 is to be excited in the high amplitude regime, then the designer could be confident that a 3
mm pocket would contribute at least 3 — 4% damping (see Fig. 14), and up to as much as 7 — 8%. Additionally, the
damping in this mode showed little variability at high amplitudes so that damping could be expected to occur reliably.

Our procedure also allows us to investigate the effect of powder state: settled or unsettled. Fig. 19 shows the
same data as Fig. 10a, but grouped according to powder state. In the high-amplitude region, we can observe a clear
separation between the settled and unsettled behavior, and the variability within each group is much smaller than the
total variability seen in Fig. 10a. Therefore, if it is known that the deployed part will be agitated regularly such that the
powder will remain in the unsettled state, then the uncertainty in damping for Mode Z1 at high amplitudes is greatly
reduced.
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Fig. 19: Damping ratio and natural frequency for Mode Z1 of B1000. The colored envelopes show the bounds (excluding outliers)
and interquartile range for the settled and unsettled powder states, as indicated in the legend. Note that while the settled and
unsettled powder states behave similarly at vibration amplitudes lower than 10 g, they diverge in the high-amplitude range.

One more consideration that can explain some of the variability in the measurements is the effect of modal
interactions, also referred to as modal coupling. Hitting the beam at different locations and with different hammer tips

"Note that the true moments of inertia will be slightly affected by the extent to which the powder is settled. That effect would likely be negligible,
but future work could attempt to quantify it.
2Estimates of these densities are reported in Section B.
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excites a different combination of modes. In a system with modal interactions, the nonlinear forces for a given mode
can depend on the amplitude of other modes. In that case, we expect that changing the hammer tip and drive point
may affect the identified nonlinear damping and natural frequency.

Figure 20 shows the same data as Fig. 19 (Mode Z1 of B1000), but grouped now by powder state, drive point, and
hammer type. A clear separation can be seen between the two hammer types, but changing the drive point appears
to have no significant effect. Tapping the beam at Z090M should excite only the odd-numbered Z-bending modes,
while tapping at Z002B should excite all Z-bending and torsional modes. The dependence of this mode on hit force
but not drive point may indicate time-dependent behavior, rather than modal interactions.

Z002B, small hammer
2 Z090M, small hammer
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Fig. 20: Damping ratio and natural frequency for Mode Z1 of B1000. The data are grouped according to powder state, drive point,
and hammer type. The colors represent drive point and hammer type as indicated in the legend. Drive point Z090M is along a
node line for the torsional modes and the even-numbered soft direction (Z) bending modes. The transparent envelopes and dashed
lines are interpreted as those in Fig. 10.

The response of the Mode Z2, however, depends strongly on the drive point, as can be seen in Fig. 21. When
holding the drive point, hammer type, and powder state constant, the damping and frequency are remarkably
repeatable, compared to the large variability seen in Fig. 10b. It seems that modal interactions likely account for most
of the variability in this mode. Note that the red curve, which corresponds to striking the beam with the small hammer
near the nodal line of Mode Z1, has much lower damping at low amplitudes. This suggests that high damping may
only be seen for this mode at low amplitudes when either Mode Z1 or the rigid body modes are also present.
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Fig. 21: Damping ratio and natural frequency for Mode Z2 of B1000. The data are grouped according to powder state, drive point,
and hammer type. The colors represent drive point and hammer type as indicated in the legend. Drive point Z039B is along a node
line for Mode Z1. The transparent envelopes and dashed lines are interpreted as those in Fig. 10.

For each beam and mode, these factors—amplitude-dependence, powder state, drive point, and the hammer
used—affect the damping and natural frequency in different amounts. For Mode Z2 of B1000, for example, modal
interactions are the most important factor to control for, as shown in Fig. 21. Mode Z1, however, is more sensitive to
vibration amplitude and powder state, as can be seen by comparing Figures 19 and 20. A quantitative comparison of
the relative importance of each of these factors is presented in Section 3.4.

3.4 AQuantifying the importance of each factor

Seeing that powder state, drive point, and the hammer used each had a significant effect for some modes of some
beams, but not all, we desired to quantify the relative importance of each variable. It would be beneficial to identify
conditions under which some of these factors may be neglected because it may be impractical to control each of
these factors in every application. The design process could be accelerated by identifying which of these factors is the
most important to consider.

