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Abstract
The aim of this paper is to provide an introduction to using normal form transformations for
linear and nonlinear structural dynamics examples. Starting with linear single-degree-of-freedom
systems, a series of examples are presented that eventually lead to the analysis of a system of
two coupled nonlinear oscillators. A key part of normal form transformations are the associated
coordinate transformations. This review includes topics such as Jordan normal form and modal
transformations for linear systems, while for nonlinear systems, near-identity transformations are
discussed in detail. For nonlinear oscillators, the classical methods of Poincaré and Birkhoff are
covered, alongside more recent approaches to normal form transformations. Other important topics
such as nonlinear resonance, bifurcations, frequency detuning and the inclusion of damping are
demonstrated using examples. Furthermore, the connection between normal form transformations
and Lie series is described for both first and second-order differential equations. The use of normal
form transformations to compute backbone curves is described along with an explanation of the
relationship to nonlinear normal modes. Lastly, conclusions and possible future directions for
research are given.
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1 Introduction

Structural dynamics involves modelling the time dependent behaviour of mechanical and structural systems,
using differential equations. To give this process meaning, a relevant set of coordinates needs to be defined. If
the coordinates are chosen such that the differential equation can be written in its simplest (or some other most
natural) form, then this is an example of a normal form. The process of finding a normal form is undertaken
by coordinate transformations, and hence the phrase normal form transformation is used to indicate that the
process is intended to result in a normal form for the system under consideration.

So why this might be useful for a structural dynamicist? There are two main reasons. Firstly, differential
equations can be difficult to solve (exactly or approximately, depending on the context) and transforming to a
simpler form typically makes it easier to find potential solutions. Secondly, the transformation process reveals
important information about the resonant behaviour of the system. For example, structural dynamicists have
used these type of methods extensively in modal analysis [45, 64], and more recently they have been applied to
nonlinear normal modes [172, 104, 129], and the understanding of nonlinear coupled oscillators [4, 124, 85, 183].
They are also used in nonlinear dynamics, particularly in the area of bifurcation analysis [55, 100], and more
widely in mathematics and physics [120, 22, 116]. We start by considering some simple examples.
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1.1 Motivating examples

1.1.1 Example 1: Unforced, undamped linear oscillator

A common approach in structural dynamics is to use the Newtonian framework to model structures with point
masses. In this situation the positions, velocities and accelerations of masses are the natural starting point
for defining the relevant coordinates. Consider, for example, the point mass system shown in Fig. 1 (a). The
ordinary differential equation representing the motion of this system, obtained by applying Newton’s second
law1 is given by

mẍ+ kx = 0, ; ẍ+ω
2
n x = 0, (1)

where x is the vertical displacement of the mass, m, and k is the spring constant (also called the stiffness), from
which ωn =

√
k/m is the undamped natural frequency. In Eq. (1) a dot indicates differentiation with respect to

time t such that ẍ represents acceleration of the mass. Both acceleration and displacement are assumed to
act in a single, linear, coordinate direction called a degree-of-freedom, and as there is only one, this is a single
degree-of-freedom system.

Structural dynamicists tend to refer to Eq. (1) by what it doesn’t include — the unforced, undamped, linear
oscillator, where linear in this context means the absence of nonlinear terms of the form x2,x3,xẋ,sin(x) etc. in
the equation. But how do we know if Eq. (1) is a normal form? It would seem that it is already quite ‘simple’, but
can it be simplified further?

One possibility is to reduce the order of the differentiation from second-order (meaning d2/dt2) to first-order
(meaning d/dt). To do this we define the following new coordinates x1 = x and x2 = ẋ such that we can write an
equivalent first-order matrix differential equation for Eq. (1) which is given by[

ẋ1
ẋ2

]
=

[
0 1

−ω2
n 0

][
x1
x2

]
, (2)

which can be written in matrix notation as

ẋxx = Axxx, (3)

where xxx = {x1,x2}T is referred to as the state vector. Now we have an equation that is ‘simpler’ in the sense that it
is first-order in terms of differentiation, but arguably more complicated in that A is a non-diagonal matrix, meaning
there is coupling between the equations in Eq. (3). However, if we now apply a coordinate transformation xxx → qqq
to ‘diagonalise’ A, then (assuming no other complicating terms arise in the transformation process) we would
have a system of two uncoupled equations.

This can be done by finding the eigenvalues and eigenvectors2 of A which for this example are λ1 = iωn,
λ2 =−iωn, vvv1 = {1,λ1}T , and vvv2 = {1,λ2}T respectively. These can be used to define the following matrices

Λ =

[
iωn 0
0 −iωn

]
, Φ =

[
1 1

iωn −iωn

]
, Φ

−1 =
1

−2iωn

[
−iωn −1
−iωn 1

]
. (4)

Then by making the substitution xxx = Φqqq into Eq. (3) and multiplying by Φ−1 we obtain[
q̇p
q̇m

]
=

[
iωn 0
0 −iωn

][
qp
qm

]
, or q̇qq = Λqqq where qqq =

[
qp
qm

]
. (5)

These equations in the new coordinates, qp and qm, can now be solved via direct integration with initial conditions
qp(t0) = qp0, (and similarly for qm) such that taking the first row of the first equation in Eq. (5), we can rearrange
and integrate both sides to give∫ qp

qp0

dqp

qp
= iωn

∫ t

t0
dt ; ln(qp)− ln(qp0) = iωn(t − t0) ; ln(

qp

qp0
) = iωn(t − t0), (6)

1An early classical treatment of this example can be found in the Theory of Sound by Lord Rayleigh [145, 146], which sets out a
theoretical approach to vibrations that was subsequently used as a template for many others that followed (for example; Den Hartog
[32], Timoshenko [167], Bishop and Johnson [12], Warburton [185], Newland [130], Thompson [166], Géradin and Rixen [48]), and is still
widely used today (e.g. Ewins [45], Meirovitch [115], Hagedorn and DasGupta [58], Inman [76], Rao and Yap [143], to list just a few).

2Note that the eigenvectors are not unique, and a choice needs to be made regarding the relative scaling of these vectors. The choice
used here is to scale the leading value of the vector to be one.
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so finally we can obtain

qp

qp0
= eiωn(t−t0) ; qp = eiωn(t−t0)qp0, (7)

and if t0 = 0 is assumed3 (and using a similar approach for qm) we have the solutions

qp = eiωntqp0, and qm = e−iωntqm0. (8)

These solutions can also be expressed as

qqq = eΛtqqq0, (9)

which, by direct substitution, is the solution to Eq. (5).
In general, the initial values in the qqq0 = {qp0, qm0}T vector are complex, which allows a phase lag to be

incorporated into the solution. For simplicity, consider the case where the initial velocity ẋ(0) = 0, such that
the phase lag can also be assumed to be zero, meaning that qp0 = qm0 = Q/2, where Q/2 is a real constant4.
Therefore, using the xxx = Φq relationship (and Eq. (4)) to regain the expressions in terms of x1 and x2 we find

x = x1 = Q
(eiωnt + e−iωnt)

2
= x(0)cos(ωnt), and

ẋ = x2 =−Qωn
(eiωnt − e−iωnt)

2i
=−ωnx(0)sin(ωnt),

(10)

where x(0) = x0 = Q and ẋ(0) = ẋ0 = 0. So by two steps, (i) writing the second-order system as an equivalent
first-order system, and then (ii) using an eigenvalue coordinate transformation to diagonalise the A matrix, we
have found a simplified version of the system that can be solved in a straightforward way using direct integration.
An example of this solution is shown in Fig. 1 (b).

Solutions of the type in Eq. (8) are called the base solutions, and we note that other combinations of the base
solutions, such as those in Eq. (10), are also solutions to the original equation. These type of base solutions will
play an important role later on for nonlinear oscillators that have ‘underlying’ linear oscillator(s) — meaning if the
nonlinear coefficients are all set to zero, the system reduces to a (set of) linear oscillator(s).

1.1.2 Solving the second-order equation directly

Finally for this example, we note that the same solutions can be found much more directly for the linear oscillator
using an operator representation. To see this notice that Eq. (1) can be written as

ẍ+ω
2
n x = 0 ≡

(
d
dt

− iωn

)(
d
dt

+ iωn

)
x = 0, (11)

where the terms in brackets are to be thought of as operators on x. For Eq. (11) to be satisfied we have that(
d
dt

− iωn

)
xp = 0 or

(
d
dt

+ iωn

)
xm = 0, (12)

where the subscripts p and m have been added to distinguish between the two different solutions. We have just
derived the solution to these type of scalar first order differential equations with a solution given by Eq. (8), such
that there are two solutions

xp = eiωntxp0 and xm = e−iωntxm0, (13)

assuming as before that t0 = 0. In the general case the constants xp0 and xm0 are a complex conjugate pair

xp0 =
X
2

eiφ and xm0 =
X
2

e−iφ , (14)

3Note that many texts implicitly assume that t0 = 0, but for some nonlinear and piecewise linear systems t0 must be retained through the
analysis.

4Note that we choose Q/2 rather than Q for convenience in forming the sine and cosine solutions.
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Fig. 1: (a) A schematic representation of a single degree-of-freedom point mass oscillator consisting of mass m kg and
spring constant k N/m. (b) The cosine solution formed from the projection onto the real axis of the two complex vectors of
the ‘base’ solutions. Note that in this case, the phase φ can only be 0 or nπ for n = 1,2,3... so we show the case for φ = 0.
(c) Solutions in state space (also called the phase plane for this type of system). Green arrows indicate time evolution of the
trajectories. Expressions for the phase plane solutions for this system can be obtained by taking the ratio of the two velocity
expressions in Eq. (2) to give ẋ2

ẋ1
=

dx2/dt
dx1/dt =

dx2
dx1

=
−ω2

n x1
x2

. This can be rearranged to give −ω2
n x1dx1 = x2dx2, which can then be

integrated directly and, by incorporating the 1/2 factors into the constant of integration, the following expression is obtained
−ω2

n x2
1 = x2

2 −C ; x2
2 +ω2

n x2
1 =C. This is the equation of an ellipse, which has a size which depends on the constant C, and

C in turn depends of the initial conditions, xxx0. As the constant C is arbitrary, an infinite family of periodic solutions exist which
are solutions to the differential equation. In the case where ωn = 1 the equation governing the motion in the phase plane
becomes x2

2 + x2
1 =C, and in this case instead of ellipses the orbits would be circles.

where X is a real constant representing displacement amplitude and φ represents the phase difference between
the starting point on the sine wave solution and t = 0. The base solutions in Eq. (13) can be added (also using
Eq. (14)) to give the general solution to Eq. (1) as

x = xp + xm = X
(ei(ωnt+φ)+ e−i(ωnt+φ))

2
= X cos(ωnt +φ) =C1 cos(ωnt)+C2 sin(ωnt), (15)

where C1 and C2 are constants to be determined. Now differentiating Eq. (15) and using the initial conditions,
we can obtain the values of C1 and C2 and the general solution for Eq. (1) as

x = x(0)cos(ωnt)+
ẋ(0)
ωn

sin(ωnt),

ẋ =−ωnx(0)sin(ωnt)+ ẋ(0)cos(ωnt).

(16)

In the case when ẋ(0) = 0 then this reduces to the same as Eq. (10). An example of the family of periodic orbits
that exist in the phase plane for this type of solution (with ẋ(0)=0) is shown in Fig. 1 (c).

1.1.3 Example 2: Small angle approximation for the simple pendulum

A simple example of a nonlinear oscillator is the equation of motion governing the swing of a simple pendulum,
shown in Fig. 2 (a) which has a governing equation of motion given by

θ̈ +
g
ℓ

sinθ = 0, (17)

where θ is the angle of the pendulum from the downward rest position, ℓ is the length of the pendulum and g is
gravitational acceleration. Under certain conditions it is possible to find exact solutions using elliptic functions
[132], but in many situations it is helpful to consider an approximate version of Eq. (17)5.

5In 1892 Henri Poincaré published his work relating to the three-body problem from celestial mechanics [137, 7]. In this case, the
governing differential equations were nonlinear, without any exact solution and Poincaré instead developed new ways to understand the
dynamics without exact solutions. The pioneering work started by Poincaré eventually lead to the field of nonlinear dynamics (also called
chaos theory, or dynamical systems theory), with a major early contribution from Birkhoff [11]. A short summary of the history of nonlinear
dynamics can be found in Holmes [72]. More modern comprehensive overviews of the subject can be found, for example, in; Guckenheimer
and Holmes [55], Glendinning [52], Thompson and Stewart [165], and Strogatz [162].
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Fig. 2: (a) A simple pendulum of length ℓ m and mass m kg. (b) The conservative backbone curve obtained from Eq. (26)
with parameter values ωn = 1, α = 0.25 and U ∈ [0,1]. Then when U = 0, ωr = ωn = 1, and as U increases, ωr < ωn which
corresponds to softening behaviour. (c) Showing the forced-damped envelope curve (blue solid and dashed lines) and
conservative backbone curve (red solid line) for the Duffing oscillator ẍ+2ζ ωnẋ+ω2

n x+αx3 = F cos(Ωt). Parameter values
are ζ=0.0625, ωn = 4 rads/s, α = 0.3 m−2s−2 and F = 0.016 N/kg. Note that the blue dashed line corresponds to unstable
solutions. For a detailed discussion of the relationship between conservative backbone curves and forced-damped curves,
and particularly the crossing point, see Cenedese and Haller [28, 27].

