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1 Introduction

Beam models are effectively used to describe the dynamics of slender structural elements, such as bridges, blades
or wings. Most of these structural elements have cross-sectional geometries without axes of symmetry, whereby
inherent coupling between transverse bending and torsion occurs due to non-coinciding centroid (mass midpoint)
and shear center. Figure 1(a) illustrates this inertial bending-torsion coupling for a non-symmetric blade section. The
blade is assumed to accelerate transversely with a, resulting in an opposite inertia force P ∝ a at the cross-section
centroid C (cross). Because of the centroid’s eccentricity e to the shear center O (dot), the inertia force P will as well
impose the torsional moment Mx = eP shown in Fig. 1(b), which creates a twist in the blade, illustrating the vibrational
bending-torsion coupling to be accounted for in the present paper when designing a two-degree-of-freedom (two-dof)
tuned mass damper (tmd) with analogous coupling properties.

Various theories have been applied to specifically describe the vibrational bending-torsion coupling effect for
beams with non-symmetric cross-sections, for example concerning vibrations of wind turbines blades [1], the dynamics
of bridge decks excited by moving loads (train passage) [2, 3] or flutter [4] and saw tooth blade vibrations [5]. The
original theoretical basis for the vibrations of beams with fully non-symmetric cross-sections is presented by Gere and
Lin [6] and references therein. Several contributions to the development and solution of coupled beam equations
have since been published, of which only a few are reviewed here. When using separation of variables with assumed
temporal harmonic motion, the spatial solution is governed by a polynomial equation in a wavenumber-type variable.
Initially, Friberg [7] considers beam vibrations for a fully non-symmetric cross-section, without lines of symmetry, thus
governed only by a 5th-order polynomial equation in the wavenumber as the torsional stiffness contribution from
in-plane warping is omitted.
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Abstract

Coupled bending-torsion vibrations of a beam with a single cross-section axis of symmetry
are mitigated by a two-degree-of-freedom (dof) tuned mass damper with a coupling analogous
to that of the beam. By modal truncation a four-degree-of-freedom model is derived for tmd
tuning. Because of the analogous tmd properties, a stiffness tuning formula identical to that
for the classic tuned mass damper secures inverse relations between all four undamped natural
frequencies. Expressions for the tmd damping are subsequently found by a numerical search,
which maximizes the smallest damping ratio, resulting in equal damping in three of the four
modes. The two-dof coupled tmd is finally assessed by numerical root locus and frequency
response analysis for a full flexible beam.
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Fig. 1: (a) Wind turbine blade with transverse load P in mass midpoint C from assumed downward acceleration a. (b) Eccentricity
e to shear center O implies a torsional moment Mx = eP that illustrates the inertial bending-torsion coupling for beams with
non-symmetric cross-sections.

For the simpler single-symmetric cross-section, torsion only couples with a single transverse direction. This
problem is addressed by both Dokumaci [8] and Banerjee [9] in its purest form, without shear flexibility, cross-
sectional rotary inertia and in-plane warping, thus enabling the determination of real-valued spatial solutions based on
trigonometric and hyperbolic functions. This simple double-coupled vibration problem governs the dynamic properties
of the host structure in Section 2 of the present paper, to which an analogously double-coupled two-degree-of-freedom
(two-dof) tmd is attached in the subsequent Section 3. The simplest double-coupling problem in [8, 9] has been
further extended by accounting for additional effects, such as warping stiffness in Bishop et al. [10], shear flexibility
and cross-section rotary (Timoshenko beam) by Banerjee and Williams [11] and most recently combined warping
stiffness and rotary inertia, see Ambrosini et al. [12].

The original triple-coupling problem [7] has been extended by Bercin and Tanaka [13] and by Arpaci and Bozdag
[14], in both cases with the addition of warping stiffness, whereby their characteristic equations become of 6th
polynomial order. The addition of cross-section rotary inertia is subsequently addressed by Arpaci et al. [15], while
comparison with experimental natural frequencies is furthermore presented in Ambrosini [16]. Some modifications
of the above mentioned beam vibration problems have as well been considered, such as the coupling of torsion
with a pure shear transverse element [17] or the recent inclusion of beam tapering [18, 19]. Also different solution
methods have been proposed, with the usage of beam finite elements (FE) by assumed spatial interpolation with
cubic polynomials as the most common approach, see e.g. Mei [20] or Tanaka and Bercin [21] for some of the more
general applications of FE.

The present papers specifically considers damping and mitigation of the resonant double-coupled bending-torsion
beam vibrations in [8, 9]. For resonant vibration problems, the so-called tuned mass dampers (or vibration absorbers)
are particularly effective, as they synchronize an auxiliary inertia to a specific vibration frequency, to which all damping
effort can then be focused. The classic tmd, with a single-directional mass suspended by a parallel spring-dashpot
element, is proposed by Brock [22] and Den Hartog [23]. An initial summary of explicit design expressions for the
classic tmd is provided by Warburton [24] for various loading and optimization conditions. The equivalence between
pole placement and response mitigation (H∞) is demonstrated by Krenk [25], who furthermore proposes a slightly
larger damping coefficient to minimize tmd deflections. Tmd tuning that accounts for structural damping has been a
longstanding issue, as it complicates otherwise simple calibration expressions. A review is provided by Asami et al.
[26], who also propose simplified expressions for the tmd parameters when accounting for structural damping.

Recently, a two-terminal tuned inerter damper (tid) has been proposed for damping of structures by Lazar et al.
[27] or simply as a supplement to the auxiliary tmd mass in [28, 29]. In particular for pure inerter-based absorbers, the
influence or spill-over from non-resonant structural vibration modes may deteriorate the accuracy of the underlying
tuning methods, which might therefore require some compensation, e.g. by the artificial stiffness and inertia terms
proposed in [30]. A recent review of vibration control by tmds is provided by Elias and Matsagar [31].

When a classic tmd (or tid) is installed to target a specific structural vibration mode, the frequency response curve
will exhibit two distinct peaks around the original resonance frequency, which for optimal damper tuning will become
practically flat. When adding additional tmds, these can be jointly optimized to further lower (and also widen) the
resonance peak region, as demonstrated by Ma et al. [32] for up to a three-dof tmd, thereby creating a flat plateau by
balancing four closely spaced resonance peaks with sufficient amount of damping. This design procedure can be
extended to even more tmd-dofs, as argued and numerically demonstrated by da Costa et al. [33].

A two-dof tmd (the simplest multi-dof tmd) has recently been proposed and investigated by installing an inerter
inside the tmd’s spring-dashpot element, see e.g. [34, 35, 36], which also creates a reduction in response amplitude
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by three well-balanced peaks. The addition of an inerter element is also found to improve energy harvesting from
ambient vibrations [37]. A two-dof tmd can as well be applied to mitigate two vibration modes, as shown for the
symmetric cruciform absorber proposed by Snowdon et al. [38], while reduction of three resonance peaks requires
a three-dof tmd, see Jang and Choi [39]. By Meng et al. [40] it was furthermore concluded that two two-dof tmds
perform slightly better than four classic tmds, illustrated for the four dominant vibration modes of a long-span bridge
model. Equivalent two-dof tmd (or tid) systems can alternatively be realized by shunted piezoelectric devices, either
placed within a mechanical tmd [41] or independently by a double-inductive LRLC shunt [42].

The desired coupling in multi-dof-tmds has mostly been implemented by assuming non-identical stiffness and
damping in two parallel spring-dashpot elements, supporting an auxilliary mass that can as well rotate. However, in
[43, 44, 45, 46] these notoriously coupled tmds are merely designed and tuned to act as plain two-dof tmds on a
pure single-dof structure model, thereby aiming at a three-peak flat plateau for a single resonance in the frequency
response curve. However, an inherently coupled two- or three-dof tmd may be effective in damping of the previously
described (double or triple) bending-torsion coupled vibrations for beams with non-symmetric cross-sections. The
present paper thus addresses the design and tuning of a two-dof coupled tmd for damping and mitigation of the
double-coupled bending-torsion beam vibrations in [8, 9]. Recently, Hoffmeyer and Høgsberg [47] have demonstrated
how a set of three classic tmds can be balanced to operate effectively on a single vibration mode for a triple-coupled
beam, for which the inherent coupling with the two other coupled modes may strongly disturb the tmd’s performance.

In the present paper, a coupled two-dof tmd is designed and tuned to simultaneously target both vibration forms
associated with a double-coupled bending-torsion beam mode. The two-dof tmd is deliberately constructed to have
the same inertia coupling as the beam model, with the same apparent distance e between centroid and its (shear)
center between the two identical spring-dashpot elements. It is demonstrated that when the coupling of the tmd dofs is
chosen to exactly replicate the underlying bending-torsion beam coupling, the tmd stiffness can be explicitly calibrated
based on inverse point properties for the four and two natural frequencies associated with vanishing and infinite tmd
damping, respectively. A detailed description of how inverse point relations can be used in absorber tuning is found in
[25, 41, 48]. The applied analogous principle, assuming similarity between structure and absorber, has recently been
used in damping of e.g. nonlinear structures by a piezoelectric absorber with an analogous type of nonlinearity [49]
and plate vibrations by a spatially analogous distribution of shunted piezoelectric laminates [50]. These examples
suggest that complex structural vibrations can be effectively mitigated by an analogous vibration absorber system that
accurately mirrors the governing vibration properties of the host structure.

In Section 2 the governing coupled beam equations are presented and reduced to a two-dof structure model
by modal truncation. An analogous two-dof tmd is then attached to the host structure model in Section 3, hereby
constituting a resulting four-degree-of-freedom (four-dof) system. In Section 4 the tmd stiffness is initially calibrated to
obtain inverse point properties for all real-valued system roots, while explicit expressions for the damping parameter
are subsequently determined by a numerical search. Finally, the performance of the analogously coupled two-dof tmd
is demonstrated for a fully flexible beam in Section 5, assessed in terms of both root-locus diagrams and frequency
response curves.

2 Coupled two-dof structural model

Coupled bending-torsion vibrations of beams occur for cross-sections with only a single (or no) axis of symmetry. A
coupled two-degree-of-freedom (two-dof) model is obtained by modal truncation in the associated partial differential
equations. In the subsequent Section 3, a two-dof tuned mass damper (tmd) is then designed with coupling properties
analogous to those of the structural model.

2.1 Beam model

For beams with only a single axis of symmetry, vibrations will – because of the non-coinciding centroid and shear
center locations – inherently experience bending-torsion vibrational coupling, as illustrated in connection with Fig. 1.
Gere and Lin [6] summarized a detailed mathematical formulation for the coupled vibration problem, which in the
following is used to establish a simplified two-dof structural model for a beam with a single axis of symmetry [8, 9].

2.1.1 Equations of motion

Consider a beam with longitudinal coordinate x, as illustrated in Fig. 2. The transverse deflection of the shear centre
is described by the dependent variable v(x, t), while θ(x, t) represents the beam’s angle of twist. The beam is assumed
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govern the beam’s dynamic properties with ˙( ) = ∂( )/∂t and ( )′ = ∂( )/∂x representing partial

temporal and spatial derivatives, respectively. In the beam equations, EI is the bending stiffness

associated with the cross-section centroid C in Fig. 1(b), GK is the stiffness associated with pure

st. Venant torsion, ρ is the material density, A is the cross-section area, IO is the polar moment

of inertia relative to the shear center O in Fig. 1(b), while e is the distance from the shear center

O to the centroid C, as depicted in Fig. 1(b) for a cruciform cross-section. The subsequent design

and calibration of the coupled tmd omits the external loading from a distributed transverse force

p(x, t) and torsional moment r(x, t). It follows from the second term on the left hand side of

each equation (1) and (2) that the beam vibrations decouple for double symmetric cross-sections

with e = 0. To retain the simplest possible mathematical model, equation (2) omits any stiffness

contributions from in-plane warping associated with inhomogeneous Vlasov-type torsion.

2.1.2 Modal representation and equations

Without external loading, i.e. p(x, t) = 0 and r(x, t) = 0, and with specific homogeneous boundary

conditions, the equations (1) and (2) constitute an eigenvalue problem, governing the natural

frequencies and vibration modes for the coupled bending-torsion vibrations. A solution may be

obtained by assuming the modal representations

v(x, t) =

∞∑

j

Xj(x)uj(t) , θ(x, t) =

∞∑

k

Yk(x)ϕk(t) (3)

with expansion functions Xj(x) and Yk(x) representing the eigenfunctions from the uncoupled

eigenvalue problems associated with e = 0 in both (1) and (2).

The modal representations in (3) are substituted into (1) and (2), which are then multiplied with

Xs(x) and Ys(x), respectively, and finally integrated over the length of the beam ℓ. The last

term in each of these equations is then integrated by parts until the order of differentiation is the

same in both expansion functions, whereby the associated boundary terms will cancel because of

the boundary conditions. The two ordinary differential equations obtained for a coupled mode
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Figure 1: Beam with single-symmetric cruciform cross-section.

