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Abstract
Substructuring is an important step in the analysis of complex built-up structures. It is the process by
which individual components are mathematically assembled to build a model of a coupled system. In
the frequency domain, admittance or FRF-based substructuring has become the preferred approach,
especially when considering experimental components for which FRFs are easily obtained from test
data. However, FRFs are not the only way to represent a component in the frequency domain. Often,
particularly for layered systems, the so-called transfer matrix (TM) representation becomes more
convenient; component coupling is achieved by simply multiplying together their respective TMs. In
the present paper we develop a hybrid substructuring scheme that allows the coupling of FRF-based
components using a TM representation of the interconnecting junction. Such an approach might be
beneficial for structures with complex layered connections (well suited to TM-based coupling), and has
the potential to provide additional insight into structural transmission through multiple interconnected
elements.
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1 Introduction

To analyse the vibro-acoustic performance of a complex built-up structure it is convenient to adopt a component-based
approach [1]. The assembly is decomposed into a series of interconnecting components which are independently
characterised, either by experiment or numerically. These component representations are then combined mathemat-
ically to yield a model of the assembled system, a process termed substructuring. The process of substructuring
amounts to the enforcement of compatibility and equilibrium between the connecting degrees of freedom (DoFs) of
each component. This can be achieved in a variety of ways, and in any of the domains typically used for structural
dynamic analysis, including the physical, modal, state, time and frequency domains [2]. In recent years, frequency
domain methods have gained popularity, given the ease of which they allow for combining experimental and numerical
component representations.

In the frequency domain, components are most often represented by their free-interface admittance matrices,
which describe their kinematic response due to a set of applied forces. Based on component admittance, various
substructuring schemes are available, including direct [1], primal/dual [2] and mixed [3] formulations. The advantage
of an admittance-based approach, is the relative ease in which the component admittance matrices can be measured.
It is not however the only approach available. An alternative frequency domain representation is by the so-called
transfer matrix [4], which relates the state vector (stacked force and response) between two sets of DoFs, usually
considered the input and output of the component. The advantage of a transfer matrix approach is that structural
coupling of two of more components is reduced to a simple multiplication of their respective transfer matrices. This is
especially convenient for modeling systems where the components form a cascaded chain, such as when dealing
with layered materials [5, 6].
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The transfer matrix method (TMM) has found greatest application in acoustics, where it is used extensively
to model sound transmission through multi-layered structures [7, 8, 9], though applications also exist in structural
dynamics and vibration. For example, in [10] and [11] the authors use the TMM to model the dynamics of beams with
variable cross-sections. In [12] the TMM is used as an analytical tool to study the vibration of compressed helical
springs. In [13] and [14] the TMM is applied to the study of rotor-bearing systems comprising coupled lateral and
torsional vibration and local/global coupler offsets. In [15] TMs are used to analyse the vibrational power flow through
a MIMO system.

The TMM has also been incorporated within other modeling schemes to provide an efficient inclusion of layered
materials/structures. In [16] the hybridisation of Finite Element and TMM is proposed for the efficient analysis of
plate and shell structures. In [17] the TMM is combined with hybrid FEA-SEA method for diffuse sound transmission
through finite-sized thick and layered wall and floor systems. In [18] the coupling of TMM and Finite Element method
is used for the efficient acoustic analysis of automotive hollow body networks. The TM representation also forms the
basis of the so-called Wave-FE approach used for efficient modeling of periodic structures [19].

In this paper we present a mixed admittance/transfer matrix-based substructuring scheme. We consider the
problem depicted in Figure 1 (though the proposed scheme can readily be generalised to more complex systems),
where two admittance-based components are coupled by a series of connecting elements which together form a
junction. We wish to represent the dynamics of this layered junction by the more convenient transfer matrix, whilst
keeping the end components in their admittance form. The result is a generalization of the dual formulation for
admittance-based substructuring, where the conditions of equilibrium and compatibility between components are
replaced by the junction transfer matrix equations, themselves built from an arbitrary number of sub-element transfer
matrices. The principle advantage of the proposed approach is the ease of which complex layered systems can be
incorporated within an admittance substructuring scheme. Adding, removing, or reordering junction components is
achieved by directly including, removing, or reordering their respective transfer matrices, thus avoiding the need to
redefine the Boolean coupling matrices required by the conventional dual formulation.