One way to simplify this equation is to consider the case when the angle of swing is small |θ | ≪ 1. Then we
can approximate sinθ as a Taylor series so that sinθ ≈ θ − θ 3

3! +
θ 5

5! + ..., and then Eq. (17) becomes6

θ̈ +ω
2
n θ −αθ

3 ≈ 0, (18)

where in this case ωn =
√

g
ℓ and α = g

6ℓ . This equation is very similar to Eq. (1), except for the addition of the

cubic nonlinear term −αθ 3. Eq. (18) is a version of the Duffing equation, named after Georg Duffing, which
under certain conditions has exact solutions via elliptic integrals (see for example Chapter 4 in Kovacic and
Brennan [96]). Despite the existence of exact solutions, the Duffing oscillator is widely used as an example for
normal form analysis and many other approximate methods (as will be the case in this paper) because it is one
of the ‘simplest’ systems to exhibit many of the key characteristics of nonlinear dynamics.

As in the previous example, it is possible to write Eq. (18) in an equivalent first-order form which can be
achieved by defining x1 = θ and x2 = θ̇ so that7

ẋ1 =
ẋ2 =

x2,
−ω2

n x1 +αx3 or ẋxx = f (xxx), with xxx =
[

x1
x2

]
, (19)

where f (·) on the right-hand side is used to denote a nonlinear function of the states, x1 and x2.
Before seeking an (approximate) solution of a nonlinear equation like Eq. (19), an obvious question is:

Is there a coordinate transformation that simplifies this equation? Ideally a coordinate transformation that
eliminates the nonlinear terms would lead to a linear equation, which can be solved exactly, just like the linear
oscillator example described above. Although it is possible to eliminate some types of nonlinear terms (see
Example 10, Section 4.1.1), for Eq. (19) eliminating the cubic nonlinear terms (as we will describe in Example
11, Section 4.2.2) is not possible. However, the question still remains, as to whether there is a simpler form of
the equation, which we call the normal form.

As we will describe in Section 4.2.2, the normal form for Eq. (19) can be obtained by first applying a
diagonalising transformation xxx → qqq (e.g. as we did above by using Eq. (4) to obtain Eq. (5)) and then a
near-identity transformation qqq → uuu up to third order (meaning including terms in the series solution up to cubic)8

6This is based on the assumption that a truncated number of terms in the Taylor series will provide a sufficiently accurate approximation
to the full solution when |θ | ≪ 1.

7If required, at this stage substituting the arc-length relationship x = ℓθ can be used to transform from angular to arc-length coordinates,
and because |θ | ≪ 1, the arc-length will be close to the tangential linear displacement. In this case all parameters except α remain the
same, and the new value is given by α = g/6ℓ3.

8Note the classical method of removing nonlinear terms order-by-order in the differential equation and/or pushing them to a higher order
can also be used and is described in Section 4.1.1.
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which gives the normal form as [80]

u̇p = iωnup −
3iα
2ωr

u2
pum,

u̇m = −iωnum +
3iα
2ωr

upu2
m,

(20)

where uuu= [up,um]
T and ωr is the nonlinear response frequency that is ‘close’ to9 the undamped natural frequency

ωn. The associated approximate solution for displacement, x, (again up to third order) is given by

x = (U +
3αU3

16ω2
r
)cos(ωrt)−

αU3

32ω2
r

cos(3ωrt)+ . . . (21)

where dots are used to indicate that there are further terms in the series solution, and U is the amplitude of the
base solutions10 in terms of up and um, namely

up =
U
2

eiωrt , and um =
U
2

e−iωrt . (22)

However, normal form transformations are not unique, and an alternative approach that avoids the use of
complex notation, as in Eq. (20), (and is therefore a type of real normal form, [104]) gives the normal form
equation for the Duffing oscillator as [128]

ü+ω
2
n u−3α(u2

pum +upu2
m) = 0, (23)

or alternatively, using the fact that u = up + um, this type of normal form can be expressed in terms of the
base-solution coordinates

üp +ω2
n up −3αu2

pum = 0,

üm +ω2
n um −3αupu2

m = 0.
(24)

In this case, the approximate solution for x is given by

x =U cos(ωrt)−
αU3

32ω2
r

cos(3ωrt)+ . . . (25)

Several observations can be made about these normal form equations and their approximate solutions:

1. We are claiming that Eq. (20), Eq. (23) and Eq. (24) are all normal form expressions for this Duffing example.
Details of the equivalence of these different normal form styles are given in Section 4.2.5. In fact, these are
different styles of normal form that arise from the different approaches taken, and choices made during the
transformation process11.

2. The concept of a normal form coordinate transformation making things ‘simpler’ in the nonlinear case is not
always very helpful. It could be argued that Eq. (20), Eq. (23) and Eq. (24) are not simpler than the starting
equations. However, as will be seen, they are more useful.

3. The approximate solutions Eq. (21) and Eq. (25) (the full derivations of which are given in Section 4.2.2 and
Section 4.2.4 respectively) are not the same. This again is a consequence of the different approaches taken.
In particular, there are free functions12 in the process that can be chosen to give different outcomes. In this
example, free function choices can be made so that Eq. (21) reduces to exactly the same as Eq. (25), if so
required (an example of this is given in Section 4.4.2).
9The expression for ωr will depend on the type of approximation (often called detuning) assumed in the normal form transformation. In

many cases ωr ≈ ωn is used in the second terms of the coefficient expressions of Eq. (20) and Eq. (21). Note also that some authors give
just one of the normal form equations in Eq. (20) with the implication that the other is the conjugate expression [124, 85]. Detuning will be
discussed further in Section 4.6.

10Note, as this is an undamped single-degree-of-freedom oscillator phase φ = 0 has been assumed in the base solutions. To keep the
formulations as simple as possible, φ = 0 will be used by default where appropriate in this paper. However cases for φ , 0 will be discussed
in Section 3 and Section 5. Note also, that for nonlinear examples, these base solutions will be used extensively in this paper, but in general
higher frequency solution terms could also be included, as is the case in the harmonic balance method.

11Here we follow Murdock [120] who defines the final appearance of the normal form the style, and the approach taken to achieve it the
format.

12This is the terminology of [85]. In general these are choices of coefficient values in order to reduce certain terms in the final expressions.
For example [85] describe some of the choices that reduce Eq. (21) to Eq. (25), and we shall discuss in more detail in Section 4.7.
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4. The normal form style based on ordinary differential equations in first-order form (i.e. Eq. (20)) is projected
into the complex domain, whereas the styles which operate on ordinary differential equations in second-order
form (i.e. Eq. (23) and Eq. (24)) remain real.

5. The formats of Eq. (20) and Eq. (24) use 2N equations to represent a system with N degrees-of-freedom.
However, the format of Eq. (23) uses N equations. This is useful when there are multiple degrees-of-freedom,
and the ‘compact’ form of Eq. (23) means that there is no increase in the number of equations13

1.1.4 Summary and overview of the methodology

Overall, it is reasonable to ask; What useful information can be obtained from the normal form?. Well, for linear
systems, coordinate transformations have been developed extensively as part of modal analysis, as will be
discussed in Section 3. For nonlinear systems there are four things that can be potentially useful in structural
dynamics:

I. Firstly, for a limited number of simple nonlinear systems we can obtain an approximate solution for x, such as
Eq. (21) and Eq. (25) 14.

II. Secondly, we obtain information on the nonlinear resonances, a topic that will be covered in more detail in
Section 4.1.2

III. Third we can get a frequency amplitude relationship(s) known as a backbone curve(s)15, which we introduce
in Section 4.8, and these are one way to analyse the nonlinear normal modes of a system.

IV. Fourth normal form transformations can be used to simplify models of important dynamic phenomena, such
as bifurcations. We will describe how this relates to the Hopf bifurcation in Section 4.9.

V. Finally, normal form transformations can be used as an integral part of other methods, notably model-order
reduction and system identification. Although these topics are not discussed in detail in this paper, they are
mentioned in Section 6.3 where we will discuss future research directions.

It should be noted that, apart from IV, all the other useful outcomes listed above can be (and usually
are) obtained using other methods. Some comments giving advantages and disadvantages of normal form
techniques compared with other methods are given in Section 6.2. We note here that normal forms are often
regarded as being algebraically intense, and some authors have developed symbolic computation methods
(particularly using Maple) in order to try and mitigate this problem [10, 190, 193, 122].

In order to obtain the useful outcomes listed in I. to V. above, we will use a two part methodology containing
the steps:

A. Use a coordinate transformation to ‘simplify’ the structure of the governing equations of motion based on a
chosen normal form style and format, and

B. Substitute an assumed solution into the normal form equations of motion to obtain some addition insights,
such as the backbone curves mentioned in III above.

It is usually the case that we do A followed by B, but in some techniques the steps can be interlinked, as we will
describe. It is also the case that the choice of the assumed solution can be significant, and so we will devote
quite a lot of space in the paper to discussing this topic.

If we consider how this applies to the pendulum example given above (Section 1.1.3), firstly a coordinate
transformation is used to obtain the normal form equations given by Eq. (24) (Step A). Then we can choose
the base solutions given in Eq. (22) as the assumed solution, and substitute into either of the normal form
expressions in Eq. (24) (Step B) to obtain

ω
2
r = ω

2
n −

3αU2

4
+ ... (26)

This gives the backbone curve relationship (which is a truncated asymptotic series) relating the amplitude of the
base solutions, U , and the response frequency ωr. An example is shown in Fig. 2 (b) for the case of softening
nonlinearity, i.e. with α negative, as in Eq. (26). One useful property of backbone curves is to represent the

13There have also been attempts to develop methods that can be used for simultaneous normal form transformation and model-order
reduction, and this topic is the subject of a recent review paper [173].

14Where this is possible for nonlinear systems will be discussed in Section 4.
15The use of the term “backbone curve" goes back at least as far as the PhD thesis of Rauscher [144]. The term “skeleton curve" is also

sometimes used to mean the same thing.
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amplitude-frequency dependence of the system, and as such are also a way visualising the nonlinear normal
modes, a topic we will discuss further in Section 5.

Another useful property of backbone curves arises from the relationship between a backbone curve and the
forced-damped response of the oscillator. An example of this is shown for a Duffing oscillator with a hardening
nonlinear term (i.e. with α positive) in Fig. 2 (c). Note that in Fig. 2 (both (b) and (c)) the backbone curves shown
are so-called conservative in the sense that they are obtained from equations of motion without damping or
forcing terms. In Fig. 2 (c) the forced-damped response is obtained by taking the maximum displacement value,
x, per forcing period, and the blue solid curves show stable solutions, whereas the blue dashed curve relate
to unstable solutions. The backbone curve in Fig. 2 (c) captures the hardening effect in the forced-damped
response, and the two curves intersect very closely to the peak of the resonance (see [27] for a discussion of
the relationship between these curves.).

The topic of backbone curves has been of great interest in the structural dynamics community in recent
years — see for example [59, 39, 70, 159] (which is just a small selection of recent papers) and references
therein. In fact, the relationship between backbone curves, and nonlinear resonances are arguably the most
important application of normal forms (and other relevant methods) for the structural dynamicist. It is worth
noting that for systems with damping, damped backbone curves have also been defined [97, 15, 5], and the
area of identifying backbone curves is another topic of great recent interest [163, 112, 148, 149, 150, 90, 50,
53, 119, 173, 101, 119].

1.1.5 Structure of this paper

It should be noted that this paper is not intended to be a comprehensive review of the topic of normal forms
— that can be found in [124, 120, 22, 116, 85], or structural dynamics, for that see the wide range of texts on
the subject, such as [145, 146, 32, 167, 12, 185, 130, 166, 48, 189, 45, 64, 115, 123, 58, 76, 143, 183, 102]
(to name just a selection) or nonlinear normal modes (the literature on this topic is already very large) see
[152, 142, 14, 175, 155, 127, 103, 172, 3, 81, 8, 136, 170, 160, 2, 18, 88, 134, 135, 99, 65, 59, 39, 70, 60, 159,
177] and references therein16. Instead, the intention is to give an introductory treatment on using normal form
transformations that relate to structural dynamics. As a result there will be selective coverage of topics that may
be of interest to structural dynamicists working on nonlinear problems where normal form techniques might be
useful. That said, the first part of the review deals with linear vibration problems. The reasons for this are (i)
to cover selected normal form topics related to linear problems, (ii) to introduce preliminary material needed
for the sections on nonlinear problems, and (iii) show a connection between the linear and nonlinear methods.
However, readers that are primarily interested in the nonlinear examples may want to skip the sections on linear
topics and go straight to the nonlinear parts.

The intended logic is to progress by starting with single degree-of-freedom linear systems then multi-degree-
of-freedom linear systems, followed by single degree-of-freedom nonlinear systems, and finally multi-degree-of-
freedom nonlinear systems17. Throughout we also make a distinction between equations of motion written in
second-order form (the classical approach for structural dynamics) and equations of motion written in first-order
form (the classical approach for mathematics and dynamical systems theory).