5

Fig. 2: (a) Beam with single-symmetric cruciform cross-section in (b). Non-vanishing distance e between shear center O (dot) and
centroid C (cross) implies bending-torsion coupling in (1).

homogeneous with non-varying cross-sectional parameters. Thus, according to [6, 8, 9], the coupled partial differential
equations

ρAv̈(x, t) − ρAeθ̈(x, t) + EIv(x, t)′′′′ = p(x, t) (1)

ρIOθ̈(x, t) − ρAev̈(x, t) −GKθ(x, t)′′ = r(x, t) (2)

govern the beam’s dynamic properties with ˙( ) = ∂( )/∂t and ( )′ = ∂( )/∂x representing partial temporal and spatial
derivatives, respectively. In the beam equations, EI is the bending stiffness associated with the cross-section
centroid C in Fig. 2(b), GK is the stiffness associated with pure st. Venant torsion, ρ is the material density, A is
the cross-section area, IO is the polar moment of inertia relative to the shear center O in Fig. 2(b), while e is the
distance from the shear center O to the centroid C, as depicted for the blade in Fig. 1(a) and in Fig. 2(b) for a cruciform
cross-section. The subsequent design and calibration of the coupled tmd omits the external loading from a distributed
transverse force p(x, t) and torsional moment r(x, t). It follows from the second term on the left hand side of each
equation (1) and (2) that the beam vibrations decouple for double symmetric cross-sections with e = 0. To retain the
simplest possible mathematical model, equation (2) omits any stiffness contributions from in-plane warping associated
with inhomogeneous Vlasov-type torsion.

2.1.2 Modal representation and equations

Without external loading, i.e. p(x, t) = 0 and r(x, t) = 0, and with specific homogeneous boundary conditions, the
equations (1) and (2) constitute an eigenvalue problem, governing the natural frequencies and vibration modes for the
coupled bending-torsion vibrations. A solution may be obtained by assuming the modal representations

v(x, t) =
∞∑
j

X j(x)u j(t) , θ(x, t) =
∞∑
k

Yk(x)φk(t) (3)

with expansion functions X j(x) and Yk(x) representing the eigenfunctions from the uncoupled eigenvalue problems
associated with e = 0 in both (1) and (2).

The modal representations in (3) are substituted into (1) and (2), which are then multiplied with Xs(x) and Ys(x),
respectively, and finally integrated over the length of the beam ℓ. The last term in each of these equations is then
integrated by parts until the order of differentiation is the same in both expansion functions, whereby the associated
boundary terms will cancel because of the boundary conditions. The two ordinary differential equations obtained for a
coupled mode j = k = s can then be written as

ρA
∫ ℓ

0
Xs(x)Xs(x)dx üs(t) − ρAe

∫ ℓ

0
Xs(x)Ys(x)dx φ̈s(t) + EI

∫ ℓ

0
Xs(x)′′Xs(x)′′dx us(t) ≃ 0 (4)

ρIO

∫ ℓ

0
Ys(x)Ys(x)dx φ̈s(t) − ρAe

∫ ℓ

0
Xs(x)Ys(x)dx üs(t) +GK

∫ ℓ

0
Ys(x)′Ys(x)′dxφs(t) ≃ 0 (5)

where the approximate signs account for the truncation of any coupling terms without orthogonality between X j(x)
and Yk(x) for j , k. In the following tmd calibration analysis, ‘≃’ is simply replaced by ‘=’, while the replacement is
exact in the numerical example in Section 5 with sinusoidal expansion functions.
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2.1.3 Two-dof structure model

The ordinary differential equations (4) and (5) constitute the coupled two-dof structural model illustrated in Fig. 3, with
translation us(t) and rotation φs(t) at the shear center (dot) located at distance es relative to the centroid (cross). In this
two-dof model, the shear center represents the midpoint between two translational springs with stiffness 1

2 ks, while
the centroid denotes the mass-midpoint of the lumped structural mass ms. The rotational inertia of the lumped mass
is js with respect to the mass midpoint (cross), whereby Js = js + e2

sms is the corresponding rotational inertia with
respect to the model shear center (dot).

The coupled equations of motion for the two-dof mechanical model in Fig. 3 can be established from energy
principles [6] or direct force equilibrium. They are conveniently written in symmetric form with respect to us and φs as

msüs(t) + ksus(t) − msεsasφ̈s(t) = 0 (6)

a2
s(ns + ε

2
sms)φ̈s(t) + ksa2

sφs(t) − msεsasüs(t) = 0 (7)

which introduces the relative eccentricity

εs =
es

as
(8)

and the normalized rotational inertia

ns =
js

a2
s

(9)

with respect to the cross-section centroid (cross).
Comparison of equations (4) and (5) with equations (6) and (7) directly identifies the relation between the

mechanical two-dof model parameters and those of the modal beam model. The transverse mass ms and stiffness ks

are directly obtained by comparison of the terms proportional to üs and us in (4) and (6), respectively:

ms = ρA
∫ ℓ

0
Xs(x)Xs(x)dx , ks = EI

∫ ℓ

0
Xs(x)′′Xs(x)′′dx (10)

The distance as is then governed by the rotational stiffness, obtained by comparison of the φs-terms in (5) and (7):

a2
s =

GK
∫ ℓ

0
Ys(x)′Ys(x)′dx

EI
∫ ℓ

0
Xs(x)′′Xs(x)′′dx

(11)

The eccentricity is now obtained by comparing the coupling terms in either (4) and (6) or (5) and (7), which both give

εs =
e
as

∫ ℓ

0
Xs(x)Ys(x)dx∫ ℓ

0
Xs(x)Xs(x)dx

(12)

j = k = s can then be written as

ρA

∫ ℓ

0

Xs(x)Xs(x)dx üs(t)− ρAe

∫ ℓ

0

Xs(x)Ys(x)dx ϕ̈s(t) + EI

∫ ℓ

0

Xs(x)
′′Xs(x)

′′dxus(t) ≃ 0 (4)

ρIO

∫ ℓ

0

Ys(x)Ys(x)dx ϕ̈s(t)− ρAe

∫ ℓ

0

Xs(x)Ys(x)dx üs(t) +GK

∫ ℓ

0

Ys(x)
′Ys(x)

′dxϕs(t) ≃ 0 (5)

where the approximate signs account for the truncation of any coupling terms without orthog-

onality between Xj(x) and Yk(x) for j 6= k. In the following tmd calibration analysis, ‘≃’ is

simply replaced by ‘=’, while they vanish in the numerical example in Section 5 because sinusoidal

expansion functions are used.

2.2 Two-dof structure model

The ordinary differential equations (4) and (5) constitute the coupled two-dof structural model

illustrated in Fig. 2, with translation us(t) and rotation ϕs(t) at the shear center (dot) located

at distance es relative to the centroid (cross). In this two-dof model, the shear center represents

the midpoint between two translational springs with stiffness 1
2ks, while the centroid denotes the

mass-midpoint of the lumped structural mass ms. The rotational inertia of the lumped mass is js

with respect to the mass midpoint (cross), whereby

Js = js + e2sms (6)

is the corresponding rotational inertia with respect to the model shear center (dot).

2.2.1 Equations of motion

The coupled equations of motion for the two-dof mechanical model in Fig. 2 can be established

from energy principles [1]. The kinetic energy for the two-dof structural model can be written as

T = 1
2 [u̇s(t) asϕ̇s(t)]

[
ms −msεs

−msεs ns + ε2sms

] [
u̇s(t)

asϕ̇s(t)

]
= 1

2 u̇s(t)
Tmsu̇s(t) (7)

introducing the structural 2× 2 mass matrix as

ms =

[
ms −msεs

−msεs ns + ε2sms

]
(8)

us

ϕsms, js

1
2
ks

1
2
ks

asas

es

Figure 2: Coupled two-degree-of-freedom (two-dof) structural model.

6

Fig. 3: Coupled two-degree-of-freedom (two-dof) structural model with equivalent properties determined by direct comparison with
the modal equations in (4) and (5).
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with as defined in (11). For identical expansion functions (Ys = Xs) the relative eccentricity εs = e/as, in which case (8)
gives es = e. Finally, the normalized rotational inertia is obtained by comparison of the φ̈s-terms in (5) and (7):

ns =
ρIO

a2
s

∫ ℓ

0
Ys(x)Ys(x)dx − ρAε2

s

∫ ℓ

0
Xs(x)Xs(x)dx (13)

As ns must be non-negative, it is found by (13) that the eccentricity e cannot exceed the cross-section’s polar radius of
inertia.

2.2 Eigenvalue analysis

When assuming complex harmonic solutions with angular frequency ω, the governing eigenvalue problem for free
vibrations of the two-dof structural model can be readily obtained from (6) and (7) as([

ks 0
0 ks

]
− ω2

[
ms −msεs

−msεs ns + ε
2
sms

]) [
ūs

asφ̄s

]
=

[
0
0

]
(14)

with the bar denoting modal amplitudes.

2.2.1 Natural frequencies

The characteristic equation, associated with a vanishing determinant in (14), can be written in non-dimensional form
as

ξ40 − 2ν2sξ
2
0 + 1 = 0 (15)

where the non-dimensional angular frequency ξ0 is defined as

ξ20 = ω
2
√

nsms

ks
=

(
ω

Ωs

)2

(16)

with respect to the reference angular frequency

Ωs =

√
ks
√

nsms
(17)

representing the geometric mean of the uncoupled translational and rotational frequencies. In (15) the single modal
parameter

ν2s =
1
2

(√
ns

ms
+ (1 + ε2

s)
√

ms

ns

)
≥ 1 (18)

determines the two real-valued roots as

ξ20± = ν
2
s ±

√
(ν2s)2 − 1 (19)

thereby explicitly representing their mean value: ν2s =
1
2 (ξ20− + ξ

2
0+).

For the normalized root ξ20 , the effective coupling is fully defined relative to the structural inertia parameters ms and
ns by the single modal coupling parameter ν2s in (18), which is bounded by unity so that (ν2s)2 − 1 inside the square
root of (19) is guaranteed non-negative. Furthermore, the quadratic equation (15) reproduces the results for double
coupling in [6], with a double root for εs = 0 in the limit

√
ns/ms → 1 and otherwise two distinct solutions: ξ20− < 1 < ξ20+,

related by the inverse point condition ξ20−ξ
2
0+ = 1.

2.2.2 Mode shape ratio

The coupled mode shape is determined by the φ̄s/ūs-ratio, governed by the eigenvalue problem in (14). From the first
row in (14), the normalized mode shape ratio can be written as

φ̄ses

ūs
= 1 −

1
ξ20

√
ns

ms
(20)

with substitution of ξ20 = ξ
2
0− and ξ20+ determining the low- and high-frequency mode shapes, respectively. It can be

shown that the low-frequency mode with ξ20 = ξ
2
0− has opposite signs for ūs and φ̄ses, while for the high-frequency

mode (ξ20+) the transverse and rotation components have equal sign.
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2.3.2 Mode shape ratio

The coupled mode shape is determined by the ϕ̄s/ūs ratio, governed by the eigenvalue problem

in (24). From the first row in (24), the normalized mode shape ratio can be written as

ϕ̄ses
ūs

= 1− 1

ξ20

√
ns

ms
(30)

with substitution of ξ20 = ξ20− and ξ20+ determining the low- and high-frequency mode shapes,

respectively. Figure 4(b) shows the mode shape ratio ϕ̄ses/ūs as function of the inertia ratio
√
ns/ms, demonstrating that the low-frequency mode with ξ20 = ξ20− has opposite signs for ūs and

ϕ̄ses, while for the high-frequency mode (ξ20+) the transverse and rotation components have equal

sign.
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Figure 5: Coupled two-dof structural model with coupled two-dof tmd.

10

Fig. 4: Coupled two-dof structural model with coupled two-dof tmd. The tmd has analogous coupling properties and is placed with
its centers (dot and cross) aligned with those of the structure to secure desired damping performance.

3 Structure model with analogous two-dof tmd

Figure 4 shows the structural model from Fig. 3 with a coupled two-dof tuned mass damped (tmd) governed by
its displacement u and rotation φ relative to a common center (dot). The transverse mass of the tmd is m, and its
rotational inertia j is defined with respect to the tmd mass midpoint (cross). The tmd mass is suspended to the
structure by two pairs of spring-dashpot elements, each with stiffness 1

2 k and viscous damper coefficient 1
2 c, and

separated by distance as to the common center (dot). The tmd is placed on the structure so that the centroids
(cross) coincide, thereby as well aligning the tmd common center (dot) with the structure shear center (dot). By this
analogous tmd configuration, the tmd centroid (cross) is shifted by es relative to the common center (dot), at which the
corresponding rotational tmd inertia is J = j + e2

sm. Thus, the present paper considers a coupled two-dof tmd with
exactly the same inertia coupling properties as for the structure. It is in the following demonstrated how this analogous
principle provides robust tmd performance based on simple design relations.

The analogous principle further implies that the mass ratio for transverse and rotational inertia is the same and in
the following represented by a common mass ratio µ. Thus, the two tmd inertial parameters are given as

m = µms , j = µ js (21)

while J = µJs follows directly from substitution of (21) into J = j + e2
sm. From these inertia representations, the mass

ratio µ is constituted as the fundamental tmd design variable that governs its size and efficiency.