In Section 3.3, a qualitative analysis was performed by inspecting plots where the frequency and damping curves
were grouped according to powder state, drive point, and hammer type. It was observed that separating the data into
these groups greatly decreased the variability within each group. To quantify these observations, we consider several
models for the data, each of which takes different variables into consideration, and investigate the model mismatch
error for each. The estimated variance of the model mismatch distribution then serves as a metric to compare these
models, which allows us to compare the degree to which each factor was able to explain the variability in the data.

The simplest model which could be proposed for the measurements requires no knowledge of vibration amplitude,
powder state, or any other variable. Rather, the damping and natural frequency for the given mode are treated as
constant, as in a linear time-invariant system. A simple mean value then becomes the model prediction for all data
points, as follows:

1 N
w=ﬁ;w (12)

where §; is the model prediction for measurement y; and N is the total number of measurements. The variable y is
used here, generically, to refer to either damping ratio or natural frequency, as the analysis is the same for each.
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Next, consider a model that accounts for amplitude only. This would be typical of an experiment that quantifies
amplitude-dependence but ignores the effects of powder state and modal interactions. Rather than requiring a specific,
parametric model form for the nonlinearity, the present analysis will separate the amplitude range into bins and treat
each data point within a given bin as coming from the same distribution. This is also the approach that was taken to
calculate the statistics represented graphically by the envelopes in Fig. 10 and similar figures in this paper. The model
prediction for data point y; in this model is as follows:

1
;= A 1
y _|S| § Yj (13)

where S is the set of indices corresponding to those points belonging to the same amplitude bin as point y; and |S|
refers to the number of elementsin S.

A similar approach is used to define more complicated models that account for powder state, drive point, and
hammer used. The only modification to Equation (13) is that the set § is restricted to include only those points which
the model considers as coming from the same distribution as y;. For example, a model that accounts for 2 powder
states (settled and unsettled) and 50 amplitude bins would subdivide the data into 100 subsets, and the mean in
Equation (13) would involve only those points that fall in the same amplitude bin and powder state as the point in
question y;.

For each model, the variance o of the model mismatch distribution is estimated as follows:

2 1 y 80\2

o= N_Pi_zl(yl yl) (14)
where P is the number of parameters in the model, which is equal to the number of subsets that the data was
partitioned into because one mean is calculated for each partition of the data. This results in an unbiased estimate of
the variance [24].

First, we compare models that account for only one of the independent variables: amplitude (A), powder state
(PS), drive point (DP), or hammer type (HT). The standard deviations o of the model mismatch for each model are
compared in Fig. 22. Note that amplitude (A) is always the most informative variable, typically decreasing uncertainty
by a factor of 2 or more. However, in some cases the model including all variables (A, PS, DP, HT) has significantly

lower uncertainty.
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Fig. 22: Standard deviation of model mismatch for several models: Mode Z1. Each model is labeled in the legend according to the
variables that it considers. The model labeled “NONE” is the linear model, as in Equation (12). Note that BO00 and B100 did not
vary the powder state, so the bar “PS” is identical to the bar “NONE”. B100 was only tested with one hammer, so “HT” is the same
as “NONE”.

175 | doi:10.25518/2684-6500.285 Jonathan K. Black, Brooklyn Andrus, Derek Koski, Matthew S. Allen et. al


http://dx.doi.org/10.25518/2684-6500.285

Journal of Structural Dynamics, 3, (pp. 156-187) 2025
Nonlinear behavior of additively manufactured steel beams with trapped-powder dampers

In order to better determine which of the variables PS, DP, and HT have the largest effect after accounting for
amplitude, several two-variable models are compared in Fig. 23. The uncertainties in this plot are normalized against
the linear model uncertainty, to facilitate comparison between beams. The model that accounts for amplitude only (A)
is included again, for reference, along with the model that includes all variables (A, PS, DP, HT).