Because linear systems have exact solutions, they can be tackled without using transformation approaches.
Despite this, we hope to show that even if a linear system can be solved using a method exactly, without a
transformation, there are still situations where it can be advantageous to use the transformation approach. As a
result, the rest of this review paper is organised as follows. Firstly in Section 2 we examine single degree-of-
freedom linear systems, including the unforced, undamped and unforced, damped linear oscillators. This Section
starts with a review of some exact solutions methods, before considering the transformation approach. Then in
Section 3, methods relating to multi-degree-of-freedom linear systems are described, where the main focus is
on modal coordinate transformations. The topics relating to nonlinear systems start in Section 4, where near
identity transformations are introduced in Section 4.2. In this Section a comparison is given between complex
and real normal form styles. In addition, we cover topics such as derivation of the homological equations using
Lie series, Section 4.3, the Hamiltonian normal form, Section 4.4, damping in normal form transformations,
Section 4.5, frequency detuning Section 4.6, backbone curves, Section 4.8 and normal form transformations

16Note that we are also not including control related topics in this review.
17As this is a tutorial paper, we devote most space to single degree-of-freedom examples, and only show one multi-degree-of-freedom

nonlinear example. For the reader that is most interested in multi-degree-of-freedom nonlinear applications multiple references to other
sources are given.
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of bifurcation phenomena Section 4.9. Then in Section 5, normal form transformations for coupled nonlinear
oscillators are considered. Finally conclusions and future directions for research are given in Section 6.

1.1.6 Notation and terminology

In compiling this type of overview it is very difficult to maintain a consistent set of mathematical notation across
all parts of the paper. The methodology used here is to use x, xi, and x for physical displacement coordinates
(bold denoting a vector and non-bold a scalar). Then q, qi, and q for transformed coordinates of some type
when the transformation is linear. Following that u, ui, and u for transformed coordinates of some type when the
transformation is nonlinear.

However, we also need to use the state vector, xxx, which contains both displacement and velocity coordinates.
In order to try and differentiate the state vector from the displacement vector we denote it as bold and italic
xxx. This is a very subtle difference, but we hope it is sufficient to allow readers to distinguish between the two
conventions. The same convention will be applied to the transformed coordinates qqq and uuu, which are both 2N
long vectors.

Modal matrices will be applied for both the N-degree-of-freedom case and 2N-degree-of-freedom (state
space) case. The convention adopted here is to use Ψ to represent the modal matrix in the N-degree-of-freedom
case and Φ for the 2N-degree-of-freedom case. The ℓth individual modal vectors will then be given by ψℓ

and φℓ respectively. Likewise to distinguish between the (diagonal) eigenvector matrices, Λ̂ is used for the
N-degree-of-freedom case and Λ for the 2N-degree-of-freedom case. Note also that the □ symbol is used to
indicate the end point of the examples.

Finally, we will avoid the use of the term canonical in this review. This term has numerous meanings and
interpretations across science and mathematics. For example, the phrases canonical coordinates and canonical
form are used widely, but can have subtle differences in meaning depending on the exact context.

2 Single degree-of-freedom linear systems

2.1 The exponential matrix solution

In Section 1.1.1 we showed that, for the linear oscillator example, the solution to the equation in the form of
q̇qq = Λqqq, (i.e. Eq. (5)) was given by qqq = eΛtqqq0 (i.e. Eq. (9)). In fact this relationship holds for any system of this
type for which Λ is a diagonal matrix.

Furthermore, there is a more direct way of obtaining a solution which avoids the need to diagonalise the
system matrix. For linear systems of this type with non-diagonal matrices, A (as in Eq. (2)) for the linear oscillator
example), it is possible to show that the associated equation of motion, ẋxx = Axxx ( i.e. Eq. (3)) has the solution

xxx = eAtxxx0 (27)

without needing a transformation. This is because the term eAt is an exponential matrix defined by

eAt =
∞

∑
k=0

1
k!

Aktk = I +At +
1
2

A2t2 + ... (28)

Now let’s consider how this relates to the undamped linear oscillator example.

Example 3: Undamped linear oscillator example revisited

We start by considering the undamped linear oscillator defined by Eq. (1) from Section 1.1.1. To make things as
simple as possible, let us first consider the case when ωn = 1 so that

A =

[
0 1
−1 0

]
, (29)

then

eAt =

[
1 0
0 1

]
+

[
0 1
−1 0

]
t +
[

−1 0
0 −1

]
t2

2!
+

[
0 −1
1 0

]
t3

3!
+

[
1 0
0 1

]
t4

4!
+ ...
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which, becomes

eAt =

[
1− t2

2! +
t4

4! − ... t − t3

3! +
t5

5! − ...

−t + t3

3! −
t5

5! + ... 1− t2

2! +
t4

4! − ...

]
=

[
cos(t) sin(t)
−sin(t) cos(t)

]
. (30)

This then gives the solution of Eq. (2) as[
x1
x2

]
=

[
cos(t) sin(t)
−sin(t) cos(t)

][
x1(0)
x2(0)

]
;

x = x(0)cos(t)+ ẋ(0)sin(t),
ẋ =−x(0)sin(t)+ ẋ(0)cos(t), (31)

which is familiar as the solution to the undamped, unforced oscillator. □
If we set ẋ(0) = 0 in Eq. (31), we obtain the same result as derived in Section 1.1.1, Eq. (10) (remembering

that ωn = 1). Of course, this is a highly simplified example in which the series solution for eAt is straightforward
to compute. In the case of a more complicated A matrix, a more systematic approach can be applied using
the Cayley-Hamilton theorem [89]. The Cayley-Hamilton theorem can be used to show that a square matrix
satisfies its own characteristic equation. This in turn can be used to express all powers of Ak for k ≥ 2 as a linear
combination of A and I. To demonstrate this, we consider once more the undamped linear oscillator.

Example 4: Undamped linear oscillator solution using the Cayley-Hamilton theorem

Let us consider Eq. (1) but now take the case when ωn , 1 so that the A matrix becomes

A =

[
0 1

−ω2
n 0

]
. (32)

To find the characteristic equation we take |A−λ I|= 0, where λ are the eigenvalues of A, from which we find
that

λ
2 +ω

2
n = 0,

and so λ1 = iωn and λ2 =−iωn. From the Cayley-Hamilton theorem we have that

A2 +ω
2
n I = 0 ; A2 =−ω

2
n I.

Now we can use this to define the following relationships

A3 = A2A =−ω2
n IA

A4 = A3A =−ω2
n IA2 =−ω2

n I(−ω2
n I) = ω4

n I
A5 = A4A = ω4

n IA
A6 = A5A = ω4

n IA2 = ω4
n I(−ω2

n I) =−ω6
n I

...

...
A2k = (−1)kω2k

n I
A2k+1 = (−1)kω2k

n A

Then taking the series solution for eAt and separating odd and even powers gives

eAt =
∞

∑
k=0

Aktk

k!
=

∞

∑
k=0

A2kt2k

2k!
+

∞

∑
k=0

A2k+1t2k+1

(2k+1)!
,

= I
∞

∑
k=0

(−1)kω2k
n t2k

2k!
+A

∞

∑
k=0

(−1)kω2k
n t2k+1

(2k+1)!
,

= cos(ωnt)I +
1

ωn
sin(ωnt)A.

(33)

From this the solution to the governing equation can be expressed as[
x1
x2

]
=

[
cos(ωnt) 1

ωn
sin(ωnt)

−ωnsin(ωnt) cos(ωnt)

][
x1(0)
x2(0)

]
, (34)
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where x1(0) = x(0) and x2(0) = ẋ(0). □
However, it is worth noting that there is a more efficient way to find this result. This is achieved by using the

fact that the Cayley-Hamilton theorem also implies18 that if λ is an eigenvalue of A then

eλ t = α(t)λ t +β (t) ⇔ eAt = α(t)At +β (t)I, (35)

where α(t) and β (t) are time dependent coefficients to be determined. In this example A has two eigenvalues
which gives two simultaneous equations

eiωnt = α(t)iωnt +β (t),
e−iωnt =−α(t)iωnt +β (t),

(36)

from which we can find directly that

α(t) =
eiωnt − e−iωnt

2iωnt
=

1
ωnt

sin(ωnt),

β (t) =
eiωnt + e−iωnt

2
= cos(ωnt),

(37)

and so

eAt = α(t)At +β (t)I =
1

ωn
sin(ωnt)A+ cos(ωnt)I, (38)

which is exactly the same as Eq. (33).
We now consider the case when viscous damping is included.

Example 5: Damped, unforced linear oscillator

Now we will consider a damped, unforced linear oscillator given by

ẍ+2ζ ωnẋ+ω
2
n x = 0, (39)

where ζ = c
2mωn

is the damping ratio, c is the viscous damping coefficient (kg/s) and ωn is the natural frequency
as previously defined19. As before we define the state vector xxx = {x1,x2}T , where x1 = x is the displacement and
x2 = ẋ is the velocity. Using these definitions notice that ẋ1 = x2 = ẋ, and ẋ2 = ẍ which enables the system to be
written in first-order form

ẋ1 = x2
ẋ2 =−2ζ ωnx2 −ω2

n x1,
or

[
ẋ1
ẋ2

]
=

[
0 1

−ω2
n −2ζ ωn

][
x1
x2

]
,

which can be written in matrix form as Eq. (3), with solution given by Eq. (27). However, in this case the A matrix
is more complicated, as it is given by

A =

[
0 1

−ω2
n −2ζ ωn

]
. (40)

However, we can still apply the Cayley-Hamilton theory to this example without too much difficulty using
Eq. (35). In this case the eigenvalues are complex conjugate λ1,2 =−ζ ωn ± iωn

√
1−ζ 2 =−ζ ωn ± iωd , where

we are always assuming the underdamped case20, where ζ < 1. Using Eq. (35) we obtain

eλ1t = α(t)λ1t +β (t),
eλ2t = α(t)λ2t +β (t),

(41)

18This is because if the characteristic polynomial is p(λ ) = det(A−λ I) = 0, then the C-H theorem states that p(A) = 0. So an analytic
function represented as a series expansion f (λ ) = ∑

∞
k=0 βkλ k can be re-expressed as f (λ ) = q(λ )p(λ )+ r(λ ), where r(λ ) is a residual

polynomial of degree N −1, and q(λ )p(λ ) represents the rest of the terms in the series. Because p(λ ) = 0 this reduces to f (λ ) = r(λ ). In
this example f (λ t) = r(λ t) = α(t)λ t +β (t).

19This can also be derived by starting with the equation of motion in the form mẍ+ cẋ+ kx = 0 and dividing through by m.
20This is because we are interested in oscillations.
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from which we can find directly that

α(t) =
eλ1t − eλ2t

2iωdt
=

1
ωdt

e−ζ ωnt sin(ωdt),

β (t) =
eλ1t + eλ2t +α2ζ ωnt

2
= e−ζ ωnt(cos(ωdt)+

ζ ωn

ωd
sin(ωdt)),

(42)

and so

eAt = α(t)At +β (t)I = e−ζ ωnt 1
ωd

sin(ωdt)A+ e−ζ ωnt(cos(ωdt)+
ζ ωn

ωd
sin(ωdt))I,

= e−ζ ωnt

[
cos(ωdt)+ ζ ωn

ωd
sin(ωdt) 1

ωd
sin(ωdt)

−ω2
n

ωd
sin(ωdt) cos(ωdt)+ −ζ ωn

ωd
sin(ωdt)

]
(43)

which when substituted into Eq. (27) gives the well known transient solution to the unforced, damped linear
oscillator. □

Note that for complex eigenvalues λ1,2 = a± ib, Eq. (43) can be written more compactly as

eAt = eat
(

sin(bt)
b

(A−aI)+ cos(bt)I
)
,

which is known as Putzer’s spectral formula [140].
An alternative approach to dealing with the A matrix in the damped oscillator, Eq. (40) is to split21 it into two

giving

A =

[
0 1

−ω2
n −2ζ ωn

]
=

[
0 1

−ω2
n 0

]
+

[
0 0
0 −2ζ ωn

]
, (44)

which we will write as A =W +D. We might then hope to use the fact that

eAt = e(W+D)t = eWteDt , (45)

as we have already found an expression for eWt and eDt has a simple diagonal form. Unfortunately, this is only
possible if WD−DW = 0. This is usually referred to as the commutator operation defined (for matrices) as

[W,D] =WD−DW, (46)

and if [W,D] = 0 then W and D are said to commute. It is left for the reader to convince themselves that for this
example [W,D] , 0 and therefore W and D do not commute.

However there is a solution in the case when W and D do not commute, which is provided by the Zassenhaus
formula that is derived from the Baker–Campbell–Hausdorff formula [113, 25]

eAt = e(W+D)t = eWteDte
−t2

2 [W,D]e
t3
6 (2[W,[W,D]]+[D,[W,D]])... (47)

which is an infinite product of successive exponential terms with repeated commutator brackets. It should be
clear that when [W,D] = 0 and all higher order brackets are also zero, then Eq. (47) reduces to Eq. (45).

Note that up until now we have not transformed A in order to find eAt . Of course if A is diagonal, then it is
very easy to find eAt because if

A =

[
a11 0
0 a22

]
, then Ak =

[
ak

11 0
0 ak

22

]
, and eA =

[
ea11 0

0 ea22

]
. (48)

So an often used approach in structural dynamics analysis is to try and diagonalise A, just as we did in both the
motivating examples in Section 1.1. Notice that the approach to diagonalise A in Section 1.1 led to complex
diagonal matrices. This is natural for oscillatory solutions, but also somewhat more difficult to deal with than real
matrices. As a result an alternative for oscillatory solutions that retains a real matrix structure is to use Jordan
normal form, which will be considered next.

21We use the term “splitting" some what loosely here, a more formal discussion of splitting methods can be found in [120].
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2.2 Jordan normal form

For linear systems of the type defined by ẋxx = Axxx ( i.e. Eq. (3)), a common method used to simplify the system is
Jordan normal form22. Depending on the problem at hand, the simplified matrix will be either diagonal, upper
triangular, or real. In the analysis of structural dynamics systems we are typically only interested in vibrations
(i.e. underdamped systems) where the eigenvalues of A will be complex λ1,2 = a± ib, and therefore we only
consider this case. We have already seen examples of the diagonal form with complex eigenvalues, e.g. in
Example 1 Section 1.1.1, and so we will not consider that case again here. Instead we consider the other
Jordan normal form that is relevant to underdamped linear systems with complex eigenvalues23.