3.1 Reference structure model

The damping in terms of energy dissipation is for the structure-tmd system in Fig. 4 obtained by the dashpots with
combined viscous coefficient c. For c→ 0 the dashpots disappear and the model in Fig. 4 becomes an undamped
four-dof system. The other limit c → ∞ will instead lock the tmd mass rigidly to the structure mass, so that u = us

and φ = φs, assuming coinciding structure and tmd centres. First of all, none of the two limits, c→ 0 or ∞, actually
recover the original host structure without tmd in Fig. 3 and Section 2.1.3. Instead, a convenient reference frequency
is governed by the alternative two-dof system with c→ ∞, whereby the tmd inertia is rigidly locked to the structure.
In this case, the solutions to the host structure in Section 2.1.3 can be reused, when replacing ms and ns by the
increased masses ms + m and ns + n, respectively. Hereby, (16) defines a shifted non-dimensional frequency,

ξ2 = ω2
√

(ns + n)(ms + m)
ks

= (1 + µ)
(
ω

Ωs

)2

= (1 + µ)ξ20 (22)

now without the subscript 0 to distinguish ξ from the pure host structure frequency ξ0. The analysis of a multi-tmd
system for damping of bending-torsion beam vibrations in [47] also uses this shifted reference frequency to obtain
closed-form design expressions. Therefore, in the following the calibration obtained from design conditions for the
characteristic equation make use of the shifted non-dimensional angular frequency ξ, because the two roots for the
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fully combined structure-tmd system will then by construction be inverse points with respect to ξ = 1 on the real-valued
axis in the complex frequency-plane.

3.2 Coupled structure-tmd equations

As for the host structure model, the coupled equations of motion for the structure-tmd model in Fig. 4 may be
established by either energy principles or direct force equilibrium with respect to the governing dofs in the 4 × 1
displacement vector

u(t) = [ us(t) , asφs(t) , u(t) , asφ(t) ]T (23)

in which rotations are conveniently scaled by as. For this structure-tmd system, the governing equations of motion can
be written in standard matrix form

mü(t) + cu̇(t) + ku(t) = 0 (24)

introducing the 4 × 4 mass, damping and stiffness matrices as

m =
[

ms 0
0 µms

]
, c = c

[
I2 −I2
−I2 I2

]
, k = ks

[
(1 + κ)I2 −κI2
−κI2 κI2

]
(25)

with the mass sub-matrix

ms = ms

[
1 −εs

−εs ns/ms + ε
2
s

]
(26)

previously used as structural mass matrix in the eigenvalue problem (14) and I2 denoting the 2 × 2 identity matrix. In
(25) the stiffness matrix k is conveniently normalized by the structural stiffness ks, which defines the tmd’s stiffness
ratio

κ =
k
ks

(27)

as a design variable to be calibrated to obtain desirable tmd properties.

3.3 Eigenvalue analysis

As in Section 2.2, the dynamic response is assumed harmonic with angular frequency ω and amplitude ū. Hereby, the
temporal equation (24) is converted into the frequency domain, rendering the quadratic eigenvalue problem(

− ω2m + iωc + k
)
ū = 0 (28)

with i =
√
−1 being the imaginary unit.

When introducing the 2×2 block matrix form of the mass, stiffness and damping matrices from (25), the associated
determinant relation can be expressed as∣∣∣∣∣∣ −ω2ms +

(
iωc + (1 + κ)ks

)
I2 −(iωc + κks)I2

−(iωc + κks)I2 −ω2µms +
(
iωc + (1 + κ)ks

)
I2

∣∣∣∣∣∣ = 0 (29)

Because the applied analogous principle implies that the off-diagonal block components are themselves diagonal, the
reduction to the 2 × 2 determinant relation∣∣∣∣( − ω2ms +

(
iωc + (1 + κ)ks

)
I2

)(
− ω2µms +

(
iωc + (1 + κ)ks

)
I2

)
−

(
iωc + κks

)2I2

∣∣∣∣ = 0 (30)

follows directly from the recent proof by Silvester [51], which simplifies the derivations because it avoids the use of
any matrix inverse.

4 TMD calibration

The characteristic equation obtained from (30) is of 8th polynomial order in the complex natural frequency ω. As
argued in Section 3.1, the natural frequency ω is consistently normalized as in (22) to obtain the non-dimensional
angular frequency ξ, which secures inverse roots with respect to unity when c→ ∞ locks the tmd mass rigidly to the
structure.
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4.1 The characteristic equation

The characteristic equation is conveniently arranged by collecting all odd-power terms in ξ, as they are all proportional
to iξc, and thus govern the tracing of the root loci in the complex frequency plane between the four real-valued roots
for c → 0 and the two real-valued roots (and two roots on the imaginary axis) that are obtained in the other limit
c→ ∞. All real-valued roots are separately governed by the corresponding even (including zero) power terms in ξ,
which are therefore conveniently grouped as well.

Upon extensive use of trivial algebra, the characteristic equation in (30) can be written and organized as[(
ξ2

)4
− 2ν2s(1 + µ)

(
1 + κ

1 + µ
µ

)(
ξ2

)3
+ (1 + µ)2

(
1 + κ2

(1 + µ)2

µ2 + 2κ
µ + 2(ν2s)2

µ

)(
ξ2

)2

−2ν2sκ
(1 + µ)3

µ

(
1 + κ

1 + µ
µ

)
ξ2 + κ2

(1 + µ)4

µ2

]
− ξ2η2

〈(
ξ2

)2
− 2ν2sξ

2 + 1
〉

−iξη
{

2ν2s
(
ξ2

)3
− 2

(
µ + κ

(1 + µ)2

µ
+ 2(ν2s)2

)(
ξ2

)2

+2ν2s(1 + µ)
(
1 + 2κ

1 + µ
µ

)
ξ2 − 2κ

(1 + µ)2

µ

}
= 0

(31)

when introducing the non-dimensional damper parameter

η =
c√

ks
√

nsms

√
(1 + µ)3

µ2 (32)

In (31) all odd-power terms are assembled inside the curly braces { . . . } with iξη as common factor. The corresponding
even power terms are separated into two groups, with the terms proportional to η2 placed inside angle brackets ⟨ . . . ⟩,
while the remaining even power terms are collected within the square brackets [ . . . ].

In Fig. 5 the closely spaced blue dots represent root loci of the complex roots ξ obtained by solving the 8th order
characteristic polynomial (31) for increasing values of the damper parameter from η = 0 to ∞. The four sub-figures in
Fig. 5(a) to (d) represent four different values of the modal coupling parameter ν2s , with identical mass ratio µ = 0.05
and the stiffness ratio κ determined by the tuning formula derived in the next Section 4.2.

For η→ 0 in (31), the even power terms in the angle brackets and the odd power terms from the curly brackets all
vanish, whereby the four real-valued roots associated with vanishing tmd damping (c→ 0) are governed by the quartic
polynomial in ξ2 inside the square brackets in (31). In Fig. 5 these four roots are represented by circles, subsequently
referred to as ξ1 < ξ2 < 1 < ξ3 < ξ4. In the root locus diagram of Fig. 5(b) for ν2s = 1.125, these four real-valued roots
ξ1 to ξ4 obtained in the undamped limit (c→ 0) are specifically identified below the four circle markers.

For a finite value damper parameter η > 0, the odd-power terms imply complex roots that for increasing η describe
the root loci in the complex ξ-plane. As η→ ∞ the even power terms proportional to η2 inside the angle brackets will
eventually dominate the characteristic equation (31) and govern the two real-valued roots that determine the natural
frequencies of the reference two-dof structure model in Section 3.1 with the tmd rigidly attached. In Fig. 5 these
terminal reference roots are depicted by squares, in the following referred to as ξ12 and ξ34, with ξ12 < 1 < ξ34. In
Fig. 5(b), the two real-valued roots ξ1 and ξ4, associated with locking of the tmd to the structure by c→ ∞, are as well
specifically depicted at the respective square markers.

4.2 Stiffness calibration

Because the non-dimensional frequency ξ is defined in (22) with respect to the reference two-dof structure model
in Section 3.1, the two roots ξ12 and ξ34, associated with infinite tmd damping (η→ ∞), are by construction inverse
points with respect to ξ = 1 on the real ξ-axis, implying the relation: ξ12ξ34 = 1. Their solution

ξ212 = ν
2
s −

√
(ν2s)2 − 1 , ξ234 = ν

2
s +

√
(ν2s)2 − 1 (33)

is similar to that for ξ20 in (19) for the two-dof structure without absorber and with the modal coupling parameter ν2s
defined in (18).

The desired root locus diagrams, as illustrated in Fig. 5, have two separate loci, each with an apparent bifurcation
point, similar to the root locus obtained for the classic tmd [25]. Therefore, the four real-valued roots ξ1 to ξ4, obtained
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Figure 8: Root locus diagram for µ = 0.05 and ν2s = 1.000 (a), 1.125 (b), 1.250 (c) and 1.500 (d),
with markers depicting η → 0 (four circles), ∞ (two squares) and ηopt (four asterisks).
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Figure 9: (a) shows the optimal η that for a given µ provides the largest minimum damping
ratio max ζmin, shown in (b). The four curves (——) represent ν2s = 1.0 (blue), 1.25 (red), 1.50
(magenta) and 100 (black). The circles represent the optimum curve fit by (??) with g determined
by numerical optimization, while dots represent results for its explicit approximation in (??).

4

Fig. 5: Root locus diagram for mass ratio µ = 0.05 and modal coupling parameter ν2
s = 1.000 (a), 1.125 (b), 1.250 (c) and 1.500 (d),

with markers depicting the non-dimensional damping parameters η→ 0 (four circles), ∞ (two squares) and ηopt (four asterisks). In
(b) the four and two real-valued roots ξ1 to ξ4 and ξ12, ξ34, associated with respectively η → 0 and ∞, are depicted below their
respective circle and square markers.

by c → 0, must be placed as indicated by the circle markers in Fig. 5 on the real axis, as pairwise inverse points
with respect to ξ12 and ξ34, whereby ξ1ξ2 = ξ212 and ξ3ξ4 = ξ234. Furthermore, because ξ12ξ34 = 1 is obtained by
construction, the two inverse point conditions directly imply the condition ξ1ξ2ξ3ξ4 = 1. This condition requires that the
constant term inside the square bracket in (31) must be unity, which directly determines the desired stiffness ratio as

κ =
µ

(1 + µ)2 (34)

This is the same tuning formula, although expressed for the stiffness ratio and not the isolated tmd frequency, as
obtained for the classic tuned mass damper by Den Hartog’s fixed-point calibration [23, 25]. By substituting the
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stiffness ratio (34) into (31), the characteristic equation can be further reduced to its final form[(
ξ2

)4
− 2ν2s(2 + µ)

(
ξ2

)3
+

(
(1 + µ)(2 + µ) + µ +

(
2ν2s

)2
)(
ξ2

)2
− 2ν2s(2 + µ)ξ2 + 1

]
−ξ2η2

〈(
ξ2

)2
− 2ν2sξ

2 + 1
〉

−2iξη
{
ν2s

(
ξ2

)3
−

(
(1 + µ) + 2

(
ν2s

)2
)(
ξ2

)2
+ ν2s(3 + µ)ξ2 − 1

}
= 0

(35)

with the mass ratio µ representing the fundamental tmd design variable, the modal coupling parameter ν2s comprising
all structural properties, including the eccentricity εs, and damping parameter η constituting the gain parameter in a
root locus analysis.

The root loci in Fig. 5 have been produced by sequentially solving the reduced characteristic equation (35) for
increasing values of the damper parameter from η = 0 to∞. These loci seem to indicate that the outer and inner roots
(circles) are respectively pairwise inverse points on the real axis with respect to unity, i.e. ξ1ξ4 = 1 and ξ2ξ3 = 1. For
the undamped roots associated with η→ 0 to satisfy both ξ1ξ2 = ξ212 and ξ3ξ4 = ξ234, with as well ξ12ξ34 = 1, ξ1ξ4 = 1
and ξ2ξ3 = 1, the quartic polynomial inside the square brackets in (35) must be identical to a constructed generic 8th
order polynomial equation of the form((

ξ2
)2
− ξ2

(
ξ21 +

1
ξ21

)
+ 1

)((
ξ2

)2
− ξ2

(
ξ21
ξ412

+
ξ412

ξ21

)
+ 1

)
= 0 (36)

It is readily found that the terms with (ξ2)3 and ξ2 have a common coefficient. Comparison of this common coefficient
between (35) and (36) directly determines the root ξ21, and thereby ξ22 = ξ

4
12/ξ

2
1 > ξ

2
1, as

ξ21,2 =
ν2s(2 + µ)
1 + ξ−4

12

1 ∓
√

1 −
2 + ξ−4

12 + ξ
4
12

(ν2s)2(2 + µ)2

 (37)

By substitution of ξ21 into (36), its coefficient to the (ξ2)2-term can now be re-written as

2 +
(
ξ21 +

1
ξ21

) (
ξ21
ξ412

+
ξ412

ξ21

)
= 2 + 4(ν2s)2(2 + µ)2 1(

ξ234 + ξ
2
12
)2 +

(
ξ234 − ξ

2
12
)2
= 2 + 4µ + µ2 + (2ν2s)2 (38)

with expressions for ξ212 and ξ234 substituted from (33). The result in (38) is seen to recover the coefficient to the
corresponding (ξ2)2-term in the original characteristic equation (35). Thus, the analogous principle used to construct
the coupled two-dof tmd secures all inverse point properties for the damper parameter η → 0 when the absorber
stiffness ratio is calibrated as in (34).