Having outlined the context of this paper, its remainder will be structured as follows. In Section 2 we introduce the
admittance and transfer matrix methods for structural coupling. Following this in Section 3, we present the mixed
admittance-transfer matrix substructuring scheme with a simple numerical example in Section 4. Finally, Section 5
draws some concluding remarks.

2 Structural coupling

In this section we introduce the admittance and transfer matrix-based substructuring methods that we wish to combine
into a common framework. The principal difference between these two methods is in how they represent the dynamics
of their respective substructures (described below). Irrespective of this representation, the rigid coupling of two
components is governed by the conditions of compatibility and equilibrium,

u1 = u2 g1 = −g2 (1)

which state that when two components are in rigid contact their interface DoFs must a) have the same kinematic re-
sponse (displacement, velocity and acceleration) and b) exert equal and opposite forces onto one another. Depending
on the chosen domain and/or component representation, the methods for enforcing these constraints will differ.

2.1 Admittance-based (FRF) coupling

With admittance-based substructuring, each component is represented by a complex admittance matrix Y(n) that
satisfies the equation of motion (per frequency),

u(n) = Y(n)(f(n) + g(n)) (2)

where f and g are, respectively, the externally applied and interface coupling forces that act on the component, and u
is its kinematic response (displacement, velocity or acceleration depending on the units of Y).

To model an assembly of P such components, we begin by writing their equations of motion in a block diagonal
form,

u = Y (f + g) (3)
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where, Y is the block diagonal admittance matrix of the P uncoupled components, u is the corresponding block vector
of responses, f is the block vector of applied forces, and g the block vector of interface coupling forces,

Y =


Y(1)

Y(2)

. . .

Y(P)

 , u =


u(1)

u(2)

...
u(P)

 , f =


f(1)

f(2)

...
f(P)

 , g =


g(1)

g(2)

...
g(P)

 .
To rigidly couple the connecting components, the conditions of compatibility and equilibrium must be satisfied across
the set of co-located coupling DoFs. To aid flexible DoF selection, compatibility and equilibrium are expressed in the
general matrix form,

Bu = 0, (4)

and

LTg = 0 (5)

where B and LT are signed and unsigned Boolean matrices that specify which DoFs are to be coupled [2]. Equations
3, 4 and 5 are commonly referred to as the three field formulation.

The rigid coupling of two components implies the internal forces are of equal magnitude (or intensity) and opposite
direction. Hence, we are able to define a priori the form of g as,

g = −BTλ (6)

where B prescribes the equal and opposite signage, and λ is a vector of interface force magnitudes. Combining
equation 5 and 6, we see that LT and BT represent the null-space of one another, since we must have −LTBTλ = 0
for any value of λ.

Substituting g into the block equations of motion we have,

u = Y
(
f − BTλ

)
. (7)

To determine the coupled assembly response, we first find the interface force required to bring the system into
alignment (i.e. satisfy equation 4). To do so we substitute equation 7 into the compatibility equation,

Bu = BY
(
f − BTλ

)
= BYf − BYBTλ = 0, (8)

before rearranging to solve for λ,

λ =
(
BYBT

)−1
BYf. (9)

We can now substitute λ back into the equations of motion to yield the coupled response,

u = Y
(
f − BT

(
BYBT

)−1
BYf

)
=

(
Y − YBT

(
BYBT

)−1
BY

)
f. (10)

From the above we can identify the coupled admittance as,

YC = Y − YBT
(
BYBT

)−1
BY. (11)

Equation 11 provides a convenient framework for general substructuring; it allows an arbitrary number of components to
be assembled in any configuration, and avoids large matrix inversions typical of other admittance-based formulations.