Firstly, we assume that there is a transformation matrix, P, where xxx = Pyyy such that

ẏyy = P−1ẋxx = P−1Ax = P−1APyyy (49)

and it can be shown, [52], that if λ1,2 = a± ib we can find P such that

P−1AP =

[
a −b
b a

]
= B, (50)

such that

ẏyy = Byyy (51)

is the final transformed equation. Notice that B is not diagonal, but it is a real matrix.
This form allows us to avoid complex matrices, which would be the result if we transformed A to a diagonal

eigenvalue matrix (as we did in Section 1.1.1). Notice that we can split B to give

B =

[
0 −b
b 0

]
+

[
a 0
0 a

]
, (52)

or as we used before B =W +D. Checking that [W,D] = 0 in this case, we see that D can be exponentiated
using Eq. (48) and eW can be found in the same way as for Eq. (32), which leads to

eBt = eWteDt =

[
cos(bt) −sin(bt)
sin(bt) cos(bt)

][
eat 0
0 eat

]
= eat

[
cos(bt) −sin(bt)
sin(bt) cos(bt)

]
. (53)

We note that the solution to the transformed equation is yyy = eBtyyy0, where yyy0 = P−1xxx0. Because xxx = Pyyy then
xxx = PeBtyyy0 = PeBtP−1xxx0 with the result that by comparison with Eq. (27) we see that

eAt = PeBtP−1. (54)

But what should we choose as P? Well we know that P−1AP = B so that means that AP = PB and we can
also exploit the fact that for a complex eigenvalue a+ ib there is a corresponding complex eigenvector vvv such
that Avvv = (a+ ib)vvv and because A is real ARe(vvv) = Re((a+ ib)vvv) and AIm(vvv) = Im((a+ ib)vvv). So if we take
P = [Im(vvv),Re(vvv)] then we have

A[Im(vvv),Re(vvv)] = [Im((a+ ib)vvv),Re((a+ ib)vvv)],

= [aIm(vvv)+bRe(vvv),aRe(vvv)−bIm(vvv)],

= [Im(vvv),Re(vvv)]
[

a −b
b a

]
= PB.

(55)

Now we consider how this analysis can be applied to the damped linear oscillator example.

22Here we follow the approach taken by [52], but only discuss oscillatory systems that have complex eigenvalues.
23Throughout this paper we primarily use the diagonal case with complex eigenvalues. An example of the real Jordan normal form

is shown in Section 4.9.1. For those interested in other Jordan normal forms applied in the nonlinear case, discussions can be found in
[16, 120, 124, 85].
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Example 6: Damped, unforced linear oscillator revisited

In the example of the damped linear oscillator we know that the eigenvalues are λ1,2 = −ζ ωn ± iωd , where
ωd = ωn

√
1−ζ 2 is the damped natural frequency. Therefore we have that a =−ζ ωn and b = ωd . We also know

that the eigenvectors are given by vvv1 = {1,λ1}T , and vvv2 = {1,λ2}T . The analysis above corresponds to a choice
for P based on vvv1, and so

P = [Im(vvv1),Re(vvv1)] =

[
0 1
b a

]
=

[
0 1

ωd −ζ ωn

]
and P−1 =

[
ζ ωn
ωd

1
ωd

1 0

]
. (56)

Next we can write down the B matrix

B = P−1AP =

[
−ζ ωn −ωd

ωd −ζ ωn

]
. (57)

Now from Eq. (53) we have

eBt = e−ζ ωnt
[

cos(ωdt) −sin(ωdt)
sin(ωdt) cos(ωdt)

]
. (58)

Finally substituting Eq. (56) and Eq. (58) into Eq. (54) gives exactly the same solution as we derived using the
Cayley-Hamilton methods, namely Eq. (43). □

2.3 The method of “reduction of order”

At the end of the first motivating example of Section 1.1 we showed a method of solving the undamped, unforced
linear oscillator equation (ẍ+ω2

n x = 0 i.e. Eq. (1)) directly using the idea of an operator formulation. Now we
show how that can be combined with another normal form technique called the method of reduction of order24.
To do this we revisit the damped linear oscillator again

Example 7: Damped, unforced linear oscillator revisited again

In this method we apply a transformation where x = q(t)e−ζ ωnt . This leads to the relationships

x = q(t)e−ζ ωnt ,

ẋ = q̇e−ζ ωnt −ζ ωnqe−ζ ωnt ,

ẍ = q̈e−ζ ωnt −2ζ ωnq̇e−ζ ωnt +ζ 2ω2
n qe−ζ ωnt .

(59)

Substituting Eq. (59) into the equation of motion for the damped linear oscillator (Eq. (39)) gives the following
outcome.

Start with Eq. (39): ẍ+2ζ ωnẋ+ω2
n x = 0, substituting Eq. (59) ;

q̈e−ζ ωnt −2ζ ωnq̇e−ζ ωnt +ζ 2ω2
n qe−ζ ωnt +2ζ ωn(q̇e−ζ ωnt −ζ ωnqe−ζ ωnt)+ω2

n q(t)e−ζ ωnt = 0,;
q̈e−ζ ωnt +q(ζ 2ω2

n −2ζ 2ω2
n +ω2

n )e
−ζ ωnt = 0,;

q̈+ω2
d q = 0,

(60)

where ωd = ωn
√

1−ζ 2 is the damped natural frequency. So now we see that the last equation in Eq. (60) is the
transformed version of Eq. (39) and appears to be an “undamped” linear oscillator, but with a damped natural
frequency, ωd .

Now applying the operator method from Section 1.1.2 to q̈+ω2
d q = 0, we can obtain a solution for q(t) as

q(t) = q(0)cos(ωdt)+
q̇(0)
ωd

sin(ωdt), (61)

24There is potential for confusion with the idea of reducing the order from d2/dt2 terms to d/dt terms. In fact, the method in the form
presented here can be interpreted as a variation on the WKB (Wentzel, Kramers & Brillouin — see for example [89, 9]) method, and is
sometimes just called the “normal form" for example [161].
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and so the complete solution, x = q(t)e−ζ ωnt is given by

x(t) = e−ζ ωnt(q(0)cos(ωdt)+
q̇(0)
ωd

sin(ωdt)),;

x(t) = e−ζ ωnt(x(0)cos(ωdt)+
ẋ(0)+ζ ωnx(0)

ωd
sin(ωdt)),

(62)

once the initial conditions are taken into consideration (i.e. by using the first equation in Eq. (62) and its derivative
with t = 0). □

This method gives a solution that is equivalent to the previous solutions for the damped, linear oscillator, but
may not be particularly familiar to many structural dynamicists. It is notably shorter and more direct than the
previous methods for this example.

2.4 Summary

The exponential matrix solution provides a direct way to develop solutions for linear single-degree-of-freedom
oscillators, as described in Section 2.1. Alternatives, such as the Jordan normal form, can be used to obtain
oscillatory solutions whilst maintaining real matrix expressions. A key part of this later method (and also required
for some of the other methods discussed) is the computation of eigenvalues and eigenvectors. As is well known
in structural dynamics, these can be related to resonant frequencies and mode shapes, and they form a key
part of the discussion as we move on to talk about multi-degree-of-freedom linear systems.

3 Multi-degree-of-freedom linear systems

One of the most important topics in structural dynamics is the analysis of linear multi-degree-of-freedom systems.
For a vector of discrete displacement coordinates, x = [x1,x2,x3, ....xN ]

T the equation of motion governing the
(linear) dynamic behaviour is commonly written as

Mẍ+Cẋ+Kx = Fe, (63)

where Fe is the external forcing vector. Note that x is not the state vector25. The matrices M,C and K represent
the mass, damping and stiffness properties of the structure respectively26.

The matrices M,C and K are not usually diagonal27, so the equations are coupled, and as a result it is useful
to see if the system of equations can be simplified by applying a coordinate transformation. This transformation
is called by several names, often a modal transformation, to signify the role that the mode shapes play28.
The aim of the modal transformation is (if possible) to simultaneously diagonalise M,C and K resulting in N
uncoupled second-order differential equations. All though it is not normally discussed in terms of normal form
transformations, the modal transformation is a way of using a coordinate transformation to simplify the governing
equations, and therefore fits exactly our definition of a normal form, assuming that we arrive at a system that
can be considered to be in it’s “simplest” or normal form.

As we noted in Section 1.1.3, coordinate transformations can be carried out with the governing differential
equations in either second-order form or in first-order form. We will consider both cases.

3.1 The modal transformation for multi-degree-of-freedom linear systems

First consider the case when the governing differential equations are in second-order form (i.e. containing d2/dt2

terms).

25The state vector is bold and italic.
26There are a large number of texts that deal with these type of linear vibration problems, see for example [115, 76]
27In the analysis of vibration problems there are many specific structures of these matrices that arise, e.g., for gyroscopic systems, for

which the total stiffness matrix is not symmetric but is a sum of symmetric and skew-symmetric matrices. See for example, [45]. In this
paper we will consider only simple examples where the mass matrix is diagonal.

28For a detailed description of mode shapes and related topics the interested reader is referred to specialist books on this, such as
[45, 64].
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3.1.1 The undamped, unforced case

As we are only interested in lightly damped systems it is useful to consider the case of the undamped, unforced
system, first. When C = 0 and Fe = 0, the governing equation becomes

Mẍ+Kx = 0 ; ẍ+M−1Kx = 0, (64)

which can be treated as a linear matrix eigenvalue problem with an assumed solution of x = ψ jeiωn jt where ψ j is
the eigenvector (related to the mode-shape) and ωn j is the natural frequency (related to the eigenvalue) of the
jth mode for the undamped, unforced system29.

Substituting the assumed solution into Eq. (64) leads to

ω
2
n jψ j = M−1Kψ j, (65)

where ψ j is the jth eigenvector and ω2
n j the corresponding jth eigenvalue of M−1K. These eigenvectors and

eigenvalues can be used to derive a coordinate transformation that replaces M and K with diagonal matrices.
To do this, premultiplying by M and the ℓth mode-shape, Eq. (65) can be rewritten as

ω
2
n jψ

T
ℓ Mψ j = ψ

T
ℓ Kψ j or the equivalent expression ω

2
nℓψ

T
j Mψℓ = ψ

T
j Kψℓ. (66)

Taking the transpose of this last equation and assuming that M and K are symmetric (such that MT = M and
KT = K) allows this expression to be rewritten in the following steps

ω
2
nℓψ

T
j MT

ψℓ = ψ
T
j KT

ψℓ, ; ω
2
nℓψ

T
ℓ (ψ

T
j MT )T = ψ

T
ℓ (ψ jKT )T , ; ω

2
nℓψ

T
ℓ Mψ j = ψ

T
ℓ Kψ j, (67)

by using the fact that Mψ j = (ψT
j MT )T . Now subtracting the last of Eq. (67) from the first of Eq. (66) gives

(ω2
n j −ω

2
nℓ)ψ

T
ℓ Mψ j = ψ

T
ℓ Kψ j −ψ

T
ℓ Kψ j = 0. (68)

From this it can be seen that the system has the property of orthogonality, meaning that when ω2
n j , ω2

nℓ, then
ψT
ℓ Mψ j = 0 for ℓ , j must be true for Eq. (68) to hold.

This property is crucial to modal analysis for linear systems. It means that if we form a modal matrix
Ψ = [ψ1,ψ2, ....ψN ], then substituting x = Ψq into Eq. (64) and pre-multiplying by ΨT leads to a transformed set
of decoupled governing equations given by

Ψ
T

Ψq̈+Ψ
T M−1KΨq = 0 ; Iq̈+ Λ̂q = 0 (69)

where the diagonal matrix, Λ̂ contains the system eigenvalues, given by

Λ̂ =


ω2

n1 0 ... 0 0
0 ω2

n2 ... 0 0
...

...
...

. . . 0
0 0 ... 0 ω2

nN

 , (70)

where ωn j for j = 1,2,3...,N are the natural frequencies of the system, and ΨT Ψ = I because Ψ is an orthogonal
matrix. Note that the eigenvectors, ψ j are not unique, and can be scaled — see for example the discussion in
[13, 45]. For the purposes of our analysis, the scaling chosen must be such that ΨT M−1KΨ gives the result in
Eq. (70).

3.1.2 Example 8: Modal transformation of an unforced, undamped three degree-of-freedom linear
system

Consider the three degree-of-freedom oscillator shown in Fig. 3 (a) (with dampers cℓ = 0) for the case where the
springs and masses are equal kℓ = k and mℓ = m for ℓ= 1,2,3,4.

29Although in general both the eigenvalues and eigenvectors can be complex, in classical vibration theory, the nature of the underlying
assumptions leads to real eigenvectors, which is why they are directly relatable to the mode-shapes of the system under consideration. If
the eigenvectors are not real, then the system is said to have “complex modes".
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The equation of motion of the system is given by

Mẍ+Kx = 0, where M =

 m 0 0
0 m 0
0 0 m

= mI, K =

 2k −k 0
−k 2k −k
0 −k 2k

= k

 2 −1 0
−1 2 −1
0 −1 2

 ,
where I is a 3×3 identity matrix. The eigenvalues and eigenvectors of M−1K can be computed either numerically
or by solving the characteristic equation. First we note that

M−1K =
k
m

 2 −1 0
−1 2 −1
0 −1 2

; Λ̂ =
k
m

 2−
√

2 0 0
0 2 0
0 0 2+

√
2

 , and Ψ =


1
2 − 1√

2
− 1

2
1√
2

0 1√
2

1
2

1√
2

− 1
2

 , (71)

for given values of m and k, where Λ̂ is the matrix of eigenvalues and Ψ = [ν1,ν2,ν1] is the matrix of eigenvectors,
ν j for j = 1,2,3.30.