The applied inverse point conditions furthermore seem to secure the existence of an apparent bifurcation point for
each of the two loci in Fig. 5, located along the same (dotted) line with a common damping ratio ζ∗ that is independent
of the coupling comprised by ν2s . The condition for the existence of the bifurcation points is exploited in Appendix A,
which shows that they are in fact inverse points with respect to the dashed-blue unit circular curve in Fig. 5. However,
the two bifurcation points are not reached for the same value of the damper parameter η, as illustrated in Fig. 5 by the
red asterisks, which in (a) to (d) represent the specific value of η that exactly maximizes the smallest damping ratio by
a brute force numerical search. For the left ξ− locus, the asterisks have not reached the bifurcation point yet, while for
the right ξ+ locus they have already passed. Therefore, on the basis of this numerical search the next section derives
approximate tuning expressions for the tmd damper parameter η.

4.3 TMD damper optimization

The optimal damper parameter η = ηopt is in the present approach defined as the value that maximizes the smallest of
the four damping ratios ζmin from the four complex roots that describe the loci in Fig. 5. For a given complex root ξ,
the corresponding damping ratio is defined as its relative imaginary part: ζ = Im[ξ]/|ξ|. The optimization is simply
performed by determining the eight complex roots from (35) for a fixed mass ratio µ and modal coupling parameter ν2s ,
and a damper parameter η varied from 0 to 1.0 with sufficiently small increments. For each damper parameter η the
smallest damping ratio ζmin is then identified, whereby ηopt is subsequently determined as the specific η-value that
maximizes this ζmin, in the following referred to as max ζmin. As mentioned previously, the asterisks in Fig. 5 represent
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the complex roots associated with this optimal damper parameter ηopt. For the special case ν2s = 1 in Fig. 5(a), the
two structural (and tmd) dofs uncouple, whereby two identical loci, placed exactly on top of each other, are associated
with max ζmin = ζ∗ =

1
2
√
µ at the bifurcation point reached by ηopt = 2

√
µ, see analysis in Appendix A. For a modal

coupling parameter ν2s > 1, approximate tuning expressions for ηopt are proposed next.
The solid-line curves in Fig. 6(a) represent ηopt as function of the mass ratio µ for ν2s = 1.0 (blue), 1.25 (red), 1.50

(magenta) and 100 (representing ∞ in black). The tendency of the curves in Fig. 6(a) clearly trace a square-root
function with respect to µ that decreases in magnitude for increasing values of ν2s . The corresponding attainable
damping ratio max ζmin is shown in Fig. 6(b), exhibiting a substantial reduction in attainable damping (for a given
mass ratio) when ν2s increases. Thus, the largest attainable damping is achieved for ν2s = 1, which corresponds to the
limit εs = 0 and ns = ms, and the optimal root location at the coinciding bifurcation points in Fig. 5(a). The reduction
in attainable damping for ν2s > 1 can be explained by the optimally located asterisks in the root locus diagrams of
Fig. 5(b)-(d), for which the distance to the bifurcation point (and its maximum damping ratio ζ∗ = 1

2
√
µ) seemingly

increases from (b) to (d), as the modal coupling parameter ν2s becomes larger.
On the basis of the curves in Fig. 6(a), the assumed parametrization

ηopt = g(ν2s)
√
µ (39)

is used in the optimization to identify an ηopt-µ-ν2s-dependency, with the assumed damper function g(ν2s) being
independent of the mass ratio µ. The embedded optimization function fminserach in Matlab (Release 2017b) is
used to identify g for a given value of ν2s by minimizing its least-squares error between ηopt from the previous numerical
search procedure and the assumed ηopt in (39). The present optimization relies on 100 log-separated data points
for ν2s = logspace(0,2,100) from 1 to 100. The 100 curves for ηopt as function of µ are all plotted in light grey color
in the background of Fig. 6(a), with the assumed estimate ηopt found by fminsearch depicted by circle markers
only for the four colored curves, with ν2s-values identical to those used for the root locus diagrams in Fig. 5: ν2s = 1.0
(blue), 1.25 (red), 1.50 (magenta) and 100 (black). The colored circle markers in Fig. 6(a) very accurately trace the
actual optima (solid-line curves), confirming that (39) captures the optimal absorber damping parameter η with great
accuracy across the entire span of ν2s and at least up to a moderate mass ratio of µ = 0.1.

Figure 7 shows the damper function g(ν2s) in blue solid-line for the 100 log-separated ν2s -values between 1 and 100.
Initially, it is seen that g = 2 for ν2s = 1 exactly recovers the analytical solution ηopt = 2

√
µ from Appendix A. In the

other limit for ν2s → ∞ it seems that g→
√

2. Obtained by ad-hoc curve fitting, the following simple expression

g(ν2s) =

√
4(
ν2s

)6 −
4(
ν2s

)4 +
2(
ν2s

)2 + 2 (40)

recovers both desired limits and further captures the steep decline in the damper function g seen in Fig. 7 for smaller
values of ν2s < 2. Figure 7 shows this explicit expression (40) as a red dashed-line curve. In Fig. 6(a) the estimate
of ηopt by (39) with g in (40) is represented by the colored dots, which very accurately reproduce the desired values
obtained by the optimized g (circles). Furthermore in Fig. 6(b), the damping ratio (dots) obtained with η = ηopt from
(39) and (40) very accurately reproduces max ζmin obtained by the numerical search procedure (solid-line).
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Figure 8: (a) shows the optimal η that for a given µ provides the largest minimum damping
ratio max ζmin, shown in (b). The four curves (——) represent ν2s = 1.0 (blue), 1.25 (red), 1.50
(magenta) and 100 (black). The circles represent the optimum curve fit by (55) with g determined
by numerical optimization, while dots represent results for its explicit approximation in (56).

for increasing values of ν2s . The corresponding attainable damping ratio max ζmin is shown in

Fig. 8(b), exhibiting a substantial reduction in attainable damping (for a given mass ratio) when

ν2s increases. Thus, the largest attainable damping is achieved for ν2s = 1, which according to

the curves in Fig. 3 implies εs = 0 and ns = ms, whereby the optimal root location is at the

coinciding bifurcation points in Fig. 7(a). The reduction in attainable damping for ν2s > 1 can

be explained by the optimally located asterisks in the root locus diagrams of Fig. 7(b)-(d), for

which the distance to the bifurcation point (and its maximum damping ratio ζ∗ = 1
2

√
µ) seemingly

increases from (b) to (d), as ν2s becomes larger.

On the basis of the curves in Fig. 8(a), the assumed parametrization

ηopt = g(ν2s )
√
µ (55)

is used in the optimization to identify an ηopt-µ-ν
2
s -dependency, with g(ν2s ) being a function inde-

pendent of the mass ratio µ. The embedded optimization function fminserach in Matlab (Release

2017b) is used to identify g for a given value of ν2s by minimizing its least-squares error between

ηopt from the previous numerical search procedure and the assumed ηopt in (55). The present

optimization relies on 100 log-separated data points for ν2s = logspace(0,2,100) from 1 to 100.

The 100 curves for ηopt as function of µ are all plotted in light grey color in the background of

Fig. 8(a), with the assumed estimate ηopt found by fminsearch depicted by circle markers only

for the four colored curves, with ν2s -values identical to those used for the root locus diagrams in

Fig. 7: ν2s = 1.0 (blue), 1.25 (red), 1.50 (magenta) and 100 (black). The colored circle markers in

Fig. 8(a) very accurately trace the actual optima (solid-line curves), confirming that (55) captures

the optimal absorber damping parameter η with great accuracy across the entire span of ν2s and

at least up to a moderate mass ratio of µ = 0.1.

Figure 9 shows the scaling function g(ν2s ) in blue solid-line for the 100 log-separated ν2s -values

between 1 and 100. Initially, it is seen that g = 2 for ν2s = 1 exactly recovers the analytical

solution ηopt = 2
√
µ from Appendix A. In the other limit for ν2s → ∞ it seems that g →

√
2.

18

Fig. 6: (a) shows the optimal non-dimensional damping parameter η that for a given mass ratio µ provides the largest minimum
damping ratio max ζmin, shown in (b). The four curves (——) represent a modal coupling parameter ν2

s = 1.0 (blue), 1.25 (red), 1.50
(magenta) and 100 (black). The circles represent the optimum curve fit by (39) with the damper function g determined by numerical
optimization, while dots represent results for its explicit approximation in (40).
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Figure 9: Identified g(ν2s ) (blue solid) as function of ν2s by optimum search algorithm, with ana-
lytical function (red dashed) in (56) used in the subsequent tmd design.

Obtained by ad-hoc curve fitting, the following simple expression

g(ν2s ) =

√
4

(
ν2s
)6 − 4

(
ν2s
)4 +

2
(
ν2s
)2 + 2 (56)

recovers both desired limits and further captures the steep decline in g seen in Fig. 9 for smaller

values of ν2s < 2. Figure 9 shows this explicit expression (56) as a red dashed-line curve. In

Fig. 8(a) the estimate of ηopt by (55) with g in (56) is represented by the colored dots, which

very accurately reproduce the desired values obtained by the optimized g (circles). Furthermore

in Fig. 8(b), the damping ratio (dots) obtained with η = ηopt from (55) and (56) very accurately

reproduces max ζmin obtained by the numerical search procedure (solid-line).

It is demonstrated in [25] that the maximum damping calibration for a classic tmd, with complex

roots placed deliberately at the bifurcation point, is associated with an undesirable increase in

dynamic response amplification at resonance, due to constructive interference of the two modes

with exactly the same natural frequency. Instead [25] shows, that an optimal reduction in response

amplitude is obtained by a viscous damping coefficient that is 1/
√
2 times the corresponding

coefficient associated with the bifurcation point (g = 2 for ν2s = 1). A similar conclusion is

obtained in equation (58b) of [52] for piezoelectric shunt damping. In the present case both

references [25, 52] therefore suggest that a simple and ν2s -independent damper design by

g =
2√
2

=
√
2 ⇒ ηopt =

√
2µ (57)

may be effective with respect to steady-state response mitigation. Furthermore, this design corre-

sponds to the g-limit for large values of ν2s in Fig. 9 and (56).

5 Damping of coupled beam vibrations

The efficiency of the coupled two-dof tmd is investigated for a full flexbile beam structure with

a local tmd attached to target a specific vibration mode j = s. The modes j 6= s not targeted

by the tmd are associated with two natural frequencies and vibration forms, while the specific

19

Fig. 7: Identified optimal damper function g(ν2
s ) (blue solid) as function of modal coupling parameter ν2

s by optimum search algorithm,
with analytical function (red dashed) in (40) used in the subsequent tmd design.

It is demonstrated in [25] that the maximum damping calibration for a classic tmd, with complex roots placed
deliberately at the bifurcation point, is associated with an undesirable increase in dynamic response amplification at
resonance, due to constructive interference of the two modes with exactly the same natural frequency. Instead [25]
shows, that an optimal reduction in response amplitude is obtained by a viscous damping coefficient that is 1/

√
2

times the corresponding coefficient associated with the bifurcation point (g = 2 for ν2s = 1). A similar conclusion
is obtained in equation (58b) of [52] for piezoelectric shunt damping. In the present case both references [25, 52]
therefore suggest that a simple and ν2s-independent damper design by

g =
2
√

2
=
√

2 ⇒ ηopt =
√

2µ (41)

may be effective with respect to steady-state response mitigation. Furthermore, this design corresponds to the g-limit
for large values of ν2s in Fig. 7 and expression (40).

5 Damping of coupled beam vibrations

The efficiency of the coupled two-dof tmd is investigated for a full flexible beam structure with a local tmd attached
to target a specific vibration mode j = s. The modes j , s not targeted by the tmd are associated with two natural
frequencies and vibration forms, while the specific mode j = s, targeted by the attached tmd, the two associated
frequencies split into four with four associated vibration forms. Thus, the total number of natural frequencies (not
including complex conjugates) becomes 2N + 2 for an N-term truncation of the modal expansion (3). The attainable
damping for the tmd is in the following assessed both in terms of a root locus analysis in Section 5.3 and a subsequent
frequency response analysis in Section 5.4 to investigate its response mitigation properties.