2.2 Transfer matrix-based (TM) coupling

With transfer matrix-based coupling, each component is represented by a complex transfer matrix T that relates the
force and response between two sets of DoFs (say c1 and c2),

(
uc2

fc2 − gc2

)
=

T︷        ︸︸        ︷[
Tu Γ

Ω Tg

] (
uc1

fc1 + gc1

)
. (12)
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Within the transfer matrix, the submatrices Tg and Tu represent a pair of force and response transmissibilities. Whilst
transmissibilities have many interesting properties and applications, they do not themselves fully characterize a
component [20]. The off-diagonal terms Γ and Ω provide the necessary force-response cross-terms required for the
transfer matrix representation of a component to be complete (see Appendix A).

To rigidly couple two components A and B,(
uAc2

−gAc2

)
=

[
Tu

A ΓA

ΩA Tg
A

] (
uAc1

gAc1

) (
uBc3

−gBc3

)
=

[
Tu

B ΓB

ΩB Tg
B

] (
uBc2

gBc2

)
. (13)

through the DoFs c2 we simply recall the conditions of compatibility and equilibrium,(
uAc2

−gAc2

)
=

(
uBc2

gBc2

)
(14)

and combine equation 13 as so,(
uBc3

−gBc3

)
=

[
Tu

B ΓB

ΩB Tg
B

] [
Tu

A ΓA

ΩA Tg
A

] (
uAc1

gAc1

)
. (15)

Clearly, this approach to coupling can be extended for an arbitrary number of components,(
uNcN+1

−gNcN+1

)
=

[
Tu

N ΓN

ΩN Tg
N

] [
Tu

M ΓM

ΩM Tg
M

]
· · ·

[
Tu

B ΓB

ΩB Tg
B

] [
Tu

A ΓA

ΩA Tg
A

] (
uAc1

gAc1

)
(16)

=

[
Tu

N···A ΓN···A

ΩN···A Tg
N···A

] (
uAc1

gAc1

)
. (17)

This is especially useful for complex layered structures, where each layer is simply represented by its own transfer
matrix. In addition to providing convenient structural coupling, the transfer matrix T can be used to derive and inspect
the free wave characteristics of a component (or collection thereof), as done by the WFE method [19].

2.2.1 Experimental characeterisation of transfer matrices

The direct measurement of a component’s transfer matrix, whilst possible in theory, is not a straightforward task.
This is because it would require rigidly constraining the junction DoFs to obtain certain terms, for example the force
transmissibility Tg, which is defined element-wise as,

T g
c1,i,c2, j =

−gc2,i

gc1, j

∣∣∣∣∣∣
uc1= 0, gc1,k, j= 0

(18)

requires the constraint uc1 = 0. In practice, it is more convenient to measure the component’s admittance matrix
at and between the two coupling DoF sets, and then convert these to a transfer matrix representation using (see
appendix A for details),(

uc2

−gc2

)
=

[
Tu Γ

Ω Tg

] (
uc1

gc1

)
=

[
Yc2c2 Y−1

c1c2
Yc2c1 − Yc2c2 Y−1

c1c2
Yc1c1

−Y−1
c1c2

Y−1
c1c2

Yc1c1

] (
uc1

gc1

)
. (19)

3 Hybrid Admittance-TM coupling

We wish to combine the admittance and transfer matrix coupling schemes describe above, to model systems of the
form shown in Figure 1, where the junction between two admittance components is represented by a general transfer
matrix.

In the proposed hybrid substructuring scheme, the coupling conditions (i.e. equilibrium and compatibility) between
two admittance-based components (A and B) are replaced by the transfer matrix of a coupling junction J,(

uc2

−gc2

)
=

[
Tu

J ΓJ

ΩJ Tg
J

] (
uc1

gc1

)
. (20)

This junction might represent something as simple as a spring-like connection, or instead a more complex chain of
components (assembled from their individual transfer matrices as per equation 16).
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TJ = TJ1TJ2 · · ·TJN

YA

a

c1 c2 YB

b

Fig. 1: Hybrid substructuring model; components A and B are represented by their admittance matrices YA and YB, junction J is
characterised by the transfer matrix TJ .