Making the transformation x = Ψq decouples the system into

q̈+ Λ̂q = 0 ;

q̈1 +ω2
n1q1 = 0,

q̈2 +ω2
n2q2 = 0,

q̈3 +ω2
n3q2 = 0,

(72)

where ωn1 =
√

(k/m)(2−
√

2), ωn2 =
√
(2k/m), and ωn3 =

√
(k/m)(2+

√
2) are the natural frequencies of the

system from Λ̂. Each of these expressions can be solved exactly using (for example) Eq. (10). So, assuming
the initial conditions are x = [1mm, 0, 1mm]T and ẋ = [0, 0, 0]T using q = Ψ−1x gives q1(0) = 1, q2(0) = 0 and
q3(0) =−1 and q̇1(0) = q̇2(0) = q̇3(0) = 0. This leads to

q1 = q1(0)cos(ωn1t)
q2 = q2(0)cos(ωn2t)
q3 = q3(0)cos(ωn3t)

then using x = Ψq ;

x1 =
1
2 cos(ωn1t)+ 1

2 cos(ωn3t),
x2 =

1√
2

cos(ωn1t)− 1√
2

cos(ωn3t),
x3 =

1
2 cos(ωn1t)+ 1

2 cos(ωn3t).
□

A similar approach can be applied to the case when damping is included (e.g. from Eq. (63) use Mẍ+Cẋ+
Kx = 0). Here a simultaneous diagonalisation of the three matrices M,C and K is required, which puts addition
restrictions onto the structure of the matrices, which is usually satisfied in a structural dynamics context by using
Rayleigh damping so that C = αM+βK is assumed31. In this case, the concept of lambda matrices also applies
[105]. We now consider an alternative state space approach where damping is included.

3.2 State Space Form for Discrete Linear Systems

Now consider the case where the discrete system is written in first-order form. In this case, Eq. (63) (with Fe = 0)
may be written in terms of the state vector xxx = [xT , ẋT ]T as32

ẋxx = Axxx+
[

0N

M−1Fe

]
, A =

[
0NN I

−M−1K −M−1C

]
, (73)

where 0NN is an N ×N matrix of zeros, 0N is a N ×1 zero vector and I is an N ×N identity matrix where N is the
number of degrees-of-freedom. A coordinate transform for xxx is now required such that A can be replaced by a
diagonal matrix such that the states become decoupled33. As was done in Section 3.1, we consider using the
eigenvectors of A to create such a transformation.

30Note that the eigenvectors can be scaled. Here, for simplicity, they are left unscaled. For a discussion on this type of scaling, such as
mass normalised modes, see [51, 45].

31In fact, there is a more general concept called extended Rayleigh damping in which this is just the first term of a series expansion [30].
There is also the related classical approach of Caughey and O’Kelly [26]. In addition, the whole subject of damping in structural dynamics is
a large one, including many other types of damping models, see for example [106, 121, 82, 1].

32There are alternative formulations of first-order state space that are used for nonlinear normal form transformation as described by
Jain and Haller [79].

33There are situations where Jordan normal form is preferable to diagonal matrices, but these are not considered here.
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Fig. 3: (a) A three degree-of-freedom point mass oscillator consisting of masses mℓ, dampers cℓ and springs kℓ. (Note that
the rollers are assumed to be frictionless). (b) The exact solutions for the damped state space example (Section 3.2.1) given
by equation Eq. (78). Parameter values mℓ = 1.0 kg, dampers cℓ = 1.0 kg/s and springs kℓ = 10 N/m. The initial conditions
are given by xxx = [1mm, 0, 1mm, 0, 0, 0]T . Note that the response of masses 1 and 3 are identical.

Using an assumed solution of xxx = φℓeλℓt where φℓ is the eigenvector and λℓ is the associated eigenvalue, the
damped, unforced (2N state space) system may be written as34

λℓφℓ = Aφℓ. (74)

Using this expression, a modal matrix, Φ, can be defined in which φℓ forms the ℓth column. The corresponding
diagonal eigenvalue matrix is Λ where the ℓth diagonal value is λℓ. Assuming that the eigenvectors are orthogonal,
this allows the matrix relationship of Eq. (74) to be written as

ΦΛ = AΦ ; Λ = Φ
T AΦ. (75)

Now applying the coordinate transformation xxx = Φqqq to the unforced version of Eq. (73) gives

Φq̇qq = AΦqqq,

which when multiplied by ΦT combined with Eq. (75)) and the fact that ΦT Φ = I (assuming orthogonal eigenvec-
tors) gives

q̇qq = Λqqq ; qqq = eΛtqqq0. (76)

Because Λ is a diagonal matrix, the system is now decoupled with respect to the states (which include the
displacements and velocities). Notice that damping is still included in the matrix, A, which will lead to complex
eigenvalues and eigenvectors for underdamped vibrations35. An example is considered next.

3.2.1 Example 9: State space eigenvector transformation of an unforced, damped three degree-of-
freedom linear system

We now consider the same example as in Section 3.1.2, the three degree-of-freedom oscillator shown in Fig. 3
(a), but with viscous damping now included. It is assumed that the springs, dampers and masses are equal
kℓ = k, cℓ = c and mℓ = m for ℓ= 1,2,3,4, and that the damping is proportional to the stiffness via C = 0.1K. This
leads to an unforced state space equation of motion of

ẋxx = Axxx, A =
k
m


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
2 −1 0 0.2 −0.1 0
−1 2 −1 −0.1 0.2 −0.1
0 −1 2 0 −0.1 0.2

 ,
34We note that it is also possible to extend methods developed in Section 2 to solve this problem.
35Note this should not be confused with complex modes which arise for systems with non-proportional damping. See, [45] for a more

detailed discussion.
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where xxx = [xT , ẋT ]T . The state space formulation is decoupled using the eigenvalues and eigenvectors of A
which are typically computed using numerical methods, and leads to expressions of the form

ΦΛ = AΦ, Φ =

 ν1 ν1 ν2 ν2 ν3 ν3

λ1ν1 λ 1ν1 λ2ν2 λ 2ν2 λ3ν3 λ 3ν3

 , Λ =



λ1 0 0 0 0 0
0 λ 1 0 0 0 0
0 0 λ2 0 0 0
0 0 0 λ 2 0 0
0 0 0 0 λ3 0
0 0 0 0 0 λ 3

 , (77)

where the eigenvalues λℓ appear in complex conjugate pairs and the eigenvectors are related to those from
Section 3.1.2, namely ν j for j = 1,2,3. from Eq. (71). Each of the λℓ eigenvalues and the conjugate can be
expressed as

λℓ =−ζℓωnℓ+ iωdℓ

λ ℓ =−ζℓωnℓ− iωdℓ

where ζℓ is the ℓth modal damping ratio, and ωdℓ is the associated damped modal frequency36. For example,
the eigenvalues and eigenvectors obtained when k/m = 10 are listed in Table 137.

Applying the transformation xxx = Φqqq (where qqq is a 4× 1 vector) results in the decoupled equation q̇qq = Λqqq
using Eq. (76). The initial conditions are xxx = [1mm, 0, 1mm, 0, 0, 0]T which can be transformed into the modal
coordinates using qqq = Φ−1xxx resulting in

qqq(0) =


0.5001− i0.0610
0.5001+ i0.0610
0.0000− i0.0000
0.0000+ i0.0000

−0.5005+ i0.1529
−0.5005− i0.1529

=



Q1
2 eiϕ1

Q1
2 e−iϕ1

0
0
Q3
2 eiϕ3

Q3
2 e−iϕ3

 ,

where Q1 = 1.0076, Q3 = 1.0468, ϕ1 =−0.1213 and ϕ3 = 2.8451. Now using Eq. (76) with the initial conditions
gives

q1 = q1(0)eλ1t = Q1
2 eiϕ1eλ1t = Q1

2 e−ζ1ωn1tei(ωd1+ϕ1),

q2 = q2(0)eλ 1t = Q1
2 e−iϕ1eλ t = Q1

2 e−ζ1ωn1te−i(ωd1+ϕ1),

q3 = q3(0)eλ2t = 0,
q4 = q4(0)eλ 2t = 0,
q5 = q5(0)eλ3t = Q3

2 eiϕ3eλ3t = Q3e−ζ3ωn3tei(ωd3+ϕ3),

q6 = q6(0)eλ 3t = Q3
2 eiϕ1eλ 3t = Q3e−ζ3ωn3te−i(ωd3+ϕ3).

Then using the modal matrix relationship xxx = Φqqq gives the displacements as

x1 = ν11Q1e−ζ1ωn1t cos(ωd1t +ϕ1)+ν31Q3e−ζ3ωn3t cos(ωd3t +ϕ3),

x2 = ν12Q1e−ζ1ωn1t cos(ωd1t +ϕ1)+ν32Q3e−ζ3ωn3t cos(ωd3t +ϕ3),

x3 = ν13Q1e−ζ1ωn1t cos(ωd1t +ϕ1)+ν33Q3e−ζ3ωn3t cos(ωd3t +ϕ3).

□ (78)

36Note that these expressions can be used to show that ζℓ = 1/((Reλℓ/ Imλℓ)
2 +1).

37Note that most numerical routines do not automatically return the eigenvalues or eigenvectors in the format of Eq. (77). The ordering
convention is that the eigenvalues are sorted based on the ωdℓ values with the smallest first. The eigenvectors are ordered accordingly, but
also typically need scaling to obtain the format of Eq. (77). Each eigenvector needs to be scaled by the appropriate complex and/or real
constant(s) in order to achieve this.
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ℓ λℓ ν1ℓ ν2ℓ ν3ℓ
1 −0.293+ i2.403 0.4999+ i0.0000 −0.7070+ i0.0000 −0.4995+ i0.0000
2 −1.000+ i4.359 0.7070+ i0.0000 0.0000+ i0.0000 0.7064− i0.0000
3 −1.707+ i5.588 0.4999+ i0.0000 0.7070− i0.0000 −0.4995+ i0.0000
4 −0.1464+ i1.2011 0.7070− i3.0819 0.8527− i2.7912
5 −0.2071+ i1.6986 −0.0000+ i0.0000 −1.2058+ i3.9473
6 −0.1464+ i1.2011 −0.7070+ i3.0819 0.8527− i2.7912

Table 1: Eigenvalues and eigenvectors for damped state space example with k/m = 10, and C = 0.1K.

An example set of simulation results are shown in Fig. 3 (b). Here the exponential decay of the damped,
unforced solutions can be seen for the displacements of the three masses.

3.3 Summary

Examples 8 and 9 show several important (and well known) features that are worth commenting on:

1. Both transformations have reduced the equations of motion to a series of uncoupled linear oscillators for
which the exact solutions were derived in Section 1.1.1 and Section 2.

2. The exact modal solutions found in q coordinates can be transformed into x coordinates using x = Ψq
or xxx = Φqqq, such that the x displacements can be found as the sum of the modal contributions, which is
sometimes referred to as superposition of solutions.

3. The modal matrix is independent of time, and so it is straightforward to find the inverse relationship q = Ψ−1x
or qqq = Φ−1xxx when required (or if the eigenvectors are orthogonal q = ΨT x or qqq = ΦT xxx). For example, if initial
conditions are given in terms of the x need to be transformed into the modal domain.

Although these are well known results, they will be helpful in formulating an approach to nonlinear coordinate
transformations in Section 4.

4 Normal form transformations of nonlinear systems

4.1 Introduction

The ultimate aim of this paper is to use normal form transformations to help understand the dynamics of
multi-degree-of-freedom nonlinear oscillators38 defined by

Mẍ+Cẋ+Kx+N (x, ẋ) = 0, (79)

where M, C and K are mass, damping and stiffness matrices and the nonlinear terms N are assumed (in
general) to be a function of the displacement and velocity vectors. Using the linear modes x = Ψq, as defined in
Section 3.1, a modal transformation can be applied to this expression which leads to

q̈+Dq̇+ Λ̂q+Nq(q, q̇) = 0, (80)

where Nq(q, q̇) = ΨT N (Ψq, Ψq̇) and D = αI +β Λ̂ is the diagonal proportional damping matrix (see Section 3).
Eq. (79) can also be written as an equivalent state space system of first-order differential equations

ẋxx = Axxx+ ˜N (xxx)+FFF ,

where

A =

[
0 I

−M−1K −M−1C

]
, ˜N =

{
0

−M−1N (xxx)

}
,

38Note also that we do not consider normal form transformations of forced nonlinear systems in this paper. For an introduction to that
topic see [85, 128].
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where ˜N (xxx) is obtained from N (x, ẋ) via the relationship xxx = [x, ẋ]T . Now transforming the state space equation
using the linear modal transformation xxx = Φqqq (as defined in Section 3.2) leads to

q̇qq = Λqqq+NNN(qqq), (81)

where NNN(qqq) = Φ−1 ˜N (Φqqq).
In this Section we will introduce a general approach to multi-degree-of-freedom nonlinear oscillators, but

we will limit the examples to just single degree-of-freedom for now39. Examples of coupled (i.e. more than
one-degree-of-freedom) nonlinear oscillators are algebraically intense and lengthy, and for this reason we delay
discussion of them until Section 5. To get started we discuss some of the key topics relating to normal form
transformations, which are motivated with the following example.