These charts can be understood better by comparing the bars for B1000 in Figure 23 to Figures 19 and 20. Mode
Z1 displays significant amplitude-dependence, as reflected in the large reduction in the height of bar “A” relative to
the linear model (normalized to 1). Next, we observe that accounting for powder state as in Figure 19 reduces the
uncertainty further by a significant amount. Without accounting for powder state, the other variables, DP and HT, don’t
appear to reduce the uncertainty significantly (see the bars “A, DP” and “A, HT”), but the lowest uncertainties are only
seen when accounting for all four variables, as in the bar “A, PS, DP, HT” and in Figure 20.

The reduction in uncertainty of the amplitude-dependent model (A) relative to the linear model (normalized to
1) can be interpreted as measuring the nonlinearity of this mode for each beam. For example, the uncertainty in
damping for Mode Z1 of B1000 is approximately 30% of that of the linear model, so the uncertainty can be reduced
by an average of 70% by accounting for amplitude-dependence of the damping. One caveat to this interpretation is
that the uncertainties presented are an average over the data collected in this study. In any given amplitude range,
the true reduction in uncertainty may be greater or smaller than this value, and the values presented are biased
towards amplitude ranges that have more data points. Additionally, a large reduction in uncertainty for “A” relative to
the linear model does not necessarily imply that there is a large nonlinear effect in an absolute sense. For example,
the normalized uncertainty in frequency for B100 reduces to 0.34 when accounting for amplitude (bar B100 “A” in
Fig. 23), but the entire range of values is only 909.6 — 909.9 Hz (see Fig. 14), which would generally be considered a
negligible change in frequency. These bar charts serve to compare the relative size of the contributions of various
factors to the total uncertainty.

Comparing the effect of powder state, drive point, and hammer type, we see that, with the exception of BO00 and
B100 for which the powder state was not varied, powder state seems to be the most influential variable for reducing
uncertainty in Mode Z1. Another observation from Figure 23 is that the extent to which nonlinearity and the other
variables can explain the uncertainty increases with pocket thickness until B1000, after which the unexplainable
variability (represented by the uncertainty of the “A, PS, DP, HT” model) increases again. This seems to indicate that
nonlinearities due to the powder become increasingly relevant as pocket thickness increases, but that the behavior
becomes increasingly complex, uncertain, and difficult to explain as the pocket thickness increases beyond 1 mm.
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Fig. 23: Normalized standard deviation of model mismatch for several models: Mode Z1. The normalization is done by dividing by
the uncertainty of the linear model. Note that BOOO and B100 did not vary the powder state, so the bar “A, PS” is identical to the
bar “A”. B100 was only tested with one hammer, so “A, HT” is the same as “A”.

The trends that could be identified for Mode Z1 do not generalize well to the other modes. Figures 24 and 25
compare the normalized uncertainties for the same set of models for Mode Y1 and Mode T1. Each variable—powder
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state, drive point, and hammer type—is important for at least one combination of mode and beam pocket thicknesses.
Charts like these for every mode studied are available in the supplementary files.
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Fig. 24: Normalized standard deviation of model mismatch for several models: Mode Y1. The normalization is done by dividing by
the uncertainty of the linear model. Note that BOOO and B100 did not vary the powder state, so the bar “A, PS” is identical to the
bar “A”. B100 was only tested with one hammer, so “A, HT” is the same as “A”. Note that because there was only one drive point in
the Y-direction, the model “A, DP” is the same as “A” (except for B00O, which had two drive points in the Y-direction).
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Fig. 25: Normalized standard deviation of model mismatch for several models: Mode T1. The normalization is done by dividing by
the uncertainty of the linear model. Note that BOOO and B100 did not vary the powder state, so the bar “A, PS” is identical to the
bar “A”. B100 was only tested with one hammer, so “A, HT” is the same as “A”. For B500, this mode was very close in frequency to
Mode Z3, so only a few points could be extracted from each hit, which explains the unusually high uncertainties.
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4 Conclusions