From equation 20 we have,

uc2 = Tuuc1 + Γgc1 (21)

and

−gc2 = Ωuc1 + Tggc1 (22)

where for clarity the subscript J has been omitted and u and g made into subscripts. We extend equation 21 and 22 to
include the internal A and B DoFs (denoted a and b), and rewrite them in a form reminiscent of equations 4 and 5,

0 =
[

0 Tu −I 0
] 

ua

uc1

uc2

ub

 +
[

0 Γ 0 0
] 

ga

gc1

gc2

gb

 = Buu + Γ̄g = 0 (23)

and

0 =

 I 0 0 0
0 Tg I 0
0 0 0 I




ga

gc1

gc2

gb

 +
 0 0 0 0

0 Ω 0 0
0 0 0 0




ua

uc1

uc2

ub

 = LT
g g + Ω̄u = 0, (24)

where we introduce Bu and LT
g to represent the response-to-response and force-to-force relations across the junction.

Note that in contrast to standard admittance-based substructuring scheme Bu and LT
g are no longer signed/unsigned

Boolean matrices that simply equate the force and response; they now include transmissibility functions that partition
the force and response according to the dynamics of the connecting junction. To provide a complete description of the
junction, the force-to-response (Γ̄) and response-to-force (Ω̄) contributions are also be included.

From the above we can establish a modified three field formulation for a hybrid assembly that includes a coupling
junction represented by a general transfer matrix:

u = Y (f + g) (25)

0 = Buu + Γ̄g (26)

0 = LT
g g + Ω̄u (27)

with,

Y =
[

YA

YB

]
, u =

(
uA

uB

)
=


ua

uc1

uc2

ub

 , g =
(

gA

gB

)
=


ga

gc1

gc2

gb

 , f =
(

fA

fB

)
=


fa

fc1

fc2

fb

 . (28)
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In effect, we have introduced a pair of dynamic compatibility and equilibrium conditions which describe the dynamics
of the coupling junction. At this point, we proceed in a manner similar to the admittance-based derivation.

Note that in contrast to the standard formulation, our force and response constraints are now coupled. We can no
longer assume the form of g = −BTλ, since force conservation is not guaranteed across an arbitrary junction. Hence,
we must determine a form of g that satisfies equation 27. An appropriate form is given by,

g = −


0
−I
Tg

0

 λ−


0 0 0 0
0 0 0 0
0 Ω 0 0
0 0 0 0

u = −BT
gλ−

¯̄Ωu (29)

where as in the standard dual formulation λ are a set of Lagrange multipliers representing interface force magnitudes.
Equation 29 can be verified by substituting it into equation 27. In doing so, we see that Bg continues to represent the
null-space of Lg (and vise versa), since by construction we have that −LT

g BT
gλ = 0.

Note that the form of g above differs from the standard dual formulation in two ways: 1) a force transmissibility
replaces what was an identity matrix; this facilitates a change in force across the junction, and 2) the introduction of a
response dependent contribution to the interface force.

Substituting g into the equation of motion as represented by equation 25 and isolating u, the coupling problem is
reduced to,

u = Y
(
f − BT

gλ−
¯̄Ωu

)
=

(
I+Y ¯̄Ω

)−1
Y

(
f − BT

gλ
)

(30)

0 = Buu + Γ̄g (31)

As before, to determine the coupled admittance we must find λ. We begin by substituting g into equation 31,

Buu + Γ̄g = Buu + Γ̄
(
−BT

gλ−
¯̄Ωu

)
= 0. (32)