5.1 Beam and tmd properties

The coupled two-dof tmd is attached to the simply supported beam in Fig. 8(a), with a simple (pinned) support with
respect to bending and restrained angle of twist at both beam ends. For simplicity the cross-section is assumed
cruciform, with dimensions defined previously in Fig. 2. In the following numerical example, the beam properties are
chosen as summarized in Table 1, which roughly corresponds to the overall cross-sectional dimensions used to draw
the cruciform shapes in Fig. 2(b) and 8(b).

The derivation of the beam cross-section parameters, and the corresponding modal parameters, is conducted
in the Appendix B, which for the cross-sectional beam dimensions in Table 1 yield the following modal coupling
parameter for mode s = 1 and s = 3:

ν21 = 1.2553 , ν23 = 2.2221

It is noteworthy that for s = 1 the actual value ν21 = 1.2553 agrees well with ν2s = 1.250 previously used to obtain
the idealized root locus diagram in Fig. 5(c), which thereby constitutes the desired mode 1 result for the root locus
analysis conducted for s = 1 in Section 5.3.
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Figure 10: (a) Simply supported beam and tmd with depth dd located at mid span: ℓd = 1
2ℓ.

(b) Analogous cruciform tmd attached to cross-section by spring-dashpot components at distance
±a1 from shear center (dot).

mode j = s, targeted by the attached tmd, the two associated frequencies split into four with four

associated vibration forms. Thus, the total number of natural frequencies (not including complex

conjugates) becomes 2N+2 for an N -term truncation of the modal expansion (3). The attainable

damping for the tmd is in the following assessed both in terms of a root locus analysis in Section 5.3

and a subsequent frequency response analysis in Section 5.4 to investigate its response mitigation

properties.

5.1 Beam and tmd properties

The coupled two-dof tmd is attached to the simply supported beam in Fig. 10(a), with a simple

(pinned) support with respect to bending and restrained angle of twist at both beam ends. For

simplicity the cross-section is assumed cruciform, with dimensions defined previously in Fig. 1. In

the following numerical example, the beam properties are chosen as summarized in Table 1, which

roughly corresponds to the overall cross-sectional dimensions used to draw the cruciform shapes

in Fig. 1(b) and 10(b).

The derivation of the beam cross-section parameters, and the corresponding modal parameters, is

conducted in the Appendix B, which for the cross-sectional beam dimensions in Table 1 yield the

following modal structural parameter for mode s = 1 and s = 3:

ν21 = 1.2553 , ν23 = 2.2221

It is noteworthy that for s = 1 the actual value ν21 = 1.2553 agrees well with ν2s = 1.250 previously

used to obtain the idealized root locus diagram in Fig. 7(c), which thereby constitutes the desired

mode 1 result for the root locus analysis conducted for s = 1 in Section 5.3.

As depicted in Fig. 10(a), the coupled two-dof tmd is placed at mid-span position ℓd = 1
2ℓ, with

longitudinal depth dd determining the tmd mass. In Fig. 10(b) the size and shape of the tmd is in

20

Fig. 8: (a) Simply supported beam with restrained transverse displacement and torsion at both supports and a tmd with depth dd

located at mid span: ℓd = 1
2 ℓ. (b) Analogous cruciform tmd attached to cross-section by spring-dashpot components at distance

±a1 from shear center (dot).

As depicted in Fig. 8(a), the coupled two-dof tmd is placed at mid-span position ℓd = 1
2ℓ, with longitudinal depth dd

determining the tmd mass. In Fig. 8(b) the size and shape of the tmd is in the present example assumed identical
to that of the corresponding cruciform beam cross-section, whereby the desired analogous properties of the tmd
are retained. The coupled two-dof tmd is in the present example calibrated to either the first (s = 1) or third (s = 3)
vibration mode of the beam. Throughout the numerical example, a constant mass ratio is assumed:

µ = 0.05 ⇒ κ = 0.0454 , ηopt = 0.3661 (0.3162)

with the corresponding stiffness ratio κ obtained from (34) and the non-dimensional damping parameter ηopt obtained
from either (39) and (40) or simply by ηopt =

√
2µ (above value in parenthesis) from (41). The actual tmd parameters

are then finally found by

m = µms , J = µJs , k = κks , c = η
√

ks
√

nsms

√
µ2

(1 + µ)3 (42)

with c determined directly from the definition of η in (32).
For the cruciform tmd shape in Fig. 8(b), a set of design equations are derived in Appendix C, which can be

used to obtain a desired cruciform geometry that provides the required inertia and coupling properties for the tmd.
Cruciform tmd dimensions are in the following depicted by a subscript d for damper. Furthermore, the attachment of
the tmd by the spring-dashpot components is determined by the modal distance as obtained from (B.6) in Appendix B.
For modes s = 1 and s = 3, the corresponding distances are

a1

bd
= 0.684 > 2

ad

bd
,

a3

bd
= 0.2279 <

ad

bd

for a given cruciform width dimension bd = b. Thus, when targeting the first mode (s = 1), the spring-dashpot element
is to one side attached to the beam outside its cross-section (and tmd) boundaries, as indicated in Fig. 8(b) by the
additional extensions off the horizontal flanges to the right-side connection points at z = −a1.

Table 1: Beam length and cruciform cross-section dimensions relative to width parameter b.

ℓ/b a/b h/b t/b

30 1
3

1
2

1
30
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5.2 Governing modal equations

The fundamental equations are given in (1) and (2) for the beam without tmd. Figure 8(a) shows that the tmd is located
at x = ℓd along the length of the beam, exposing it to a local transverse force fd(t) and a local torsional moment td(t).

5.2.1 Coupled equations with tmd

The tmd forces transferred to the beam are expressed in terms of the spring stiffness k and viscous parameter c as

fd(t) = k
(
u(t) − v(ℓd, t)

)
+ c

(
u̇(t) − v̇(ℓd, t)

)
(43)

td(t) = ka2
s
(
φ(t) − θ(ℓd, t)

)
+ ca2

s
(
φ̇(t) − θ̇(ℓd, t)

)
(44)

and directly included in the beam equations (1) and (2),

ρAv̈(x, t) − ρAeθ̈(x, t) + EIv(x, t)′′′′ − δ(x − ℓd) fd(t) = p(x, t) (45)

ρJθ̈(x, t) − ρAev̈(x, t) −GKθ(x, t)′′ − δ(x − ℓd)td(t) = r(x, t) (46)

by a Dirac’s delta function δ(x − ℓd). The force is correspondingly added (with opposite sign) to the governing ordinary
differential equations for the tmd,

mü(t) − meφ̈(t) + fd(t) = 0 (47)

ma2
s

( n
m
+ ε2

s

)
φ̈(t) − meü(t) + td(t) = 0 (48)

with m = µms and n = µns applied in the following.

5.2.2 Modal representation

Sinusoidal expansion functions satisfy the boundary conditions for a simple (pinned) bending support and restrained
homogeneous torsion in both of the beam’s ends. Thus, the modal representations in (3) are expressed as

v(x, t) =
N∑
k

sin
(
kπ

x
ℓ

)
uk(t) , θ(x, t) =

N∑
k

sin
(
kπ

x
ℓ

)
φk(t) (49)

with index k truncated at N terms in both expansions. Hereby, these sinusoidal modal expansions correspond to the
assumed expansion used in the original paper by Gere and Lin [6].

The modal representations in (49) are substituted into both the two tmd force expressions (43) and (44), and the
two governing beam equations (45) and (46). When pre-multiplying the beam equations (45) and (46) with sin( jπx/ℓ),
then spatially integrating them over the beam length ℓ and finally utilizing (integration by parts and) the orthogonality
conditions for sine-functions, a governing set of ordinary differential equations for mode j = 1, 2, . . . ,N can be written
as

m jü j − m jeφ̈ j + k ju j − s j fd(t) = p j(t) (50)

J jφ̈ j − m jeü j + k ja2
jφ j − s jtd(t) = r j(t) (51)

with the short notation

s j = sin
(

jπ
ℓd
ℓ

)
(52)

for the expansion function value at tmd location x = ℓd. The external modal loads are in (50) and (51) defined as

p j(t) =
∫ ℓ

0
p(x, t) sin

(
jπ

x
ℓ

)
dx , r j(t) =

∫ ℓ

0
r(x, t) sin

(
jπ

x
ℓ

)
dx (53)

whereas the local tmd forces in (43) and (44), upon substitution of the modal representations (49), can be expressed
as

fd(t) = ku(t) + cu̇(t) − k
N∑
k

skuk(t) − c
N∑
k

sku̇k(t) (54)

td(t) = ka2
sφ(t) + ca2

s φ̇(t) − ka2
s

N∑
k

skφk(t) − ca2
s

N∑
k

skφ̇k(t) (55)
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For the chosen mid-span tmd location ℓd = 1
2ℓ in Fig. 8(a), all modal deflections sk with even index k vanish, i.e.

s2 = s4 = · · · = 0.

5.2.3 Matrix equation

The two tmd force expressions (54) and (55) are now used to eliminate fd and td in (47), (48), (50) and (51), whereby
these coupled modal equations can be written in matrix form,

Mü(t) + Cu̇(t) +Ku(t) = f(t) (56)

similar to that in (24) for the single mode structure, with the augmented system vector

u = [u1, φ1 , u2, φ2 , . . . , uN , φN , u, φ ]T (57)

now containing 2N + 2 entries and the corresponding modal load vector

f = [p1, r1 , p2, r2 , . . . , pN , rN , 0, 0 ]T (58)

without contributions to the two tmd dofs. The pairwise organization of the modal vectors in (57) and (58) strongly
suggests that the same number of terms N is used in both expansions of (49). Thereby, the associated mass matrix
will also appear in a block-diagonal form,

M =



m1 −m1e
−m1e J1

m2 −m2e
−m2e J2

. . .

mN −mNe
−mNe JN

µms −µmse
−µmse µJs


(59)

with the bottom block expressed by the common mass ratio µ for the target mode j = s. A pure diagonal mass matrix
is retained in case of vanishing eccentricity (e = 0).

The corresponding stiffness matrix (and damping matrix) impose inter-modal coupling because of the summation
terms in the expressions for fd in (54) and td in (55). It is therefore convenient to split the stiffness matrix into

K = Km + kB (60)

with a diagonal modal matrix

Km =



k1b1
k2b2

. . .

kNbN

0bs


(61)

compactly written in terms of the diagonal 2 × 2 scaling matrix

b j =

[
1 0
0 a2

j

]
(62)

and the, in principle, fully occupied distribution matrix

B =



s2
1bs s1s2bs . . . s1sNbs −s1bs

s2s1bs s2
2bs . . . s2sNbs −s2bs

...
...

. . .
...

...
sN s1bs sN s2bs . . . s2

Nbs −sNbs

−s1bs −s2bs . . . −sNbs bs


(63)
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that secures the proper influence of the tmd on each of the vibration modes. As the tmd dashpots are located parallel
to the springs, the total damping matrix can similarly be written as

C = Cm + cB (64)

where Cm is a modal damping matrix, commonly assumed diagonal, comprising all damping sources not attributed to
the tmd. Therefore, the following analysis omits Cm to precisely assess the specific damping performance introduced
by the coupled two-dof tmd.

5.3 Root locus analysis

The design and calibration of the coupled two-dof tmd is based on proper placement of the complex poles to maximize
the attainable damping in the targeted mode j = s, with its two vibration forms denoted by index s− and s+. As
introduced for the normalized host structure frequencies (ξ0− and ξ0+) in (19), the modal notation (or subscript) j−
and j+ will in general refer to the two natural frequencies ω0, j− and ω0, j+ (> ω0, j−) and their corresponding vibration
shapes for a specific mode j = 1, 2, . . . ,N.

In the previous Fig. 5, for the idealized single-mode structure model, the damping performance is both assessed
and calibrated by root loci. In the present section, a root locus analysis is specifically conducted in Section 5.3.2 for
the full flexible beam structure with N modes and a coupled two-dof tmd attached.

5.3.1 Undamped vibrations

The dynamic properties of the beam without the tmd are governed by its natural frequencies and associated modes
shapes, without approximations determined by respectively (19) and (20) from the analysis of the host structure model.
Figure 9 shows the governing parameters for modes j = 1 to 10 for the present beam with a cruciform cross-section.

Figure 9(a) presents the governing inertia ratio
√

n j/m j, which according to (B.10) increases proportionally with
the mode number j (dashed line). The non-dimensional frequencies ξ0, j− and ξ0, j+ are pairwise reciprocal values,

5.3.1 Undamped vibrations

The dynamic properties of the beam without the tmd are governed by its natural frequencies and

associated modes shapes, without approximations determined by respectively (29) and (30) from

the analysis of the host structure model. Figure 11 shows the governing parameters for modes

j = 1 to 10 for the present beam with a cruciform cross-section.