4.1.1 Example 10: the real normal form for an undamped oscillator that has both quadratic and cubic
nonlinear terms

Consider an undamped oscillator that has both quadratic and cubic nonlinear terms written as40

q̈+ω
2
n q+βq2 +αq3 = 0, or q̈+ω

2
n q+n(2)(q)+n(3)(q) = 0, (82)

where ωn is the natural frequency, n(2)(q) = βq2 denotes the quadratic nonlinear terms and n(3)(q) = αq3 denotes
the cubic nonlinear terms. In addition, β and α are nonlinear coefficients (and in general we write n(k)(q) for the
kth oder term). We want to find a nonlinear coordinate transformation from coordinate q to a new coordinate u,
and if possible obtain a simplified system of the form

ü+ω
2
n u+n(2)u (u)+n(3)u (u) = 0, (83)

where n(2)u (u) denotes the simplified quadratic nonlinear terms and n(3)u (u) denotes the simplified cubic nonlinear
terms. In addition, the transformed system has linear part equivalent to[

u̇p
u̇m

]
=

[
iωn 0
0 −iωn

][
up
um

]
+O(2), (84)

where u = up +um. Next we make a coordinate transformation of the form

q = u+h(2)(u, u̇)+h(3)(u, u̇)+ .... ; q = up +um +h(2)(up,um)+h(3)(up,um)+ .... (85)

where the dots are used to denote that the asymptotic series expansion has higher order terms, and we have
included up to quadratic and cubic terms to match the nonlinear terms in Eq. (82)41. Substituting the first of
Eq. (85) into the second of Eq. (82) and replacing ü using Eq. (83) gives

ω
2
n u+n(2)u +n(3)u =

d2

dt2 (h
(2)+h(3))+ω

2
n u+ω

2
n (h

(2)+h(3))+n(2)(u+h(2)+h(3))+n(3)(u+h(2)+h(3)), (86)

so that taking the u terms order by order

Order k = 1 : ω2
n u = ω2

n u,

Order k = 2 : n(2)u (u) =
d2h(2)(u)

dt2 +ω
2
n h(2)(u)+n(2)(u),

Order k = 3 : n(3)u (u) =
d2h(3)(u)

dt2 +ω
2
n h(3)(u)+n(2)

(3)(u+ ...)+n(3)(u+ ...)(3),

Order k = 4 : ...
...

(87)

39This allows us to neglect phase lag in this Section, and thus keep the examples as simple as possible. It should be noted however, that
in many applications, including a phase lag may be required. We will introduce phase lag in Section 5.

40For single-degree-of-freedom examples in second order form there is no modal transformation so we take x = q at the start.
41Note also that the h(k) terms are functions of both u and u̇ in general, where u̇ = iωn(up −um).
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where the n(2)
(3)(u+ ...) term represents the cubic (order k = 3 terms) generated when q = u+h(2)+ ... is substituted

into the n(2) nonlinear terms, and n(3)(u+ ...)(3) represents the cubic (order k = 3) terms generated when
q = u+h(2)+ ... is substituted into the n(3) term. So now we can rearrange Eq. (87) for the order k = 2 and order
k = 3 expressions to obtain homological equations as

Order k = 2 : −d2h(2)

dt2 −ω
2
n h(2) = n(2)−n(2)u ,

Order k = 3 : −d2h(3)

dt2 −ω
2
n h(3) = n(2)

(3)+n(3)−n(3)u ,

(88)

which can be considered in turn.
So, let’s consider the order k = 2 homological equation first. We anticipate from previous studies that the

quadratic terms in this example can be eliminated, so we first try setting n(2)u = 0 in the k = 2 homological
equation in Eq. (88). Then we take u = up + um and expand the h(2) term to mirror the expansion of the n(2)

nonlinear term which gives

n(2)(up,um) = β (u2
p +2upum +u2

m), and h(2)(up,um) = b1u2
p +b2upum +b3u2

m, (89)

where the b j are coefficients that are yet to be identified. Substituting this into the order k = 2 homological
equation with n(2)u = 0 gives

− d2

dt2 (b1u2
p +b2upum +b3u2

m)−ω
2
n (b1u2

p +b2upum +b3u2
m) = β (u2

p +2upum +u2
m)+O(3). (90)

In order to compute the d2

dt2 derivatives we use the chain rule and expressions in Eq. (84)42. For example for the
u2

p term

d
dt
(u2

p) =
∂
(
u2

p
)

∂up
u̇p = 2upiωnup = 2iωnu2

p, ;
d2

dt2 (u
2
p) =

d
dt

(
d
dt
(u2

p)

)
= 2iωn

∂
(
u2

p
)

∂up
u̇p =−4ω

2
n u2

p,

and similarly
d2

dt2 (upum) =
∂ (upum)

∂up
u̇p +

∂ (upum)

∂um
u̇m = 0 and

d2

dt2 (u
2
m) =−4ω

2
n u2

m,

(91)

which when substituted into Eq. (90) leads to

4b1ω
2
n u2

p +4b3ω
2
n u2

p −ω
2
n b1u2

p −ω
2
n b2upum −ω

2
n b3u2

p = βu2
p +β2upum +βu2

m, (92)

and by comparing coefficients we obtain the relationships

b13ω2
n = β

−ω2
n b2 = 2β

b33ω2
n = β

;

b1 =
β

3ω2
n

b2 =−2
β

ω2
n

b3 =
β

3ω2
n

with n(2)u = 0 (93)

which confirms that the assumption of n(2)u = 0 is correct. Substituting the coefficient values from Eq. (93) into
Eq. (85) gives the coordinate transformation for linear and quadratic terms as

q = up +um +
β

3ω2
n

u2
p −2

β

ω2
n

upum +
β

3ω2
n

u2
m +O(3). (94)

Next we need to compute the k = 3 homological equation to deal with the cubic terms. As before we take
u = up +um and expand the h(3) term to mirror the expansion of the n(3) nonlinear term so that

n(3)(up,um) = α(u3
p +3u2

pum +3upu2
m +u2

m), and h(3)(up,um) = b4u3
p +b5u2

pum +b6upu2
m +b7u3

m, (95)

42This will be formalised in Section 4.2 as a computation of the Lie derivative. Note also, that the use of Eq. (84) truncated at O(2)
means that this is a first order approximation of the time derivatives.
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where the b j are coefficients that are yet to be identified. For the cubic terms we cannot (at this stage) assume
that the n(3)u is zero, and we also have to account for the n(2)

(3) in Eq. (88). Both of these terms are also expanded

to mirror the n(3) nonlinear term which gives

n(2)
(3)(up,um) =

2β 2

3ω2
n
(u3

p −5u2
pum −5upu2

m +u2
m), and n(3)u (up,um) = n∗u1u3

p +n∗u2u2
pum +n∗u3upu2

m +n∗u4u3
m, (96)

where the n∗u j are coefficients that are yet to be identified. Now we substitute all of these relationships into the
k = 3 homological equation from Eq. (88) to give

− d2

dt2 (b4u3
p +b5u2

pum +b6upu2
m +b7u3

m)−ω
2
n (b4u3

p +b5u2
pum +b6upu2

m +b7u3
m)

=
2β 2

3ω2
n
(u3

p −5u2
pum −5upu2

m +u2
m)+α(u3

p +3u2
pum +3upu2

m +u2
m)− (n∗u1u3

p +n∗u2u2
pum +n∗u3upu2

m +n∗u4u3
m).

(97)

Using the chain rule and expressions in Eq. (84) gives

− d2

dt2 (b4u3
p +b5u2

pum +b6upu2
m +b7u3

m) =−9ω
2
n b4u3

p −ω
2
n b5u2

pum −ω
2
n b6upu2

m −9ω
2
n b7u3

m, (98)

which when substituted into Eq. (97) gives

(8ω
2
n )b4u3

p +(8ω
2
n )b7u3

m =
2β 2

3ω2
n
(u3

p −5u2
pum −5upu2

m +u2
m)+α(u3

p +3u2
pum +3upu2

m +u2
m)

−(n∗u1u3
p +n∗u2u2

pum +n∗u3upu2
m +n∗u4u3

m).

(99)

We want to satisfy this equation with as many of the n∗u j set to zero as possible. Note that on the left-hand
side of Eq. (99), the u2

pum and upu2
m no longer exists, and so on the right-hand side n∗u2 and n∗u3 cannot be zero.

Conversely n∗u1 and n∗u4 can be set to zero, because the b4 and b7 coefficients can be chosen as required to
satisfy Eq. (99). This gives relationships

8ω
2
n b4 =

2β 2

3ω2
n
+α

−10β 2

3ω2
n

+3α −n∗u2 = 0

−10β 2

3ω2
n

+3α −n∗u3 = 0

8ω
2
n b7 =

2β 2

3ω2
n
+α

;

b4 = b7 =
β 2

12ω4
n
+

α

8ω2
n

n∗u2 = n∗u3 =−10β 2

3ω2
n
+3α

(100)

Substituting these coefficient values into Eq. (85) gives the coordinate transformation for linear, quadratic and
cubic terms as

q = up +um +
β

3ω2
n

u2
p −2

β

ω2
n

upum +
β

3ω2
n

u2
m +

(
β 2

12ω4
n
+

α

8ω2
n

)
u3

p +

(
β 2

12ω4
n
+

α

8ω2
n

)
u3

m +O(4), (101)

and substituting the n∗u2 and n∗u3 values into Eq. (83) gives

ü+ω
2
n u+

(
3α − 10β 2

3ω2
n

)
(u2

pum +upu2
m) = 0, (102)

or alternatively, using the fact that u = up +um, we can write a pair of normal form equations as

üp +ω
2
n up +

(
3α − 10β 2

3ω2
n

)
u2

pum = 0,

üm +ω
2
n um +

(
3α − 10β 2

3ω2
n

)
upu2

m = 0.

□ (103)

This example shows how a near-identity transformation can be used to eliminate the quadratic term in this
type of nonlinear oscillator equation. However, for the cubic terms this was not possible and we shall develop a
more complete formulation for dealing with this process in Section 4.2. We note also that:
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1. We have only considered terms up to cubic order, and the expansions in Eq. (87) can be continued to higher
orders. To deal with these higher order terms, order k = 4 terms must be added to the assumed solutions in
Eq. (85), which in this case would mean

q = u+h(2)(u, u̇)+h(3)(u, u̇)+h(4)(u, u̇)+ .... ; q = up +um +h(2)(up,um)+h(3)(up,um)+h(4)(up,um)+ ....

(104)

which in turn lead to more higher order terms being generated in the expansion of the nonlinear term. This
process can be undertaken as many times as required, and is one way to analyse the convergence of the
series solution — see for an example [104]. However, specific proofs have been developed to show that the
coefficients can be found at any order in the near identity transform providing certain conditions are met, and
this will be discussed in Section 4.1.2.

2. The fact that we could solve the order k = 2 homological equation with n(2)(u) = 0 means that there are no
nonlinear resonances from the quadratic terms. However, the order k = 3 homological equation had some
n(3)u terms that could not be eliminated, and these correspond to resonant terms. This will be discussed in
more detail in Section 4.1.2 and methods for dealing with these terms are formalised in Section 4.2.

3. The quadratic terms in this example generated terms at cubic order (i.e. the n(3)
(2) terms) which then affected

the result of the cubic order (k = 3 order) homological equation. This is actually a generic property of these
types of oscillators, and as a result, the normal form computation will need to be carried out to at least the
first k odd order that appears.

As a numerical example we show the solutions for x up to O(3) that can be obtained directly from Eq. (94)
because x = q in this case. Taking the assumed solutions for up and um to be the expressions given by Eq. (22)
with ωr = ωn leads to

x =U
(

eiωnt + e−iωnt

2

)
+

β

3ω2
n

U2

2

(
e2iωnt + e−2iωnt

2

)
−2

β

ω2
n

U2

4
; =U cos(ωnt)+

βU2

6ω2
n

cos(2ωnt)− βU2

2ω2
n
. (105)

Considering the case at the initial conditions when t = 0, then

x(0) =U0 −
βU2

0
3ω2

n
; U0 =

3ω2
n

2β

(
1−

√
1− 4βx(0)

3ω2
n

)
. (106)

Notice that the quadratic term, which arises from asymmetry, generates an amplitude-dependent offset from
zero in the response in Eq. (105). It also always tends to create a softening nonlinear effect in the frequency-
amplitude response —- a phenomena that was introduced in Example 2, see Fig. 2, in the context of backbone
curves, and will also be described in Example 18. Note also, that if the cubic coefficients in the normal form are
zero, then additional higher-orders should be computed in order to determine the type of nonlinear behaviour in
the system. A numerical example is shown in Fig. 4 (b) where the normal form solutions from Eq. (105) with
Eq. (106) is compared to a direct numerical computation of the equations of motion.