Factoring out u,

Buu − Γ̄BT
gλ− Γ̄

¯̄Ωu =
(
Bu − Γ̄

¯̄Ω
)

u − Γ̄BT
gλ = 0 (33)

and substituting in equation 30 yields,(
Bu − Γ̄

¯̄Ω
) (

I+Y ¯̄Ω
)−1

Y
(
f − BT

gλ
)
− Γ̄BT

gλ = 0. (34)

Factoring out λ,(
Bu − Γ̄

¯̄Ω
) (

I+Y ¯̄Ω
)−1

Yf −
[(

Bu − Γ̄
¯̄Ω
) (

I+Y ¯̄Ω
)−1

YBT
g + Γ̄BT

g

]
λ = 0 (35)

moving the first term to the right-hand-side, and pre-multiplying by the inverse of the square bracket, we obtain,

λ =
[(

Bu − Γ̄
¯̄Ω
) (

I+Y ¯̄Ω
)−1

YBT
g + Γ̄BT

g

]−1 (
Bu − Γ̄

¯̄Ω
) (

I+YΩ̄
)−1

Yf. (36)

We can now substitute λ back into equation 30 to yield the coupled assembly response,

u =
(
I+Y ¯̄Ω

)−1
Y

(
I − BT

g

[(
Bu − Γ̄

¯̄Ω
) (

I+Y ¯̄Ω
)−1

YBT
g + Γ̄BT

g

]−1 (
Bu − Γ̄

¯̄Ω
) (

I+Y ¯̄Ω
)−1

Y
)

f. (37)

From inspection we can see that Γ̄ ¯̄Ω = 0 and Γ̄BT
g = −Γ. Finally, from the above we have the coupled assembly

admittance,

YC =
(
I+Y ¯̄Ω

)−1
Y −

(
I+Y ¯̄Ω

)−1
YBT

g

[
Bu

(
I+Y ¯̄Ω

)−1
YBT

g − Γ

]−1
Bu

(
I+Y ¯̄Ω

)−1
Y (38)

with,

BT
g =


0
−I
Tg

0

 , Bu =
[

0 Tu −I 0
]
, and ¯̄Ω =


0 0 0 0
0 0 0 0
0 Ω 0 0
0 0 0 0

 (39)
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Equations 38-39 describe the admittance of the coupled AJB assembly, with the components A and B being
represented by their respective admittance matrices, and the junction J by its transfer matrix,

Y =
[

YA

YB

]
, TJ =

[
Tu Γ

Ω Tg

]
. (40)

Note that in equation 38 only the DoFs of A and B are present; those within the layered junction are not. Instead, the
effect of the junction is treated similarly to a static joint, through the dynamic compatibility/equilibrium conditions in
equation 26-27.

To verify equations 38 and 39 we can consider two basic junction types: a rigid connection and a massless
spring-damper.

Rigid junction The transfer matrix of a rigid junction is given by,(
uc2

−gc2

)
=

[
I 0
0 I

] (
uc1

gc1

)
(41)

from which we have,

BT
g =


0
−I
I
0

 , Bu =
[

0 I −I 0
]
, Γ =

[
0 0 0 0

]
, ¯̄Ω =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

. (42)

Based on the above, we see that equation 38 reduces to,

YC = Y − YBT
[
BYBT

]−1
BY (43)

which is standard admittance-based coupling.

Spring damper junction Taking u as structural velocity (such that Y and Z become mobility and impedance,
respectively) the transfer matrix of an idealised spring-damper junction with stiffness K and damping C is given by,(

uc2

−gc2

)
=

[
−Z−1

c1c2
Zc1c1 Z−1

c1c2

−Zc2c1 + Zc2c2 Z−1
c1c2

Zc1c1 −Zc2c2 Z−1
c1c2

] (
uc1

gc1

)
=

 I −diag
(

K
jω +C

)−1

0 I

 ( uc1

gc1

)
(44)

from which we have,

BT
g =


0
−I
I
0

 , Bu =
[

0 I −I 0
]
, Γ̄ =

[
0 −diag

(
K
jω +C

)−1
0 0

]
, ¯̄Ω =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

. (45)

Based on the above, we see that equation 38 reduces to,

YC = Y − YBT

BYBT + diag
(

K
jω
+C

)−1−1

BY (46)

which is the same as the well known result obtained when considering the dual formulation with interface weakening
(i.e. a relaxation of compatibility), see for example [21].