Figure 11(a) presents the governing inertia ratio
√
nj/mj , which according to (B.10) increases

proportionally with the mode number j (dashed line). The non-dimensional frequencies ξ0,j−

and ξ0,j+ are pairwise reciprocal values, because ξ0,j−ξ0,j+ = 1 by construction. Thus, in the

semi-logarithmic plot in Fig. 11(b) they are placed symmetrically with respect to ξ0 = 100. The

corresponding development of the actual natural frequencies ω0,j± as function of j is shown in

Fig. 11(c), from which it is seen that e.g. the larger of the mode 3 frequencies is even larger

than the smaller of the mode 10 frequencies, i.e. ω0,3+ > ω0,10−. Therefore, the present problem

with simultaneous pairwise damping of two coupled vibration forms for a target mode j = s is

mostly an issue for the lowest fundamental mode (s = 1), with none or only a few frequencies

between ω0,1− and ω0,1+. In the following, a root-locus analysis is thus conducted mainly for the

fundamental mode s = 1, whereas a higher mode s = 3 is merely included to illustrate the ability

of the proposed tmd design to specifically target a mode with many other natural frequencies
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Figure 11: Plot of host structure properties for modes j = 1 to 10: (a) inertia ratio
√
nj/mj,

(b) normalized modal frequency ξ0,j from (29) with s = j, (c) the corresponding frequencies
normalized by mode 1 reference frequency ω0,j/Ω1 and (d) mode shape displacement ratio at
centroid ϕ̄je/ūj. In (b)-(d): smaller frequency (subscript −) by crosses and larger (subscript +)
by plus markers.

25

Fig. 9: Plot of host structure properties for modes j = 1 to 10: (a) inertia ratio
√

n j/m j, (b) normalized modal frequency ξ0, j
from (19) with s = j, (c) the corresponding frequencies normalized by mode 1 reference frequency ω0, j/Ω1 and (d) mode shape
displacement ratio at centroid φ̄ je/ū j. In (b)-(d): smaller frequency (subscript −) by crosses and larger (subscript +) by plus
markers.
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ū
j
±

j

Figure 11: Plot of host structure properties for modes j = 1 to 10: (a) inertia ratio
√
nj/mj,

(b) normalized modal frequency ξ0,j from (??) with s = j, (c) the corresponding frequencies
normalized by mode 1 reference frequency ω0,j/Ω1 and (d) mode shape displacement ratio at
centroid ϕ̄je/ūj. In (b)-(d): smaller frequency (subscript −) by crosses and larger (subscript +)
by plus markers.

(a)

mode 1−

(b)

mode 1+

(c)

mode 3−

(d)

mode 3+

Figure 12: Plot of relative shape for modes 1− (a), 1+ (b), 3− (c) and 3+ (d), with centroid (cross)
and shear center (dot).

6

Fig. 10: Plot of relative shape for modes 1− (a), 1+ (b), 3− (c) and 3+ (d), with centroid (cross) and shear center (dot). Quarter
vibration period depicted by sequence: red-solid (extremum), blue-solid (neutral) and red-dashed (opposite extremum).

because ξ0, j−ξ0, j+ = 1 by construction. Thus, in the semi-logarithmic plot in Fig. 9(b) they are placed symmetrically
with respect to ξ0 = 100. The corresponding development of the actual natural frequencies ω0, j± as function of j is
shown in Fig. 9(c), from which it is seen that e.g. the larger of the mode 3 frequencies is even larger than the smaller
of the mode 10 frequencies, i.e. ω0,3+ > ω0,10−. Therefore, the present problem with simultaneous pairwise damping
of two coupled vibration forms for a target mode j = s is mostly an issue for the lowest fundamental mode (s = 1),
with none or only a few frequencies between ω0,1− and ω0,1+. In the following, a root-locus analysis is thus conducted
mainly for the fundamental mode s = 1, whereas a higher mode s = 3 is merely included to illustrate the ability of the
proposed tmd design to specifically target a mode with many other natural frequencies below, between and above
ω0,3− and ω0,3+.

Figure 9(d) shows the mode shape ratio φ̄ je/ū j, which represents the ratio between the transverse centroid
displacement (φ̄ je) from the torsion angle and the transverse displacement component (ū j). The mode shape ratio
associated with the lower frequencies (index j−) is negative, and thus in the logarithmic scale these are plotted by the
plus markers with opposite sign. Based on the chosen sign convention in Fig. 3, the mode shapes can be illustrated in
terms of in-plane deflections for the cruciform cross-section, as shown in Fig. 10 for the two modes j = 1 and 3. The
red solid- and dashed-line geometries represent in-plane mode shapes with opposite sign, whereby the sequence
from red-solid to blue to red-dashed represent a quarter-period vibration. For modes with non-vanishing torsional
component, all in-plane shapes exhibit a zero displacement point where the horizontal flanges of the red-solid and
red-dashed geometries intersect. For mode j = 1− in Fig. 10(a) this neutral point is placed outside to the right of the
cross-section boundary, while for the remaining modes (1+, 3−, 3+) in Fig. 10(b-d) they appear along the horizontal
flange. The full mode shape with longitudinal dependency may finally be obtained by multiplying either ū j and φ̄ j or
the in-plane shapes in Fig. 10 directly with the common sinusoidal function sin( jπx/ℓ) used for the original modal
expansion in (49).

When installing the coupled tmd, as shown in Fig. 8, both of the two original target mode frequencies ω0,s± split
into two complex frequencies. In case the tmd damping is omitted (c = 0), the split frequencies become real-valued,
previously denoted in non-dimensional form as ξ1 to ξ4 in the analysis of the idealized two-dof model in Section 4 and
represented by the circles in the root locus diagrams of Fig. 5. Figure 11 shows the natural frequencies as (blue) dots
when a coupled two-dof tmd with mass ratio µ = 0.05 is installed with optimal spring stiffness and without damping.
The cross and plus markers are identical to the host structure frequencies from Fig. 9(c). It can be seen that the split
frequencies pairwise separate around the undamped frequencies for the target mode s = 1 in (a) and s = 3 in (b),
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5.3.2 Damped vibrations

The performance of the two-dof tmd is now assessed in terms of root locus diagrams, similar to

those in Fig. 7 for the pure two-dof structural model. As shown in Fig. 13, the targeted host

structure frequencies ω0,s− and ω0,s+ will each split into two real-valued roots when installing a

tmd without damping. For increasing c, these split frequencies will pairwise trace s− and s+ loci

in the complex plane.

The complex natural frequencies are determined by the homogeneous form of the equation of

motion (72), which in the frequency domain constitutes the eigenvalue problem

(
− ω2M+ iωC+K

)
ū = 0 (81)

with 2N+2 complex-valued natural frequencies ω (or their complex conjugates) and corresponding

eigenvectors ū. The eigenvalue problem (81) is conveniently written in state-space form of double

size, thereby enabling the use of the damp-function in Matlab to determine the 2(2N+2) complex

roots (including the complex conjugates) and the associated damping ratios.

Figure 14 shows the root loci for the beam structure with modal truncation at N = 20 to secure

that all frequencies below and around the largest target frequency (in this case ω3+) are properly

accounted for. The closely spaced blue dots describe the loci of the complex frequencies ω for the

full flexible beam governed by the eigenvalue problem in (81). The natural frequencies are in the

following normalized by the mode 1 reference frequency Ω1. The underlying red dots in Fig. 14

represent the root loci obtained by solving the characteristic polynomial (51) with ω subsequently

determined by (34). Figure 14 shows the root locus diagram for target mode s = 1 in (a) and

s = 3 in (b), with mass ratio µ = 0.05 in both cases. The blue circle markers represent the

complex frequencies obtained for the tmd damper parameter c = copt associated with the assumed

optimum ηopt = 0.3661 obtained by (55) and (56), while the red asterisks depict the corresponding

optimal roots obtained for the pure two-dof structural model, also shown in Fig. 7.

In the previous Figs. 11(c) and 13 the red cross and plus markers represent the undamped natural

0 2 4 6 8 10
10-1

100

101

102(a)

j

ω
j
/
Ω

1

0 2 4 6 8 10
10-1

100

101

102(b)

j

ω
j
/
Ω

1

Figure 13: Plot of structure frequencies with undamped tmd (µ = 0.05 and c = 0) targeting
s = 1 (a) and s = 3 (b). Host structure solution (29) with s = j by cross and plus markers as in
Fig. 11(c).

27

Fig. 11: Plot of normalized structure frequencies ω j/Ω1 with undamped tmd (µ = 0.05 and c = 0) targeting s = 1 (a) and s = 3 (b).
Host structure solution (19) with s = j shown by cross and plus markers, as in Fig. 9(c).

while leaving the other frequencies ( j , s) virtually unaffected.

5.3.2 Damped vibrations

The performance of the two-dof tmd is now assessed in terms of root locus diagrams, similar to those in Fig. 5 for the
pure two-dof structural model. As shown in Fig. 11, the targeted host structure frequencies ω0,s− and ω0,s+ will each
split into two real-valued roots when installing a tmd without damping. For increasing viscous coefficient c, these split
frequencies will pairwise trace s− and s+ loci in the complex plane.

The complex natural frequencies are determined by the homogeneous form of the equation of motion (56), which
in the frequency domain constitutes the eigenvalue problem(

− ω2M + iωC +K
)
ū = 0 (65)

with 2N + 2 complex-valued natural frequencies ω (or their complex conjugates) and corresponding eigenvectors ū.
The eigenvalue problem (65) is conveniently written in state-space form of double size, thereby enabling the use of
the damp-function in Matlab to determine the 2(2N + 2) complex roots (including the complex conjugates) and the
associated damping ratios.

Figure 12 shows the root loci for the beam structure with modal truncation at N = 20 to secure that all frequencies
below and around the largest target frequency (in this case ω3+) are properly accounted for. The closely spaced blue
dots describe the loci of the complex frequencies ω for the full flexible beam governed by the eigenvalue problem in
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Figure 14: Root locus diagram for µ = 0.05 and target mode s = 1 (a) and s = 3 (b).

frequencies (ω0,j− and ω0,j−) of mode j for the host structure without the tmd. These markers

are also plotted along the real axis in Fig. 14, with the corresponding mode numbers (j− and j+)

written at the top of each sub-figure to help identify and order the individual frequencies in the

root locus diagrams. For the modes not targeted by the tmd, these host structure frequencies

correspond well with the natural frequencies determined by solving the full eigenvalue problem

in (81), whereas for the targeted mode they are located slightly to the right of the real-valued

terminal roots reached for c → ∞.

For the fundamental mode s = 1 as tmd target with ν21 = 1.2553, the pair of root loci (blue dots)

in Fig. 14(a) quite accurately reproduce the desired two-dof structure solution (red dots), and

the optimum tuning roots (blue circle) also recover the two-dof model predictions (red asterisk).

Because the actual root loci are determined for the full flexible beam structure with N = 20

modes, the inter-modal coupling imposed by the presence of the tmd results in small deviations,

for example seen at the bifurcation points of the underlying red loci, which are not precisely

reached by the blue loci for the full flexible beam structure. The frequency range along the real

axis in Fig. 14(a) is extended to also include the smaller natural frequencies ω2− and ω3− for

the next two modes j = 2 and 3, respectively. While mode 2 is unaffected due its nodal point

at tmd location, the third mode is seen to receive a small damping contribution because of the

modal coupling introduced by the tmd. However, at the desired viscous damping coefficient copt

(blue circle), the higher mode 3− frequency is virtually undamped because its blue circle marker

is placed on the real axis.

For s = 3 as target mode, Fig. 14(b) clearly shows a much larger number of intermediate modes

between and around the loci for ω3− and ω3+. Below the smaller root locus for ω3−, Fig. 14(b)

indicates that ω1+ is not substantially influenced, while all other odd-numbered modes above

(ω5−, ω7− up to ω13−) receive some spill-over damping from the tmd, although for the optimum

c (blue circles) the damping in these modes is as well very limited. However, the interaction with

other modes implies substantial deviations for the (larger) ω3+-locus, for which the two undamped

28

Fig. 12: Root locus diagram for µ = 0.05 and target mode s = 1 (a) and s = 3 (b). Complex frequencies ω± j are normalized by
mode 1 reference frequency Ω1, while mode numbers j± are written at the top of figures (a) and (b) to depict order of loci.
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Table 2: Complex normalized frequencies and damping ratios for target mode s = 1 (top) and s = 3 (bottom). The mass ratio is
µ = 0.05 for both target modes. Damping parameter η = g

√
µ, with g from (40) or g =

√
2 (in parenthesis) from (41).

s = 1
ω/Ω1 0.6250 + i0.0405 0.7514 + i0.0472 1.3555 + i0.2662 1.3834 + i0.0902

(0.6220 + i0.0347) (0.7558 + i0.0410) (1.3540 + i0.1624) (1.3964 + i0.1453)
ζ 0.0646 0.0627 0.1927 0.0650

(0.0557) (0.0541) (0.1191) (0.1035)

s = 3
ω/Ω1 2.2402 + i0.0852 2.7381 + i0.1050 10.128 + i3.3257 10.376 + i0.3873

(2.2383 + i0.0799) (2.7405 + i0.0984) (10.2142 + i3.0588) (10.3693 + i0.4203)
ζ 0.0380 0.0383 0.3120 0.0373

(0.0357) (0.0359) (0.2869) (0.0405)

(65). The natural frequencies are in the following normalized by the mode 1 reference frequency Ω1. Figure 12 shows
the root locus diagram for target mode s = 1 in (a) and s = 3 in (b), with mass ratio µ = 0.05 in both cases. The blue
circle markers represent the complex frequencies obtained for the tmd damper parameter c = copt associated with the
assumed optimum ηopt = 0.3661 obtained by (39) and (40).