Six LPBF beams with trapped-powder dampers of varying thicknesses were characterized over a range of vibration
amplitudes, powder states, excitation forces, and impact locations. As pocket thickness was increased, the added
damping increased, but so did the potential nonlinearity and variability. For the largest powder pockets considered
here, the damping typically increased by at least a factor of 10 and often by more than a factor of 100 at some vibration
amplitudes, while the natural frequency typically decreased by less than 5%. The highest damping ratios observed
were about 10% of critical, although all modes/beams that exhibited damping that high also exhibited nonlinearity and
increased uncertainty. For several modes the minimum (or worst case) damping observed, irrespective of amplitude
and uncertainty, was as high as 1% of critical, although some modes only saw increases of 2x or so compared to
material damping, which was about 0.05% of critical. In any event, the results show that this could be an effective
means of adding damping to various modes of LPBF parts, although one must consider nonlinearity and variability to
realize the maximum benefit.

In addition to amplitude-dependence, the modal damping and natural frequencies of these samples exhibited
significant variation with the assumed powder state, hit force, and impact location. The dependence on impact location
is thought to indicate nonlinear modal coupling. The manner in which the damping and frequency depend on each of
these factors was found to vary greatly between modes and pocket thicknesses. The relative importance of these
factors was quantified, and it was found that each factor dominates for at least one of the modes studied. Hence,
while many of these effects could likely be neglected in practical applications, in some cases they would contribute to
significantly higher uncertainty in the observed modal damping if not accounted for.

While we were unable to directly observe the powder state in these experiments, several factors point to its
influence on the results. Strictly speaking, the LPBF parts with trapped-powder dampers were found to exhibit an
unknown memory effect, in which different kinds of agitation caused the system to transition between a high-damping
state and a low-damping state. We found these state transitions to be reversible, and we hypothesized this behavior
to be caused by powder settling and unsettling.

One implication of these findings is that care must be taken when testing parts with trapped-powder dampers to
account for the packing state somehow. For example, studies that compare damping between multiple specimens
with trapped-powder dampers should handle the samples in a consistent manner and either identify or control the
packing state. Perhaps all the samples could be tapped a set number of times before testing to encourage consistent
powder settling. We found that even turning the parts upside down briefly was sufficient agitation to cause significant
changes in their damping behavior, so care should be taken to handle parts consistently. Failure to do this could
lead to erroneous conclusions being drawn from comparisons between one part with settled powder and another
with unsettled powder. Another approach would be to find upper and lower bounds on the damping behavior of each
sample by intentionally driving the system between the most packed and unpacked states. This was the approach
taken in the present study.

These findings also have important implications if one wishes to employ this method of damping in practice. In
the worst case, one could extract the minimum damping from the results in Figures 14 to 18 and use that when
performing stress analysis. For example, a minimum damping ratio of 0.001 could be expected for Mode 1 of a
beam with a 3 mm powder pocket. This figure is not very impressive, although still significantly better than one would
expect for solid 316L stainless steel®. In contrast, if one takes the nonlinearity into account then at higher amplitudes
the minimum damping increases to nearly 0.040, which is a rather large value for a metal part. Presumably, large
amplitude vibrations are also most likely to damage the part, and so this configuration would have damping when it
is needed most, whether the powder is settled or not. Furthermore, if the part is to be deployed in an environment
that can be expected to unsettle the powder regularly, then the minimum damping increases further to 0.045 (see
supplementary data for B3000, Mode Z1).

Finally, the study presented in Section D confirmed that trapped-powder damping is effective across a wide range
of temperatures. At high temperatures (95 °C), the damping ratio was observed to decrease slightly, from 0.022 to
0.019 being the largest decrease seen (a 14% decrease), but this effect is likely small enough to be negligible. The
performance of viscoelastic damping treatments would be expected to suffer much more (as much as 80% for a typical
viscoelastic polymer) over similar changes in temperature.

The raw and processed data and graphs, a subset of which are presented in this paper, are available in the
supplementary material. Future work could attempt to identify additional trends and general principles to inform
design decisions involving LPBF trapped-powder dampers. This dataset can also be used in the future for model

30ne should bear in mind that the support structure does contribute some additional damping and the uncertainty due to the support damping
was not quantified here. However, the same bungee types and locations were used in all tests so the support damping is thought to be constant for
each mode.
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updating and validation.