4 Numerical example

To verify the hybrid substructuring scheme described through Section 3, and illustrate some of its potential benefits, we
present a simple numerical example consisting of end-to-end coupled beams considering translational and rotational
DoFs. An illustration of the example is shown in Figure 2. Two free-free beams (A and B) are coupled end-to-end
through a junction J. This junction is itself composed two identical beams coupled end-to-end. The individual junction

51 | doi:10.25518/2684-6500.314 J W R Meggitt

http://dx.doi.org/10.25518/2684-6500.314


Journal of Structural Dynamics, 4, (pp. 45-57) 2026
A mixed admittance/transfer matrix substructuring approach

A B
J

a bc1 c2YA TJ1 TJ1 YA

Fig. 2: Illustration of numerical example. Four free-free beams coupled end-to-end (including translational and rotational DoFs at
each connection). The central two beams (in blue) represent the AB junction J, and are characterised individually by the transfer
matrix TJ1.

Table 1: Material properties (Young’s modulus E, density ρ and structural damping η) and beam geometries (length L, width W
and height H) used for numerical example.

Component E (Nm−2) ρ (kgm−1) η (-) L ×W × H (m)
A 2×109 7000 0.05 0.4 × 0.03 × 0.01
B 2×109 7000 0.05 0.4 × 0.03 × 0.01
J1 2×109 7000 0.05 0.2 × 0.03 × 0.01
J2 2×107 1000 0.5 0.02 × 0.03 × 0.001

beams are described by their transfer matrix TJ1, and the entire junction by the coupled transfer matrix TJ11 = TJ1TJ1.
We will also consider a second example, not shown in Figure 2, where a third beam is installed in the junction such
that TJ121 = TJ1TJ2TJ1, where J2 differs in material properties and geometry to A, B and J1.

A conventional dual substructuring formulation of this problem would require the admittance matrix of each
component to be added to the block diagonal matrix Y, and an appropriate Boolean matrix B defined that correctly
co-locates all coupling DoFs (including c1 and c2, but also any internal DoFs within the junction itself). A reconfiguration
of the junction, for example adding or remove a component, would thus require we redefining both Y and B.

For the two and three component junctions (J11 and J121), Y and B take the form,

Y =


YA

YJ1
YJ1

YB

 with B =

 0 I −I 0 0 0 0 0
0 0 0 I −I 0 0 0
0 0 0 0 0 I −I 0

 (47)

and

Y =


YA

YJ1
YJ2

YJ1
YB

 with B =


0 I −I 0 0 0 0 0 0 0
0 0 0 I −I 0 0 0 0 0
0 0 0 0 0 I −I 0 0 0
0 0 0 0 0 0 0 I −I 0

 , (48)

respectively. With the hybrid admittance-TM coupling, only the end components A and B are included in the block
diagonal Y; the junction components are accounted for by the generalized coupling constraints. Thus the inputs to the
hybrid substructuring scheme are,

Y =
[

YA

YB

]
with TJ11 = TJ1TJ1 or TJ121 = TJ1TJ2TJ1. (49)

Based on the material properties and beam geometries given in Table 1, Figure 3 shows the individual elements
(magnitudes only) of the transfer matrices for: the single junction element J1 (blue), the two element junction
J11 (orange), and the three element junction J121. Shown in Figure 4 are the coupled admittances between the
translational DoFs at the ends of components A and B for the two and three element junctions, computed using
standard dual formulation and the hybrid admittance-transfer matrix based approach. As expected, the results are in
exact agreement.