The underlying red dots in Fig. 12 describe the desired optimal root loci obtained by solving the characteristic
polynomial (35) with ω subsequently determined by (22). As previously shown in Fig. 5, these optimal loci are
inverse root trajectories with respect to ξ = 1. For s = 1 in Fig. 12(a), the optimal loci are therefore placed
inversely with respect to Re[ω]/Ω1 = 1/

√
1 + µ = 0.976 because the axes in Fig. 12 are normalized by Ω1. Since

ν21 = 1.2553 ≃ 1.25, the placement of the desired (red) loci in Fig. 12(a) are quite similar to that in Fig. 5(c). For
target mode s = 3, the two optimal (red) loci in Fig. 12(b) are substantially more separated around their inverse point
Re[ω]/Ω1 = (Ω3/Ω1)2/

√
1 + µ = 5.07, since ν23 = 2.2221 = 1.77ν21 is much larger than ν21. The red asterisks in Fig. 12

depict the optimal roots along the optimal (red) loci for the simple two-dof structural model, as also shown in Fig. 5.
In the previous Figs. 9(c) and 11 the red cross and plus markers represent the undamped natural frequencies

(ω0, j− and ω0, j+) of mode j for the host structure without the tmd. These markers are also plotted along the real axis
in Fig. 12, with the corresponding mode numbers ( j− and j+) written at the top of each sub-figure to help identify
and order the individual frequencies in the root locus diagrams. For the modes not targeted by the tmd, these host
structure frequencies correspond well with the natural frequencies determined by solving the full eigenvalue problem
in (65), whereas for the targeted mode they are located slightly to the right of the real-valued terminal roots reached
for c→ ∞.

For the fundamental mode s = 1 as tmd target with ν21 = 1.2553, the pair of root loci (blue dots) in Fig. 12(a) quite
accurately reproduce the desired two-dof structure solution (red dots), and the optimum tuning roots (blue circle) also
recover the two-dof model predictions (red asterisk). Because the actual root loci are determined for the full flexible
beam structure with N = 20 modes, the inter-modal coupling imposed by the presence of the tmd results in small
deviations, for example seen at the bifurcation points of the underlying red loci, which are not precisely reached by the
blue loci for the full flexible beam structure. The frequency range along the real axis in Fig. 12(a) is extended to also
include the smaller natural frequencies ω2− and ω3− for the next two modes j = 2 and 3, respectively. While mode 2 is
unaffected due its nodal point at tmd location, the third mode is seen to receive a small damping contribution because
of the modal coupling introduced by the tmd. However, at the desired viscous damping coefficient copt (blue circle),
the higher mode 3− frequency is virtually undamped because its blue circle marker is placed on the real axis.

For s = 3 as target mode with ν23 = 2.2221, Fig. 12(b) clearly shows a much larger number of intermediate modes
between and around the loci for ω3− and ω3+. Below the smaller root locus for ω3−, Fig. 12(b) indicates that ω1+ is not
substantially influenced, while all other odd-numbered modes above (ω5−, ω7− up to ω13−) receive some spill-over
damping from the tmd, although for the optimum c (blue circles) the damping in these modes is as well very limited.
However, the interaction with other modes implies substantial deviations for the (larger) ω3+-locus, for which the two
undamped frequencies (for c = 0) are shifted slightly in the high-frequency direction (relative to the underlying red
locus), whereas the red and blue loci coincide for c→ ∞. This apparent distortion of the (blue) ω3+-locus in Fig. 12(b)
explains why the bifurcation condition is so substantially disturbed, resulting in non-optimal damping.

For both target modes s = 1 and 3, Table 2 provides the four normalized complex natural frequencies at optimal
tuning by (39) and (40), and their corresponding damping ratios. The table values in the parenthesis have instead
been obtained for the much simpler damping calibration η =

√
2µ in (41). In the root locus diagrams of Fig. 12, the

complex roots from Table 2 are depicted as blue circles on the target loci. For s = 3 in Fig. 12(b) the highly damped
root ω = (10.128 + i3.3257)Ω1 for mode 3+ is located on the blue branch outside the figure boundary and therefore
not visible. For both target modes, three of the four damping ratios in Table 2 are basically identical, thus almost
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exactly reproducing the desired equal modal condition, which in the calibration procedure has been realized by the
inverse point conditions. This is even the case for s = 3, although in particular the higher ω3+-locus in Fig. 12(b) is
strongly distorted by modal interaction. Thus, the proposed calibration method seems to be robust with respect to
attainable damping, although improved root locus diagrams could be obtained by for example applying a residual
mode correction, as proposed in [30, 47].

When using the simple damper tuning η =
√

2µ (values in parenthesis in Table 2), the equal damping ratio in the
three (of four) complex roots is lost. For s = 1 it is seen in Table 2 that by this simple tuning, the two higher complex
roots for ω1+ are very close and thus located near the bifurcation point, whereas for s = 3 this double-pole property
is not seen in the bottom table half. However, the simpler design expression η =

√
2µ is inspired by the tuning of a

classical tmd [25], for which it yields improved reduction in frequency response amplitudes, as considered next.

5.4 Frequency response analysis

As shown in Fig. 13 a local force P(t) acts at the beam mid span x = 1
2ℓ (a), while locally acting on the cross-section

in (b) at distance z = zp relative to the shear center (dot). Thereby, the externally distributed force p and torsional
moment r can be introduced to the respective partial differential equations (45) and (46) as

p(x, t) = −Pδ(x − 1
2ℓ) , r(x, t) = −zp p(x, t) (66)

while the corresponding modal loads are found by substitution into the definitions in (53), which upon evaluation of the
integrals give

p j(t) = − p(t)ℓ
1 − cos( jπ)

jπ
, r j(t) = −zp p j(t) (67)

and thus vanish for all even-numbered modes j = 2, 4 . . . .
The non-homogeneous matrix equation of motion (56) can be expressed in the frequency domain, with assumed

harmonic load amplitude p̄, thereby introducing a right hand side to (65), which can then be expressed as(
− ω2M + iωC +K

)
ū = f̄ (68)

with the external load vector defined as in (58),

f̄ = [ p̄1, −zp p̄1 , p̄2, −zp p̄2 , . . . , p̄N , −zp p̄N , 0, 0 ]T (69)

with the modal moment contributions eliminated by (67b).
Figure 14 shows the frequency response amplitude for the structure and tmd response. The structural response

amplitude is assessed in terms of the transverse displacement amplitude

v̄p = v̄( 1
2ℓ) − zpθ̄( 1

2ℓ) (70)

at the location of the external force (x = 1
2ℓ and z = zp). The specific blend of transverse displacement and torsional

rotation depends on where on the cross-section the transverse displacement is evaluated. For the three values

5.4 Frequency response analysis

As shown in Fig. 15 a local force P (t) acts at the beam mid span x = 1
2ℓ (a), while locally acting

on the cross-section in (b) at distance z = zp relative to the shear center (dot). Thereby, the

externally distributed force p and torsional moment r can be introduced to the respective partial

differential equations (61) and (62) as

p(x, t) = −Pδ(x− 1
2ℓ) , r(x, t) = −zpp(x, t) (82)

while the corresponding modal loads are found by substitution into the definitions in (69), which

upon evaluation of the integrals give

pj(t) = − p(t)ℓ
1− cos(jπ)

jπ
, rj(t) = −zppj(t) (83)

and thus vanish for all even-numbered modes j = 2, 4 . . . .

The non-homogeneous matrix equation of motion (72) can be expressed in the frequency domain,

with assumed harmonic load amplitude p̄, thereby introducing a right hand side to (81), which

can then be expressed as (
− ω2M+ iωC+K

)
ū = f̄ (84)

with the external load vector defined as in (74),

f̄ = [p̄1, −zpp̄1 , p̄2, −zpp̄2 , . . . , p̄N , −zpp̄N , 0, 0 ]T (85)

with the modal moment contributions eliminated by (83b).

Figure 16 shows the frequency response amplitude for the structure and tmd response. The

structural response amplitude is assessed in terms of the transverse displacement amplitude

v̄p = v̄(12ℓ)− zpθ̄(
1
2ℓ) (86)

at the location of the external force (x = 1
2ℓ and z = zp). The specific blend of transverse displace-

ment and torsional rotation depends on where on the cross-section the transverse displacement is
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Figure 15: (a) Simply supported beam with local load P (t) at mid-span, acting vertically on
horizontal cross-section flange at z = zp (b).

30

Fig. 13: (a) Simply supported beam with local load P at mid-span, acting vertically on horizontal cross-section flange at horizontal
in-plane location z = zp (b).
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zp = −a, 0 and a used in the following, the two mode 1 vibration forms (1− and 1+) are in fact excited rather differently
and thus the results in Fig. 14 consider various compromises between the two contributions in (70), obtained directly
from the frequency domain modal representation of (49),

v̄(x) =
N∑
j

sin
(

jπ
x
ℓ

)
ū j , θ̄(x) =

N∑
j

sin
(

jπ
x
ℓ

)
φ̄ j (71)

with the modal components ū j and φ̄ j contained in the amplitude vector ū in (57) found by solving the equation
of motion (68). The corresponding tmd amplitudes ū and φ̄ are obtained directly from the two last entries in ū. A
representative tmd displacement is in the present example evaluated at the same location as in (70) for the beam
cross-section,

ūp = ū − zpφ̄ (72)

with the associated relative tmd displacement ūp − v̄p determining the spring-dashpot elongation.
In Fig. 14 the magnitude (or absolute value) of the complex response amplitude is shown as function of the

excitation frequency ω normalized by the mode 1 reference frequency Ω1. In all sub-figures, both the dynamic
structure and tmd amplitudes are normalized by the static structure deflection v̄0

p, obtained by solving (68) in the
low-frequency limit (ω = 0). For the frequency response analysis, only s = 1 is considered as the tmd target mode,
because mode s = 3 is both weekly excited by the loading and strongly mitigated by the coupled two-dof tmd. The
three left Figs. 14(a,c,e) show the beam frequency response amplitude |v̄p| for the three different (excitation) locations
zp = −a (a), 0 (c) and a (e), which when normalized by v̄0

p constitutes the dynamic amplification (or magnification)
factor. The corresponding sub-figures (b,d,f) present the frequency amplitude curves for the relative tmd deflection.
For both structure and tmd response, the mode 1 response is composed of a left double peak, associated with
the lower mode 1−, and a right single peak, representing the response amplitude at the higher mode 1+. The blue
solid-line curves in Fig. 14 represent the damper tuning obtained by the more elaborate ηopt expression in (39) and
(40), while the red dashed-line curves represent the simpler formula ηopt =

√
2µ from (41).

Figure 14 shows that the two vibration forms 1− and 1+ are excited very differently, depending on the point of
loading and/or displacement evaluation (both at z = zp). From the in-plane mode shapes in Fig. 10(a,b), it is seen
that at the outermost right position on the cross-section (zp = −a), the transverse displacement is much larger for
mode 1+ in Fig. 10(b) than for mode 1− in Fig. 10(a), resulting in a frequency response amplitude in Fig. 14(a) clearly
dominated by the (right) single-peak resonance at ω = ω0,1+ ≃ 1.4Ω1. Resonance at this mode 1+ is only described
by a single peak because one of the two vibration forms, represented by ω = (1.3555 + i0.2662)Ω1 in Table 2, is so
heavily damped, that only the other vibration form with frequency ω = (1.3834 + i0.0902)Ω1 is dynamically amplified,
with the associated damping ratio somewhat underestimating the actual amplitude (|v̄p|/v̄0

p ≃ 9) when using the simple
single-dof resonance formula: 1/(2ζ) = 1/(2 · 0.0650) = 7.7.

For zp = a, the frequency response is conversely dominated by the mode 1− resonance in Fig. 14(e,f) because
its mode shape in Fig. 10(a) has a much larger deflection at z = a than the corresponding mode 1+ in Fig. 10(b).
The resonance exhibits a well balanced double-peak because the two vibration forms associated with mode 1− have
almost identical damping ratios: ζ = 0.0646 and 0.0627 from Table 2.

For the intermediate case with a forcing and displacement assessment at the shear center (zp = 0), the two mode
1 in-plane vibration shapes (1− and 1+) in Fig. 10(a,b) exhibit roughly the same transverse deflection, whereby both
the mode 1− double-peak and the slightly larger mode 1+ single-peak are visible in Fig. 14(c,d) for the structure and
tmd response amplitude.