Appendix

A Supplementary material

The experimental datasets described in this work are publicly available in a Zenodo repository [25], together with the
results of the data processing and the complete set of graphs mentioned in Section 3.

B Measurements of beam samples

The dimensions and mass of each beam tested in the present work are given in Table B.1. The mass of each was
measured with an A&D EJ-303 balance. The length, L, was measured with a ruler, and the width and height were
measured with calipers. Two small adjustments were made to the measured dimensions in an attempt to correct for
biases in the measurements. First, most of the beams were slightly curved, and that curvature was estimated to bias
the length measurements by —2 um. Second, because no post-processing was performed to change the as-printed
finish, the beams had significant surface roughness that biased the measurements. Based on a study by Zhang
and Yuan [26], the as-printed surface roughness profile was estimated to vary around the nominal position of each
surface by r € [-50, 100]um, with the average value being r = 25 um. The measurements were taken from the peak
of the roughness profile on both sides of the part, so 100 um — 25 um = 75 um must be subtracted twice in order
to estimate the average value of the dimension. Therefore, the total bias due to surface roughness is taken to be
2 x75pum = 150 ym.

Fig. B.1: Drawing of beam showing the labels used in Table B.1 for the six dimensions.

In order to estimate the (unmeasured) dimensions of the pocket, the following corrections were applied to
the nominal pocket dimensions. First, the beams were found to have contracted slightly relative to their nominal
dimensions, and this was assumed to have been due to uniform thermal contraction, which would affect the internal
pocket dimensions as well as the external dimensions. The ratio between the measured length (after adjusting for
curvature and surface roughness®) and the nominal length was used as a constant factor of thermal contraction to
adjust the nominal pocket dimensions. Finally, 50 um® was subtracted from the contracted pocket dimensions as an
estimate of the effect of internal surface roughness on the mean cavity dimensions. These adjustments explain why
the values of H, given in Table B.1 are slightly smaller than the nominal pocket thickness in microns, which is the
number following the letter “B” in the beam label. As an example, the length of B1000 was measured to be 179.2 mm,
so the corrected average length was 179.052 mm and the contracted nominal length was estimated to be 179.002 mm.

“In this case, the quantity of interest is not the average value of the dimension, but the contracted nominal dimension. Therefore, the difference
between the peak of the roughness profile and the nominal position (100 um) is subtracted twice to estimate the post-contraction nominal dimension.

5The difference between the (post-thermal-contraction) nominal position of a surface and the average position of the roughness profile was
estimated to be r = 25um, so this value was subtracted twice in order to correct for the effect of surface roughness on the average pocket
dimensions.
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The factor of thermal contraction was then 179.002/180 = 0.994, so the internal pocket thickness was estimated to be
1000 pm X (0.994) — 50 pm = 944 pm.

Table B.1: Corrected dimensions and mass of each beam tested. The dimensions are defined in Figure B.1.

Dimensions (mm)

Beam label Mass (g) L w H L, W, H,
B000 151.9 178.70 18.28 592  0.00 0.00 0.00
B100 151.5 179.15 18.15 6.00 139.25 15.87 0.05
B500 149.3 179.10 18.10 5.94 139.21 15.87 045
B1000 145.5 179.05 18.24 585 139.17 15.86 0.94
B2000 138.6 178.85 18.32 5.92 139.02 15.84 1.94
B3000 132.2 178.85 18.15 592 139.02 15.84 293

These dimensions, along with the measured masses, were then used to estimate the densities of the fused and
unfused powder. The composite density of each sample was related to the volume fraction of unfused powder, f,,
by a linear regression, allowing the densities of the fused and unfused powder to be estimated by evaluating that
best-fit line at f, = 0 and f, = 1, respectively, as depicted in Figure B.2. There are more than six points in this plot
because measurements from other beams besides those included in the present study were used in the density
estimate. The densities of the fused and unfused powder regions were found to be pyseq = 7.898 + 0.019 g/cm® and
Ppowder = 4.892 +0.186 g/cm?, where the uncertainties presented represent a single standard error. This results in a
filled volume ratio estimate of powder /P fusea = 61.9%, which falls well within the 0.59 to 0.63 range of packing densities
predicted by Xiang et al. [27] by simulation of the LPBF process.
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Fig. B.2: Composite density of the beam samples, plotted against the volume fraction of unfused powder in the beam. The best-fit
linear regression was used to estimate the density of the fused and unfused powder regions.