The convenience of the hybrid scheme becomes evident when investigating more complex junctions. One can
readily compute the transfer matrix of an arbitrarily complex junction TJ = TJ1TJ2 · · ·TJN with no need to redefine the
substructuring equations. This might be useful for problems involving the optimisation of layered structures, such as
multi-stage isolation platforms.

52 | doi:10.25518/2684-6500.314 J W R Meggitt

http://dx.doi.org/10.25518/2684-6500.314


Journal of Structural Dynamics, 4, (pp. 45-57) 2026
A mixed admittance/transfer matrix substructuring approach

Fig. 3: Transfer matrix for coupled beam junctions: TJ1 (blue), TJ11 = TJ1TJ1 (orange), and TJ121 = TJ1TJ2TJ1 (green).

4.1 Error analysis

To investigate the sensitivity of the hybrid admittance-transfer matrix coupling scheme to errors in the component
characterisation, we perform a simple Monte Carlo (MC) study. In this, we add random Gaussian noise to all
component admittance matrices, including those used to compute the joint transfer matrices, according to,

Y□,noisy = Y□ + Y□(N (0, ϵI) + iN (0, ϵI)) (50)

where the noise variance is set to ϵ = 1 × 10−5, before being scaled accordingly by the admittance; this ensures the
relative variance across the frequency range is constant. The noisy FRFs are then used to compute the coupled
admittance via both hybrid and dual substructuring schemes. This process is repeated for 5000 realisations and the
standard deviation computed per frequency.

Shown in Figure 5 are the standard deviations of the coupled admittance between the translational DoFs at the
ends of components A and B for the two and three element junctions, computed using the hybrid admittance-transfer
matrix and dual methods. If we consider the total standard deviation across all coupled FRFs and all frequencies, for
the A-J1-J1-B assembly the dual and hybrid methods yield errors or σdual = 8.04 × 10−13 and σhybrid = 7.79 × 10−13,
respectively. For the A-J1-J2-J1-B assembly, we have σdual = 3.38 × 10−12 and σhybrid = 3.53 × 10−12. The results
indicate that the hybrid scheme is not unduly sensitive to errors in the component characterisations, even when these
are compounded through the junction transfer matrix computation. Of course, further studies are required to fully
understand the error propagation characteristics of the hybrid scheme.

5 Conclusions

Substructuring is an important step in the analysis of complex built-up structures, with formulations existing in the
physical, modal, state, time and frequency domains. In the frequency domain, admittance-based substructuring has
become the preferred approach, especially when dealing with components that are characterised experimentally. An
alternative approach is the transfer matrix method (TMM). With the TMM, structural components are represented by
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Fig. 4: Coupled mobility of A-J1-J1-B (orange) and A-J1-J2-J1-B (green) assemblies compared against standard dual formulation.

Fig. 5: Standard deviation of the coupled mobility based on Monte-Carlo simulation with random Gaussian noise added to all
component admittances (see 50). Top: A-J1-J1-B assembly. Bottom: A-J1-J2-J1-B assembly.

their transfer matrices (TMs) and coupling is achieved simply by multiplying the TMs of the respective components
together; there is no need to define any Boolean matrices to co-locate coupling DoFs. This makes the TMM especially
convenient when dealing with periodic or complex layered structures, where TMs can be easily combined into arbitrary
configurations.

In the present paper we formulate a hybrid substructuring scheme that enables the coupling of admittance-based
components by an arbitrarily complex ‘junction’, whose dynamics are represented by a transfer matrix. This approach
allows for the convenient manipulation of the coupling junction (e.g. adding, removing or reordering components) by
directly manipulating the product of their transfer matrices. The result is a generalization of the dual substructuring
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formulation; the standard Boolean coupling matrices are replaced with force and response transmissibilties and
additional force-response coupling terms are introduced.