4.1.2 Nonlinear resonance

Now let us consider in more detail the resonant terms that occurred in the order k = 3 homological equation from
Example 10 (Section 4.1.1). First we assume that any terms of the type n(3)

(2) (or in general n(k)
(k−1)) are combined

with the n(3) (or in general n(k)) on the right hand side of the order k = 3 homological equation in Eq. (88). As a
result the kth order homological equation (for a single-degree-of-freedom oscillator) can be written as

Order k : −d2h(k)

dt2 −ω
2
n h(k) = n(k)−n(k)u , (107)

where n(k) is now understood to include the k order terms from order k and order k−1. Then we will generalise
the h(k), n(k) and n(k)u terms in the following way

h(k) = ∑
mk

bmk ump
p umm

m , n(k) = ∑
mk

n∗mk
ump

p umm
m , and n(k)u = ∑

mk

n∗u,mk
ump

p umm
m , (108)
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ω
n

ζω
n

ζ

ω
d

Fig. 4: (a) Eigenvalues for a damped (purple circles) and undamped (green circles) single degree-of-freedom oscillator. The
straight line AA divides the damped eigenvalues (purple) from the origin and therefore these eigenvalues can be said to be
in the Poincaré domain. No such line can be drawn for the undamped (green) eigenvalues, and these are therefore in the
Siegel domain. (b) The solution, x, (where x = q) to the oscillator from Example 10 with α = 0. The solution is computed
using Eq. (105) with Eq. (106) and the result shown with red crosses. This normal form solution is compared with a reference
solution generated from a fourth-order Runge-Kutta integration (the ‘odeint’ numerical integration routine from the Python
numerical library — blue solid line). Parameter values are: x(0) = 0.01, ωn =

√
10 rad/s and β = 1 N/(kgm2), α = 0.

where mk is based on a vector notation for multi-indices such that mk = (mp,mm), where mp and mm are whole
numbers in the range 0 ≤ (mp,mm) ≤ k with the additional condition that mp +mm = k and the sum in (108) is
over the set of all such indices [129]. Examples of mk and h(k) for k = 2,3,4 are given in Table 2 along with the
associated vector u∗ which we will use later in the generalisations of this process.

k mk h(k) u∗ Lk

2 (2,0), (1,1), (0,2) b(2,0)u2
p +b(1,1)upum +b(0,2)u2

m [u2
p upum u2

m]
T 3

3 (3,0), (2,1), (1,2) (0,3) b(3,0)u3
p +b(2,1)u2

pum +b(1,2)upu2
m +b(0,3)u3

m [u3
p u2

pum upu2
m u3

m]
T 4

4 (4,0), (3,1), (2,2), (1,3)
(0,4)

b(4,0)u4
p +b(3,1)u3

pu2
m +b(2,2)u2

pu2
m +b(1,3)u2

pu3
m +

b(0,4)u4
m

[u4
p u3

pu2
m u2

pu2
m u2

pu3
m u4

m]
T 5

Table 2: Examples of mk, h(k), and u∗ for k = 2,3,4. Note that we will only use this notation for the b j coefficients in this
subsection. The mk notation is useful to motivate the discussion, and show how the coefficients relate to the u∗ vector terms,
but is too complex for use in general. Lk is the length of the u∗ vector.

If we substitute the relationships in Eq. (108) into Eq. (107), then the order k homological equation becomes

−∑
mk

bmk

d2ump
p umm

m

dt2 −ω
2
n ∑

mk

bmk ump
p umm

m = ∑
mk

n∗mk
ump

p umm
m −∑

mk

n∗u,mk
ump

p umm
m . (109)

Then, we need to evaluate the d2u
mp
p umm

m
dt2 derivative term using the chain rule and expressions in Eq. (84), as we

did for Example 10, only this time we write these latter relationships as u̇p = λpup and u̇m = λmum, where λp and
λm are the eigenvalues, which for this example are λp = iωn and λm =−iωn. Using these relationships, Eq. (109)
becomes
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−∑
mk

bmk

d
dt

(
dump

p umm
m

dt

)
−ω

2
n ∑

mk

bmk ump
p umm

m =−∑
mk

bmk

d
dt

(
∂ump

p umm
m

∂up
u̇p +

∂ump
p umm

m

∂um
u̇m

)
−ω

2
n ∑

mk

bmk ump
p umm

m

=−∑
mk

bmk

d
dt

(
∂ump

p umm
m

∂up
λpup +

∂ump
p umm

m

∂um
λmum

)
−ω

2
n ∑

mk

bmk ump
p umm

m

=−∑
mk

bmk

d
dt

(
[mpλp +mmλm]u

mp
p umm

m
)
−ω

2
n ∑

mk

bmk ump
p umm

m

=−∑
mk

bmk

(
[mpλp +mmλm]

2ump
p umm

m
)
−ω

2
n ∑

mk

bmk ump
p umm

m

= ∑
mk

bmk

(
−[mpλp +mmλm]

2 −ω
2
n
)

ump
p umm

m

= ∑
mk

n∗mk
ump

p umm
m −∑

mk

n∗u,mk
ump

p umm
m .

(110)

From this we can see that the expression (−[mpλp +mmλm]
2 −ω2

n ) plays an important role in relation to the
homological equation. Considering each of the mk terms we can set n∗u,mk

= 0 and solve for

bmk =
n∗mk

(−[mpλp +mmλm]2 −ω2
n )

for (−[mpλp +mmλm]
2 −ω

2
n ) , 0, (111)

and because in this example, λ 2
p = λ 2

m =−ω2
n , the relationship becomes

bmk =
n∗mk

([mp −mm]2 −1)ω2
n

for ([mp −mm]
2 −1) , 0. (112)

In the case when (−[mpλp +mmλm]
2 −ω2

n ) = 0 then the corresponding n∗u,mk
coefficient in Eq. (110) cannot be

set to zero, and the term is said to be resonant. So for the resonant case we have

−[mpλp +mmλm]
2 −ω

2
n = 0 ; mpλp +mmλm =+iωn and mpλp +mmλm =−iωn

; mpiωn −mmiωn = iωn and mpiωn −mmiωn =−iωn,
(113)

which for the cubic terms in Example 10 is true when mk = (2,1) and mk = (1,2). Notice from Table 2, Eq. (112)
and Eq. (113) that mp −mm =±1 results in a resonant terms for the types of nonlinear examples considered
here. As a result, by inspecting Table 2 it can be noticed that the k even nonlinearities will not have resonant
terms of this type, whereas the k odd terms will have them.

Notice also that the key relationship in Eq. (113) depends only on the eigenvalues of the system. More
formally, undamped oscillator equations that have pairs of complex conjugate eigenvalues that lie on the
imaginary axis, and are said to be in the Siegel domain [4, 120, 85] (defined by the fact that no straight line
can be drawn which divides the eigenvalues from the origin — see Fig. 4 (a)). On the contrary, eigenvalues
for damped oscillators, that typically both have negative real parts, are said to be in the Poincaré domain,
which is a case that will be considered in more detail in Section 4.5. An example showing both cases is shown
schematically in Fig. 4 (a).

For eigenvalues in the Poincaré domain, there are only a finite number of resonant terms, and theories
developed by Poincaré and Dulac give specific conditions for the existence of near-identity transformation in this
case — see [4, 16, 85] for details. For eigenvalues in the Siegel domain, the situation is more complex, because
there are an infinite number of resonant terms. In Example 10, for example the eigenvalues are λp,m =±iωn,
and then the following relationship holds [85]

λp = (n+1)λp +nλm for n = 1,2,3,4.... (114)

which means there are an infinite number of potential resonant combinations, and therefore potential resonant
terms, and these are defined as trivial resonance terms in [169, 172] and unconditionally resonant terms in
[183]. Siegel and others (discussions can be found in [4, 16, 85]), have studied this case in detail and present
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an number of ways of developing appropriate near-identity transformations43. In this work, we consider only
systems relevant to structural dynamics which are essentially “well behaved" and so the behaviour of the
asymptotic series expansions is assumed to be a reasonable approximation to the complete solution throughout
the paper44. That said, the trivial resonances serve an important role in the normal form process for undamped
oscillators, as they highlight which terms cannot be removed by the transformation (and therefore they are
unconditional in the sense that they do not need a specific condition to be true in order to occur).

This is in contrast to the concept of a nonlinear resonant phenomena called internal resonance which occurs
for systems with more than a single degree-of-freedom. For example consider a system with N degrees-of-
freedom, and N pairs of complex conjugate eigenvalues λp j, λm j for j = 1,2,3...,N. Then an internal resonance45

exists for an eigenvalue, λpℓ, if

λpℓ = rp1λp1 + rp2λp2 + rp3λp3 + ... ; λℓ =
N

∑
j=1

rp jλp j for j = 1,2,3...,N, (115)

where rp j are integers. The rp j values define the condition on the righthand side of Eq. (115) for this type of
resonance to occur, and therefore this can also be called a conditional resonance.

Nonlinear resonance is a key topic for normal form transformations, and we will show multiple examples in
the rest of this paper. Next however, we consider a subtle but important point regarding the notation in normal
form transformations.

4.1.3 k-order and ε-order notation in normal form transformations

So far in introducing the method of normal forms for nonlinear oscillator systems we have shown how the
analysis can be separated into k-order homological equations, and then solved one order after another until the
required level of accuracy is obtained for the specific problem being considered [104]. However, there is an
alternative form of notation used in the normal form literature, which we will call the ε-order notation for normal
form transformations. This notation is used in a variety of ways including:

1. In exactly the same way as the k-order notation, to keep track of the polynomial nonlinear terms. In this case
ε is often called a book-keeping parameter, and will often be attributed the value ε = 1.

2. For cases when the nonlinear terms are not separated into an ascending sum of polynomial nonlinear terms.
Here ε-order notation can be used instead. As with point 1. in this case ε is often called a book-keeping
parameter.

3. As part of a series expansion used in the normal form method, as will be used in the method of Lie series in
Section 4.3. This has been used in particular in connection with the Hamiltonian normal form, first introduced
by Birkhoff [11]. The use of the ε-order notation in this context goes back at least as far as the work of Hori
[74]. In this case ε is a Lie series expansion parameter and is generally considered to be small ε ≪ 1.

4. Within a Taylor series expansion when dealing with nonlinear functions that are not already in the form
of polynomial nonlinearities [183]. In this case ε is a Taylor series expansion parameter and is generally
considered to be small ε ≪ 1.

5. Related to points 3. and 4. normal form methods can also be formulated in terms of perturbation theory (see
for example Nayfeh [124]), where ε is the perturbation parameter and is generally considered to be small
ε ≪ 1.

6. Related to point 5., in some normal form analysis, ε has been used to link the size of the nonlinear term to
the size the viscous damping and external forcing terms, which are all assumed to be small [183]. This is a
case of practical importance in structural dynamics, where large resonant responses can occur, for small
nonlinearity, damping and forcing [183].

7. To include parameter variation close to the equilibrium point around which the normal form expansion is
being carried out. This will be discussed further in Section 4.6.

43These and other authors also discuss the use of Jordan normal form for the different eigenvalue cases including those with degenerate
behaviour [4, 16, 120]. This is beyond the scope of this current paper.

44Formally we consider only systems that are diagonalisable with full rank diagonal matrices of distinct eigenvalues. Often referred to as
the semisimple case [4, 120]. For cases where this assumption regarding asymptotic series expansions does not necessarily hold, see
Murdock [120]. For an example of the non-semisimple case see [43].

45There are also other names for this phenomena, such as "modal coupling", and "autoparametric resonance", see for example [164]. In
terms of recent applications the area of micro- and nano-mechanical structures offers some very nice examples [157, 31].
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Murdock [120] gives a clear explanation of the difference between the k-order and ε-order notation in terms
of five specific formats. The k-order notation arises primarily in the so-called direct formats (e.g. Example 10,
Section 4.1.1), and the ε-order notation primarily in the generated formats (as will be described in Section 4.3).
As noted by Murdock, in some methods, such as those by Hori [74] and Deprit [34], ε is treated as an
independent variable, and so cannot be eliminated. In order to try and retain ‘the best of both worlds’ we will
develop a generalised theory of near-identity transformations based on ε-order notation, that can in certain
circumstances use ε = 1 and revert to the k-order approach. Next we consider the near-identity transformation
process in more detail.

4.2 Near-identity transformations of differential equations

In this Section we consider near-identity transformations for both first-order and second-order sets of differential
equations. It is helpful to maintain the distinction in variables between these two classes of differential equation.
So we introduce the following notation: FO will denote the case for first-order sets of differential equations and
SO will denote the case for second-order sets of differential equations. In both cases, t is the scalar independent
variable and remains untransformed (or its transform is the identity). In addition for the SO case q = q(t) is an
N ×1 vector containing the dependent (displacement) variables, while q̇ and q̈ are N ×1 vectors containing the
velocities and accelerations, respectively. For the FO case, qqq = [q, q̇]T is the 2N ×1 state vector, and q̇qq is the
time derivative of the state vector.

The functional form of the near-identity transformation will be defined as the following two mappings

TFO : (t,qqq)→ (t,uuu) : t = t and qqq = TTT (uuu,ε) = uuu+ εhhh1(uuu)+ ε2hhh2(uuu)+ ...

TSO : (t,q)→ (t,u) : t = t and q = T(u, u̇,ε) = u+ εh1(u, u̇)+ ε2h2(u, u̇)+ ...