C Details of procedure for bounding system behavior

The settling and unsettling procedures used in Phase 2 are based on what worked well in [19] and are described in
Table C.1. The settling runs involved striking the beam from above with a small screwdriver (a Craftsman 41293 — V —
WF), as shown in Figure C.1a. The unsettling was done by holding the beam upside-down and striking it from above
with the medium hammer (a PCB 086C01 with a plastic tip), as shown in Figure C.1b.

180 | doi:10.25518/2684-6500.285 Jonathan K. Black, Brooklyn Andrus, Derek Koski, Matthew S. Allen et. al


http://dx.doi.org/10.25518/2684-6500.285

Journal of Structural Dynamics, 3, (pp. 156-187) 2025

Nonlinear behavior of additively manufactured steel beams with trapped-powder dampers

(a) Settling hits

(b) Unsettling hits

Fig. C.1: Photos of the two kinds of agitation being performed.

However, as the kind and amount of agitation required to settle or unsettle beams of different pocket thicknesses
was expected to differ, some of the details of the procedure varied slightly from beam to beam. The procedure
presented in Table C.1 was the most commonly used one, and each Phase 2 procedure was largely the same.

Table C.1: Procedure for Phase 2. The key for decoding the hit location abbreviations is given in Fig. 2. For the runs using the
screwdriver, no force measurement was available, so the peak acceleration measured by the hit direction accelerometer was used
as a reference to keep hit forces as repeatable as possible.

Target force (N) or ac-

Run name Number of hits  Hit location  Implement used .

celeration (g)

10 Y090 screwdriver 2509

setd 5 Y090 screwdr?ver 150 g
5 Y090 screwdriver 100 g

5 Y090 screwdriver 50 ¢
measi 3 Z002B med?um hammer 150 N
3 Y077 medium hammer 150 N

20 Y090 screwdriver 2509

set2 10 Y090 screwdriver 150 g
10 Y090 screwdriver 100 g

10 Y090 screwdriver 50 ¢
meas? 3 Z002B med!um hammer 150 N
3 Y077 medium hammer 150 N

uns3 10 Y090 medium hammer 150 N
meas3 3 Z002B med?um hammer 150 N
3 Y077 medium hammer 150 N

uns4 20 Y090 medium hammer 150 N
measd 3 Z002B medium hammer 150 N
3 Y077 medium hammer 150 N

10 Y090 screwdriver 2509

set5 5 Y090 screwdr?ver 150 g
5 Y090 screwdriver 100 g

5 Y090 screwdriver 50 ¢

meas5 3 Z002B medium hammer 150 N
3 Y077 medium hammer 150 N

20 Y090 screwdriver 2509

setb 10 Y090 screwdriver 150 g
10 Y090 screwdriver 100 g

10 Y090 screwdriver 50 ¢

meas6 3 Z002B medium hammer 150 N
3 Y077 medium hammer 150 N
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Phase 3 was performed any time that Phase 2 found the powder state to have a significant effect because the
settling and unsettling procedures that worked well for one beam did not always work well for another. In general,
more hits were required to fully settle the powder for beams with thinner powder pockets, and the unsettling procedure
typically required little modification if any.

The procedure for Phase 3 is summarized in Figure C.2. Whichever mode displayed the memory effect most
clearly in Phase 2 was chosen for study in Phase 3. Choosing a single mode for consideration in this phase reduces
the effort of testing and data analysis: only one drive point is required, and only one mode needs to be analyzed. As
this phase may involve several iterations, this reduction in testing and analysis time is significant.

The number of hits, location of hits, and force levels are varied iteratively until a reliable procedure has been
identified for settling the powder for the beam in question (see the row titled “Optimizing Settling” in Figure C.2). Then,
the procedure is inverted to identify the optimal procedure for unsettling the powder (see the row titled “Optimizing
Unsettling” in Figure C.2).