The method is verified by simple numerical model consisting of end-to-end coupled beams, showing exact
agreement with standard dual formulation. Monte-calro simulations are also performed to investigate the sensitivity
of the hybrid scheme to errors in the component characterisations, showing comparable performance to standard
dual substructuring. Experimental validation and further numerical studies are ongoing, including the investigation of
junctions composed of components characterised experimentally.

Appendix

A Transfer matrix representation

The dynamics of a general linear time invariant mechanical system can be described by the following equation of
motion,(

fc1 + gc1

fc2 + gc2

)
=

[
Zc1c1 Zc1c2

Zc2c1 Zc2c2

] (
uc1

uc2

)
(A.1)

where Z□ denotes the mechanical impedance at/between the subscripted DoFs.
We are interested in the transference of force and displacement across a component. Ignoring external force

terms, equation A.1 can be rearranged to yield transfer-style matrix as follows. Using the top line of equation A.1 find
ub,

gc1 = Zc1c1 uc1 + Zc1c2 uc2 → uc2 = Z−1
c1c2

(
gc1 − Zc1c2 uc1

)
. (A.2)

Substitute uc2 into gc2 (second line of equation A.1),

gc2 = Zc2c1 uc1 + Zc2c2 uc2 (A.3)

= Zc2c1 uc1 + Zc2c2

(
Z−1

c1c2

(
gc1 − Zc1c1 uc1

))
(A.4)

= Zc2c1 uc1 + Zc2c2 Z−1
c1c2

gc1 − Zc2c2 Z−1
c1c2

Zc1c1 uc1 . (A.5)

After grouping terms we have the following pair of equations,

uc2 = Z−1
c1c2

gc1 − Z−1
c1c2

Zc1c1 uc1 (A.6)

gc2 =
(
Zc2c1 − Zc2c2 Z−1

c1c2
Zc1c1

)
uc1 + Zc2c2 Z−1

c1c2
gc1 (A.7)

or in matrix form,(
uc2

gc2

)
=

[
−Z−1

c1c2
Zc1c1 Z−1

c1c2

Zc2c1 − Zc2c2 Z−1
c1c2

Zc1c1 Zc2c2 Z−1
c1c2

] (
uc1

gc1

)
. (A.8)

Equation A.8 describes the transmission of force and displacement across the component. Its terms can be calculated
analytically for simple components (e.g. spring dash-pot joints, beam elements, etc.) or numerically for more complex
cases. The transfer matrix is often written in a slightly modified form, with the force gb negated,(

uc2

−gc2

)
=

[
−Z−1

c1c2
Zc1c1 Z−1

c1c2

−Zc2c1 + Zc2c2 Z−1
c1c2

Zc1c1 −Zc2c2 Z−1
c1c2

] (
uc1

gc1

)
=

[
Tu Γ

Ω Tg

] (
uc1

gc1

)
, (A.9)

where we introduce the force and response transmissibilities, respectively, as Tu and Tg, and the cross-terms as Γ
and Ω. This negation reduces the coupling of components to a simple matrix multiplication.

Direct measurement of the transfer or impedance sub-matrices is generally not possible as both require physically
constraining some set of response DoFs [22]. Much like how the impedance matrix can be computed from measured
admittance FRFs through inversion, the transfer matrix can similarly be described in-terms of admittance by following
a similar procedure as above, though starting from the equation of motion,(

uc1

uc2

)
=

[
Yc1c1 Yc1c2

Yc2c1 Yc2c2

] (
fc1 + gc1

fc2 + gc2

)
. (A.10)
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The result is,(
uc2

−gc2

)
=

[
Tu Γ

Ω Tg

] (
uc1

gc1

)
=

[
Yc2c2 Y−1

c1c2
Yc2c1 − Yc2c2 Y−1

c1c2
Yc1c1

−Y−1
c1c2

Y−1
c1c2

Yc1c1

] (
uc1

gc1

)
. (A.11)

The advantage of this admittance-based transfer matrix representation is that all terms can be obtained from
experimental measurements without the need to first compute the impedance matrix.
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