At all three loading conditions (zp = −a, 0 and a) the coupled two-dof tmd seems to effectively mitigate the vibration
amplitude to a dynamic amplification factor below 10 for µ = 0.05. For a classic single-dof tmd on a single-dof structure,
the dynamic amplification has been found in [25] to be

√
(2 + µ)/µ = 6.4. Thus, the present coupled tmd is able to

simultaneously provide a level of response mitigation to two coupled modes, which is in the same order of magnitude
than that experienced for a pure single-mode problem.

For the double peaks associated with mode 1− in Fig. 14(c,e), the tmd damping coefficient c could be increased
even further to create an even more flat plateau, which would also result in a more flat plateau for the relative tmd
response in Fig. 14(d,f). However, an increase in c would conversely reduce the damping in mode 1+, whereby its
single peak would increase. For the simplified tuning with η =

√
2µ, represented by the red dashed curves in Fig. 14,

the associated tmd damper coefficient c is in fact reduced slightly compared to the full parametrization in (39) and
(40) (blue solid curves). As expected, this reduces the mode 1+ single peak, at the expense of a marginal increase in
the two mode 1− peaks. Furthermore, the simpler damper tuning η =

√
2µ results in a slight increase in the mode 1−
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Figure 16: Frequency response amplitude for beam structure (a,c,e) at zp = −a (a), 0 (c) and a
(e). The relative tmd response is correspondingly shown in (c,d,f). Damping parameter η = g

√
µ,

with g from (56) (blue solid) and g =
√
2 (red dashed).

For zp = a, the frequency response is conversely dominated by the mode 1− resonance in Fig. 16(e,f)

because its mode shape in Fig. 12(a) has a much larger deflection at z = a than the correspond-

ing mode 1+ in Fig. 12(b). The resonance exhibits a well balanced double-peak because the two

vibration forms associated with mode 1− have almost identical damping ratios: ζ = 0.0646 and

0.0627 from Table 2.

For the intermediate case with a forcing and displacement assessment at the shear center (zp = 0),

the two mode 1 in-plane vibration shapes (1− and 1+) in Fig. 12(a,b) exhibit roughly the same

transverse deflection, whereby both the mode 1− double-peak and the slightly larger mode 1+

single-peak are visible in Fig. 16(c,d) for the structure and tmd response amplitude.

At all three loading conditions (zp = −a, 0 and a) the coupled two-dof tmd seems to effectively

mitigate the vibration amplitude to a dynamic amplification factor below 10 for µ = 0.05. For a

32

Fig. 14: Frequency response amplitude for beam structure (a,c,e) at zp = −a (a), 0 (c) and a (e). The relative tmd response is
correspondingly shown in (c,d,f). Damping parameter η = g

√
µ, with damper function g from (40) (blue solid) and g =

√
2 (red

dashed).

tmd response, see Fig. 14(d,f). However, both tuning expressions for the damper parameter η seem to give fairly good
response mitigation, both for the structural deflection in Fig. 14(a,c,e), as well as for the substantially larger (relative)
tmd amplitudes in Fig. 14(b,d,f). Thus, because of its much simpler expression, the damper tuning by ηopt =

√
2µ in

(41) may be preferred in practice.

6 Conclusions

The present paper concerns the simultaneous damping of the two coupled modes for bending-torsion coupled
beam vibrations. By modal decomposition the coupled partial differential beam equations are converted into two
coupled ordinary differential equations for the transverse displacement and torsion angle, which together defines a
two-degree-of-freedom (two-dof) structure model. The hypothesis of the present paper assumes, that an analogous
two-dof tmd, with similar coupling properties, will effectively damp and mitigate the coupled bending-torsion vibrations.

Because of the analogous design of the coupled two-dof tmd, its tuning reduces to the calibration of the spring
stiffness and the dashpot viscosity. The former is obtained by requiring the undamped roots associated with vanishing
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tmd damping to be pairwise inverse values with respect to the corresponding frequencies obtained by fully locking the
tmd to the structure via infinite dashpot viscosity. It is further shown that this stiffness calibration also secures the
remaining inverse point conditions to secure two root loci with apparent bifurcation points. Unfortunately, the current
tmd configuration implies that the roots do not move along the loci at the same rate, whereby the four complex roots
do not reach the bifurcation points for the same damper value. Therefore, in future work the identical dashpots should
not be placed in perfect parallel with the springs, thereby introducing an additional design variable that will allow the
damping to be scaled in terms of different frequencies ωs− and ωs+.

The theoretical results propose a simple design procedure for coupled two-dof tmd when targetting a coupled
bending-torsion vibration mode j = s. The procedure initially chooses a common mass ratio µ, which directly
determines the stiffness ratio κ by an expression (34) similar to that for the classic single-dof tmd, and the non-
dimensional damper parameter η from either the expressions in (39) and (40), which rather accurately secure
maximum attainable damping, or by the much simpler expression in (41) that is found to provide sufficient reduction
in the frequency response amplitudes. The actual tmd parameters are subsequently obtained by m = µms, j = µ js,
k = κks and c determined from (32), relative to the modal beam properties for the target mode s.

The present vibration problem with a simply supported beam uses sinusoidal expansion functions for both
transverse and torsional components, resulting in very accurate tmd performance for the first vibration modes in terms
of root locus analysis. For other boundary conditions, for which coupling terms between modes do not necessarily
cancel due to orthogonality, the influence from other modes might be more pronounced, leading to a less effective tmd
performance than reported in the present example. Furthermore, application to more realistic cases, e.g. involving
the vibrations of complex-structured wind turbine blades, and a dedicated comparison with other vibration mitigation
measures, which has been found beyond the scope of the present paper, might further illustrate to what extend the
proposed simultaneous damping of coupled bending-torsion modes is effective.

Appendix

A Bifurcation point condition

Assume that the complex root ξ = ξ∗ = Re[ξ∗] + iIm[ξ∗] represents a bifurcation point with both non-negative real
and imaginary parts. The inverse point condition with respect to the unit semi-circle determines the other root in
the upper-right complex plane as ξ = 1/ξ̄∗, with ξ̄∗ = Re[ξ∗] − iIm[ξ∗] being the complex conjugate of ξ∗. A complex
root in the upper-right frequency-plane will have a conjugate root in the neighboring upper-left plane, whereby the
remaining two double-roots are ξ = −ξ̄∗ and ξ = −1/ξ∗. An 8th order polynomial equation, governing the desired two
double-roots and their two conjugate counterparts, can thus be constructed as(
ξ − ξ∗)2(ξ − 1/ξ̄∗)2(ξ + ξ̄∗)2(ξ + 1/ξ∗)2 = 0 (A.1)

After some use of otherwise straightforward algebra and by collecting terms as in (35), the bifurcation polynomial
(A.1) can be expressed as[(

ξ2
)4
− 4χ2

∗

(
ξ2

)3
+ 2(1 + 2χ4

∗)
(
ξ2

)2
− 4χ2

∗ξ
2 + 1

]
− ξ2∆2

∗

〈(
ξ2

)2
− 2ξ2 + 1

〉
−2i∆∗ξ

{(
ξ2

)3
− (1 + 2χ2

∗)
(
ξ2

)2
+ (1 + 2χ2

∗)ξ
2 − 1

}
= 0

(A.2)

with the governing parameters

χ2
∗ = 1 + 2

(
|ξ̃|2 − 1 + ζ2

∗

)
, ∆∗ = 4ζ∗|ξ̃| (A.3)

conveniently defined in terms of a mean absolute root

|ξ̃| = 1
2

(
|ξ∗| +

1
|ξ∗|

)
(A.4)

and the common damping ratio

ζ∗ =
Im[ξ∗]
|ξ∗|

(A.5)
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representing the dotted lines through the bifurcation points in Fig. 5.
By comparison of (35) and (A.2) it is seen that the even-power terms in the square and angle brackets both satisfy

the conditions for the existence of double bifurcation points. However, for the odd-power terms in the curly brackets,
the presence of ν2s > 1 disturbs the equivalence, implying that the roots simply do not reach the two bifurcation points
for the same value of the damping parameter η.

Only for the special case ν2s = 1 the two coinciding bifurcation points in Fig. 5(a) are reached for the same η. In this
case the mean root in (A.4) becomes |ξ̃| = 1, whereby χ2

∗ = 1 + 2ζ2
∗ and ∆∗ = 4ζ∗ follow from (A.3). Elimination of ∆∗

and χ2
∗ in (A.2), followed by comparison with (35), then directly gives η = 2

√
µ and subsequently ζ∗ = 1

2
√
µ from (A.5).

B Beam structure properties

B.1 Cross-section parameters

For the cruciform cross-sectional shape in Fig. 2(b), the area A and transverse moment of inertia I with respect to the
elastic center (centroid) C are

A
bt
= 2

(
1 +

h
b

)
,

I
b3t
=

2
3

(
h
b

)3

(B.1)

The corresponding mass moment of inertia IO (with respect to the shear center O) and its torsional stiffness component
K are found as

IO

b3t
=

2
3

(
1 +

(h
b

)3)
+ 2

(
1 −

a
b

)2

,
K
b3t
=

2
3

(
t
b

)2(
1 +

h
b

)
(B.2)

in the following with an elastic modulus ratio E/G = 2(1 + 0.3) assuming isotropic material and a Poisson’s ratio of 0.3.
The location of the centroid defines the coupling eccentricity, which for the present cruciform cross-section can be
determined as

e
b
=

1 −
a
b

1 +
h
b

(B.3)

retaining e = 0 for a = b. The cross-sectional relations in this section can also be used for the assumed cruciform tmd
shape in Fig. 8(b) by simply adding the subscript d for damper.

B.2 Model parameters

The beam is, as indicated in Fig. 8(a), simply supported in bending and with restrained torsion in both ends. Thus, the
expansion functions for mode j are identical and given by pure sines,

X j(x) = Y j(x) = sin
(

jπ
x
ℓ

)
(B.4)

The translation mass and stiffness are then determined by evaluating the integrals in (10),

m j =
1
2ρAℓ , k j =

1
2 ( jπ)4 EI

ℓ3
(B.5)

while (11) determines the spring-dashpot distance as

a j =
ℓ

jπ

√
GK
EI

(B.6)

The non-dimensional eccentricity is then determined by (12),

ε j =
e
a j

(B.7)
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whereby

e j = e (B.8)

follows from (8). Finally, the normalized torsional inertia (13) can be written as

n j =
1
2ρAℓ

(
J

Aa2
j

− ε2
j

)
(B.9)

in which the expression inside the parenthesis directly determines the inertia ratio

n j

m j
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J
Aa2

j

− ε2
j = ( jπ)2

(
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)(
Jℓ2

GK

)(
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Ae2

J

)
(B.10)

that defines the structural modal parameter ν2s in (18).

C Cruciform TMD geometry

For a tmd with cruciform cross-section and length dd, see Fig. 8, the associated geometry can be chosen to obtain
the desired inertia parameters m and J in (42), and the required eccentricity e.

For the tmd parameters (with subscript d) to satisfy the required inertia conditions in (42), the following relations
are established

ρdAddd = µms , ρdIO,ddd = µJs , ed = es (C.1)

with the last relation securing the correct tmd eccentricity. In (C.1) the cruciform area Ad is given by the same
expression (B.1a) as for the cruciform beam cross-section, while similarly IO,d is determined by (B.2a) and ed by (B.3).

The three conditions in (C.1) are interrelated and must therefore be untangled. First, an equation that governs
hd/bd is determined by eliminating (1 − ad/bd) and using es = e. This yields a cubic polynomial

1
3

(hd

bd

)3
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( e
bd
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+
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2
( e
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−
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b2
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bd
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+

1
3
+

( e
bd

)2
−

Js

b2
dms
= 0 (C.2)

that determines the flange height hd for a given width bd. The first condition in (C.1), which secures the required
translational tmd mass, then determines

(ρdtddd)bd =

1
2µms

1 +
hd

bd

(C.3)

as a single combined parameter, which gives ρdtddd for a given value of bd. Finally, the second condition in (C.1)
secures the correct placement of the cruciform intersection at ad,

ad

bd
= 1 −

√
1
2µJs

(ρdtddd)bd
−

1
3

(
1 +

(hd

bd

)3)
(C.4)

with substitution of hd/bd and (ρdtddd)bd from (C.2) and (C.3), respectively.
In Fig. 8(b) the tmd cruciform dimensions are chosen exactly as those for the beam cross-section, whereby

bd = b. Hereby, e/bd =
4
9 by (B.3) for the cross-section dimensions in Table 1, which yields hd =

1
2 b = h as the only

non-negative solution to (C.2). The resulting tmd mass parameter is then obtained from (C.3) as (ρdtddd)bd =
1

60 m1

for s = 1, which for ρdtd = ρt may determine the tmd depth-to-length ratio as half the mass ratio: dd/ℓ =
1
2µ = 0.025.

Finally, the location of the cruciform intersection ad =
1
3 bd =

1
3 b = a is found by (C.4). This shows that for bd = b,

the above expressions recover a tmd cruciform geometry that is exactly the same as the shape of the underlying
cruciform beam cross-section. For non-cruciform beam cross-sections, the equations (C.2) to (C.4) can as well be
used, together with some trial-and-error on governing bd to avoid any non-positive cruciform dimensions.
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