Phase 3
(2]
£
5 N
g Initial Unsettling Measure unsettled Settling Measure settled
e measurement state state
N
£ - ]
g_ Repeat, with a modified settling procedure
(<))
£
3
g Initial Settling Measure settled Unsettling Measure unsettled
o measurement state state
[=
N r ]
.g Repeat, with a modified unsettling procedure:
Q.
o

Fig. C.2: Summary of procedure for Phase 3. The boxes labled “Unsettling” and “Settling” stand for the execution of a powder
agitation procedure, similar to the runs labeled “uns” and “set” in Table C.1, but with varying numbers, locations, and forces of hits.
The boxes beginning with “Measure” stand for a ringdown measurement, performed by tapping the beam with a modal hammer at
a location that will excite the mode of interest (the mode identified in Phase 2).

The settling and unsettling procedures should be optimized to maximize the difference between the settled and
unsettled states. Typically, this meant designing an unsettling procedure that led to a high-damping state and a settling
procedure that led to a low-damping state, but occasionally the changes in natural frequency were also significant. It
is also desirable to identify the minimum number of hits required to cause convergence to a fully settled or unsettled
state, as this will greatly shorten the execution of Phase 4.

D Varying the operating temperature

As discussed in Section 1, viscoelastic damping treatments are known to be highly temperature-dependent, providing
optimal damping performance only in a narrow temperature range [4]. Trapped-powder dampers are not expected to
have their performance impacted by operating temperature, as long as it remains below the sintering temperature of
the powder [14], which would be one of the main advantages of this technique over viscoelastic damping treatments.
While it seems to be generally believed that powder dampers will be less sensitive to temperature than viscoelastic
dampers, the authors were unable to find any studies where the damping contribution of LPBF trapped-powder
dampers was measured at various operating temperatures. Additionally, it is known that the material properties of
steel, including the friction coefficient, can vary somewhat with temperature [28], so it is reasonable to expect some
slight dependence of the damping ratio on temperature. Therefore, the present study measured one beam (B2000) at
three different temperatures to determine whether there was any significant dependence on temperature.
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D.1 Methods: Varying temperature

The setup for these tests was the same as described in Section 2.1, excepting a few modifications. Only one
accelerometer was attached to the beam, the one that measured in the Z-direction, and it was mounted with the wire
facing outwards instead of being taped at the node line of Mode 1. This was done to avoid heating the accelerometer
wires directly, as well as due to concerns about the performance of the tape at high temperatures. Additionally, the
accelerometer was attached with DuraKore dental cement from Reliance Dental Manufacturing instead of Super Glue,
and the fishing line was replaced with 0.2 mm diameter aramid thread. Beam temperatures were measured with a
FLIR E50 infrared (IR) camera.
The general outline for these tests consists of the following steps:

1. tap the beam repeatedly until it reaches a consistent, stable powder state;
measure the beam’s behavior;
heat or cool the beam;

measure the beam at the new temperature;

o M 0D

wait for the beam to return to room temperature;
6. measure the beam again.

While the procedure described in Section 2.4 drives the beam to the most settled and unsettled states in order to find
upper and lower bounds, this procedure accounts for the possibility of change in the powder state by quantifying any
drift in behavior over the course of the experiment. Step 1 is performed because some powder states have been found
to be more stable than others: after repeated measurement taps, the beam tends towards a relatively repeatable state.
Reaching this state before continuing with the rest of the procedure should help to keep the powder state relatively
consistent throughout the experiment. Between steps 2 and 6, care is taken to avoid jostling the beam, with exception
of the measurement impacts, again so as to minimize the likelihood of large shifts in powder state. Ultimately, the
effect of any drift in powder state can be estimated by comparing the measurements taken in step 2 to those taken in
step 6. ldentifying the effect of changes in powder state gives us confidence that any trends we attribute to operating
temperature are not merely due to changing powder state.

For the low-temperature tests, step 3 consisted of carefully transporting the beam, with the accelerometer wire still
attached, into a standard household freezer to cool overnight. Leaving the accelerometer wire attached allowed for
quicker reconnection to the data acquisition system after the beam was removed from the freezer. (The temperature in
the freezer was —18 °C.) Next, we quickly transported the beam back to our testing setup and immediately performed
the step 4 measurements. For the high-temperature tests, step 3 was performed by holding a heat gun (Master
HG-501A) underneath the beam and moving it side to side while pointed upwards. The IR camera was used to
ensure that the beam was heated evenly. Figure D.1 shows an example frame from the video recorded by the IR
camera during high-temperature testing, taken a few seconds before the measurement taps were performed. Note
that temperature of the beam appears to be relatively uniform, between 90°C and 100 °C.
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Fig. D.1: Picture from the IR camera taken a few seconds before tapping the beam to measure its behavior at elevated temperatures.
Compare to Figure 1a. The bright spots appearing in a grid should be ignored, as they correspond to locations that were marked
with black ink (see Figure 1b), suggesting that the ink affects the emissivity of the surface.

The measurement runs in steps 2, 4, and 6 consisted of five measurement taps at Z090M with the small hammer,
aiming for forces of SO0N. The ring-down measurements were processed as described in Section 2.2. The first
soft-direction bending mode (Mode Z1) was the only mode considered in this study. We expect that the effect of
operating temperature on the damping performance of this mode will be representative of its effect on other modes.

D.2 Results: Varying temperature

Figure D.2 shows the results from the experiment described in Section D.1, in which the operating temperature was
varied. The clearest trend in the data is that the natural frequency shifts with temperature: cooling the beam shifted
the natural frequency upward by approximately 6 Hz, and heating the beam shifted the frequency downward by about
26 Hz. This effect is likely due to the steel having temperature-dependent stiffness. To quantify the change in stiffness
that this assumption implies, we consider the following relationships:

w, « VE (D.1)
Ey [(wn :
P - (wnl) (D.2)

where w, is the frequency of a given mode of a part, E is the Young’s modulus of that part, the symbol « represents
proportionality, and the numbered subscripts represent two conditions that differ only by the Young’s modulus. Applying
Equation (D.2) to natural frequencies read from the low-amplitude range of Figure D.2 gives the following: cooling the
beam by 14 °C resulted in a 1.4% increase in stiffness, and heating the beam by 73 °C resulted in a 5.7% decrease
in stiffness. For comparison, we consider the measurements by Rehmer et. al [29] of the temperature-dependent
elastic modulus of 316L stainless steel. Interpolating (and extrapolating, slightly) on their data, we would expect a
0.60% increase in stiffness for the cold tests and a 3.1% decrease in stiffness for the high-temperature tests. Our
results suggest nearly double those amounts, which could perhaps be explained by uncertainties in the temperatures
measured by the IR camera and in the damping values from Figure D.2. It is also possible that some other effect
related to uneven heating or thermal expansion contributes to this shift in natural frequency.

Perhaps of greater interest is the effect of temperature on the damping ratio. Looking at the results from the cold
test in Figure D.2a, no significant effect on damping can be seen, except perhaps a very slight increase in damping at
high amplitudes. The hot test results in Figure D.2b present a slight decrease in damping ratio with temperature. While
this effect is small, it appears to be significant in the statistical sense. A slight reduction in damping with increase
in temperature is consistent with the results of [28], in which the friction coefficient of steel on steel contact was
found to decrease at high temperatures. Within the temperature ranges studied here, however, the effect of operating
temperature on damping ratio can be neglected. This slight reduction in damping with very high temperatures is still
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Fig. D.2: Damping ratio and natural frequency for Mode Z1 of B2000, testing at several temperatures. The data labeled “COLD”
were taken at approximately 8 °C and the data labeled “HOT” were taken at approximately 95 °C. The data labeled “PRE” and
“POST” were taken at room temperature (22.2 °C) before and after the tests at different temperatures. The transparent envelopes
and dashed lines are interpreted as those in Fig. 10.

greatly preferable to the large decreases in damping that one would expect for a viscoelastic material operating in a
similar range of temperatures. For example, the loss factor of a typical viscoelastic damping polymer [30] can drop by
as much as 80% over a 70 °C temperature change.
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