(116)

Notice also that h j is assumed in general to be a function of both u and u̇46. The nonlinear functions hhh j(uuu) and
h j(u, u̇) are defined as

hhh1 = bbb1u∗, hhh2 = bbb2u+ and h1 = b1u∗, h2 = b2u+ (117)

where bbb1 is an 2N×Lk coefficient matrix, b1 is an N×Lk coefficient matrix, and u∗ is an Lk×1 vector of polynomial
functions of the elements of uuu or u, which for a single-degree-of-freedom oscillator are up and um as can be seen
in Table 2. Similarly, bbb2 is an 2N ×Lk coefficient matrix, b2 is an N ×Lk coefficient matrix, and u+ is an Lk ×1
vector of polynomial functions of the elements of uuu or u. For example, if we consider the oscillator system from
Example 10 and rewrite the near-identity transformation in the form of Eq. (116), then Eq. (101) becomes

q = up +um +[
β

3ω2
n

−2
β

ω2
n

β

3ω2
n
]


u2

p

upum

u2
m

+[( β 2

12ω4
n
+

α

8ω2
n

)
0 0

(
β 2

12ω4
n
+

α

8ω2
n

)]


u3
p

u2
pum

upu2
m

u3
m

+ ...,

so taking b1 = [
β

3ω2
n

−2
β

ω2
n

β

3ω2
n
], and b2 =

[(
β 2

12ω4
n
+

α

8ω2
n

)
0 0

(
β 2

12ω4
n
+

α

8ω2
n

)]
; q = u+b1u∗+b2u++ ... and with ε notation q = u+ εb1u∗+ ε

2b2u++ ...

(118)

where u = up +um, N = 1, Lk=2 = 3, Lk=3 = 4 and ε = 1.

4.2.1 First-order equations

First let us consider first-order differential equations of the form

q̇qq = F (qqq,ε) = Λqqq+NNN(qqq) = Λqqq+ εnnn1(qqq)+ ε
2nnn2(qqq)+ ... (119)

46Of course the state vector already includes the velocities because qqq = [q, q̇]T , so this comment applies only to second-order sets of
differential equations.
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where F (·) represents the general expression for the nonlinear function of qqq, Λ is a diagonal matrix containing
the system eigenvalues, NNN(qqq) contains the nonlinear terms (i.e. as defined in Eq. (81)), which are approximated
by the nnn j(qqq) terms. Define the structure of the transformed differential equation to be

u̇uu = G (uuu,ε) = Λuuu+ εnnnu1(uuu)+ ε
2nnnu2(uuu)+ ..., (120)

where G (·) is the transformed nonlinear expression, and nnnu j are the transformed vectors of nonlinear terms.
Here the objective of the transformation process is to simplify, as much as possible, the transformed vectors of
nonlinear terms nnnu j. The standard approach to this problem is to substitute (the upper equation in) Eq. (116)
into Eq. (119) to give

u̇uu+
d
dt

(
εhhh1 + ε

2hhh2 + ...
)
= Λ(uuu+ εhhh1 + ε

2hhh2 + ...)+ εnnn1(uuu+ εhhh1 + ε
2hhh2 + ...)+ ε

2nnn2(uuu+ εhhh1 + ε
2hhh2 + ...)...

(121)

and by substituting for u̇uu using Eq. (120) gives

Λuuu+ εnnnu1(uuu)+ ε
2nnnu2(uuu)+

d
dt

(
εhhh1 + ε

2hhh2 + ...
)
=

Λuuu+ εΛhhh1 + ε
2
Λhhh2 + εnnn1(uuu+ εhhh1 + ε

2hhh2 + ...)+ ε
2nnn2(uuu+ εhhh1 + ε

2hhh2 + ...)...

(122)

For cases when nnn1 and nnn2 are relatively simple, the substituted terms in Eq. (122) can be expanded directly.
More generally the nonlinear terms nnn1 and nnn2 can be expanded as Taylor series using

nnni (uuu+ εhhh1(uuu)+ . . .) = nnni(uuu)+ εD{nnni(uuu)}hhh1(uuu)+ . . . , (123)

where D{nnni} is the Jacobian of nnni. Using this Taylor series expansion and then equating ε terms in Eq. (122)
gives

ε
0 : Λuuu = Λuuu, (124)

ε
1 :

dhhh1

dt
−Λhhh1 = nnn1 −nnnu1, (125)

ε
2 :

dhhh2

dt
−Λhhh2 = D{nnn1}hhh1 +nnn2 −nnnu2, (126)

To deal with the time derivatives in Eq. (125) and Eq. (126) we use the Lie derivative. For example, consider
computing the Lie derivate of the term hhh1 = bbb1u∗ in Eq. (125) to order ε0. First bbb1 is a matrix of constants, so we
are interested only in the Lie derivative of u∗, which is given by

du∗

d t

∣∣∣∣∣
ε=0

=
∂u∗

∂uuu
u̇uu

∣∣∣∣∣
ε=0

=
∂u∗

∂uuu
Λuuu ≡ Λ

∗u∗, (127)

where Λ∗ is a constant Lk ×Lk diagonal matrix and Lk is the length of the vector u∗. Substituting this, and
relations for hhh1 from Eq. (117) into the homological equations Eq. (125) and Eq. (126) gives

ε
1 :

∂hhh1

∂uuu
Λuuu−Λhhh1 = nnn1 −nnnu1, ; bbb1Λ

∗u∗−Λbbb1u∗ = nnn1 −nnnu1, (128)

ε
2 :

∂hhh2

∂uuu
Λuuu−Λhhh2 = D{nnn1}hhh1 +nnn2 −nnnu2, ; bbb2Λ

+u+−Λbbb2u+ = D{nnn1}bbb1u∗+nnn2 −nnnu2,

(129)

where Λ+ is a diagonal matrix obtained from taking the Lie derivative of u+ using Eq. (127), and we have
truncated the expressions at order-ε2.

These relationships are called the order-ε1 and order-ε2 homological equations (without frequency detuning
which will be added in Section 4.6). Notice that the left-hand side of the homological equations in Eq. (128) and
Eq. (129) can be reformulated as a Lie bracket for the two vector fields involved in the transformation process
such that

∂hhhℓ
∂uuu

G0 −
∂G0

∂uuu
hhhℓ = [hhhℓ,G0], where G0 = Λuuu = u̇uu|ε=0 for ℓ= 1,2,3... (130)
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where [·, ·] indicates the bracketing operation, and it should be understood that as all functions in Eq. (130) are
functions of uuu, the bracket is an operator [·, ·](uuu). As a result for the order-ε1 homological operator we can write47

[hhh1,G0] = nnn−nnnu = H1. (131)

Notice also the similarity of the structure of these homological equations and those derived in Example 10,
particularly in Eq. (88), although is should be noted that in this Section we are dealing with first-order equations.
A direct comparison can be made with the results in Section 4.3.2. Next we consider an example of how to
compute the order-ε1 homological equation in practice.

It is important to note, that in the next example we use only the order-ε1 homological equation because the
example contains only a single odd polynomial nonlinear term. As we saw in Example 10, if there are both even
and odd polynomial terms, the even terms will lead to terms at the next order, and so in that case the order-ε2

homological equation also needs to be included in the analysis. An example of this type will be considered in
Section 4.8.1.

4.2.2 Example 11: the undamped, unforced Duffing oscillator

The undamped, unforced Duffing oscillator can be written as

ẍ+ω
2
n x+ εαx3 = 0, (132)

where ωn is the linear natural frequency, ε is the book-keeping parameter and α is a nonlinear coefficient.
For the classical method of treating the Duffing oscillator, a first-order representation of Eq. (132) is defined

in terms of the state vector xxx = {x1 x2}T = {x ẋ}T . Then the matrix and vector form of Eq. (132) is given by

ẋxx = Axxx+ ˜N (xxx) : A =

 0 1

−ω2
n 0

 , ˜N (xxx) =

 0

−εαx3
1

 .

Transforming using the diagonalising modal transform from Eq. (75), where xxx = Φqqq can be used to give an
equation of the form of Eq. (119) as

q̇qq = Λqqq+ εnnn1(qqq) : Λ =

 iωn 0

0 −iωn

 , Φ =

 1 1

iωn −iωn

 , Φ
−1 =

1
−2iωn

 −iωn −1

−iωn 1

 , (133)

where the nonlinear function nnn1(qqq) = Φ−1 ˜N (Φqqq), and qqq = [qp qm]
T . Note there is just one nonlinear term, and

so we set nnn2 = 0, ... etc. and then as there is just a single term we set nnn1(qqq) = nnn(qqq) which can be expressed as

nnn(qqq) = Φ
−1 ˜N (Φqqq) =

εα

2iωn

 −(qp +qm)
3

(qp +qm)
3

=
α

2iωn

 −1 −3 −3 −1

1 3 3 1




q3
p

q2
pqm

qpq2
m

q3
m

= nnn∗q∗, (134)

where

nnn∗ =
α

2iωn

 −1 −3 −3 −1

1 3 3 1

 , and q∗ =


q3

p

q2
pqm

qpq2
m

q3
m

 . (135)

47It can be shown that because of the structure of the basis functions in u∗, the Lie derivative of u∗ is a constant matrix times u∗. In other
words, the derivative of u∗ with respect to time has the same characteristics as the exponential function, which is of course the underlying
solution to all these differential equations. It is also important to realise that this is the classical Lie derivative of a scalar function along the
vector field G0. In fact, we use the format defined by [151], where there are a set of scalar functions, u∗1,u

∗
2,u

∗
3, ...,u

∗
L, grouped together in a

single vector u∗.
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Substituting the near-identity transformation, Eq. (116), into this expression is required as part of the process
in deriving the homological equations, as we described above. However, if the analysis is carried out retaining
only terms up to order ε1 this will result in

εnnn(qqq)→ εnnn(uuu+ εhhh1 + ...) = εnnn(uuu)+O(ε2),

and therefore to order ε1

nnn(qqq) = nnn∗q∗ → nnn∗u∗ where for this example u∗ =


u3

p

u2
pum

upu2
m

u3
m

 , (136)

and nnn∗ represents the coefficient matrix and u∗ is the vector of nonlinear basis terms.
Now the order-ε1 homological equation, (Eq. (128)) can most easily be evaluated if the structure of nnnu (from

Eq. (120) with nnnu = nnnu1) and hhh (from Eq. (117) with hhh = hhh1) are set to be the same as nnn, which in turn is defined
by the problem at hand. Therefore we set hhh(uuu) = bbbu∗ and nnnu(uuu) = nnn∗uu∗, where bbb and nnn∗u are coefficient matrices
of the same dimensions as nnn∗. In fact, as u∗ follows the structure of the nonlinear terms in nnn(qqq), the coefficient
matrices bbb and nnn∗u are the only remaining unknowns that are to be determined from the homological equation.
Having defined hhh(uuu) we see that ∂hhh

∂uuu = bbb ∂u∗
∂uuu and in this example uuu = [up um]

T , then48

∂u∗

∂uuu
=


3u2

p 0

2upum u2
p

u2
m 2upum

0 3u2
m

 , and
∂u∗

∂u
Λu ≡


3iωn 0 0 0

0 iωn 0 0

0 0 −iωn 0

0 0 0 −3iωn




u3

p

u2
pum

upu2
m

u3
m

= Λ
∗u∗. (138)

Now using the expressions developed above, we obtain the Lie bracket expression (Eq. (130)) for the Duffing
example as

[hhh,G0] =

 b1 b2 b3 b4

b5 b6 b7 b8




3iωn 0 0 0

0 iωn 0 0

0 0 −iωn 0

0 0 0 −3iωn




u3

p

u2
pum

upu2
m

u3
m



−

 iωn 0

0 −iωn

 b1 b2 b3 b4

b5 b6 b7 b8




u3
p

u2
pum

upu2
m

u3
m

 .
(139)

We know from the order-ε1 homological equation (Eq. (131)) that nnn−nnnu = [hhh,G0] and so using Eq. (134), Eq. (136)
and Eq. (139) gives, α

2iωn

 −1 −3 −3 −1

1 3 3 1

−
 n∗u1 n∗u2 n∗u3 n∗u4

n∗u5 n∗u6 n∗u7 n∗u8

u∗ =

 b1(2iωn) b2(0) b3(−2iωn) b4(−4iωn)

b5(4iωn) b6(2iωn) b7(0) b8(−2iωn)

u∗.

(140)

48Note that the second equation in Eq. (138) gives an L×1 vector that has been re-expressed as an L×L matrix, Λ∗ multiplied by u∗

(which is an L×1 vector). We note that Λ∗ can be obtained directly from

Λ
∗ = IL ⊙

[
1T

L ⊗
([

∂u∗

∂u
Λu
]
⊘u∗

)]
(137)

where IL is an L×L identity matrix, 1L is a L×1 vector of ones, ⊙ denotes Hadamard product, ⊗ denotes outer product, and ⊘ denotes
Hadamard division. Note that Neild and Wagg [128] derive an alternative method for computing Λ∗ which based on the indices of the terms
in u∗. This method may be preferred in practice, particularly for multi-degree-of-freedom nonlinear oscillators.
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To solve for the unknown coefficients, bi and n∗ui for i = 1,2..8 we use the following logic. If there is a zero on the
right hand-side of Eq. (140), then n∗ui = n∗i from solving the lefthand side of Eq. (140). If there is not a zero on the
right hand-side of Eq. (140), then n∗ui = 0 is assumed, and the coefficient bi can be solved for. Note that in this
example this choice means that b2 and b7 can have any value, and following [85] we refer to these coefficients
as the free functions, which will be discussed in Section 4.7. Using this approach the coefficient matrices can
be found as

bbb =

 α

4ω2
n

0 −3α

4ω2
n

−α

8ω2
n

−α

8ω2
n

−3α

4ω2
n

0 α

4ω2
n

 and nnn∗u =

 0 −3α

2iωn
0 0

0 0 3α

2iωn
0

 .
Now the normal form (Eq. (120)), up to order ε1, can be written as

u̇uu = Λuuu+ εnnn∗uu∗ ;

u̇p = iωnup + ε
3iα
2ωn

u2
pum,

u̇m = −iωnum − ε
3iα
2ωn

upu2
m,

(141)

and because of the occurrence of imaginary parts in these expressions, this is called the complex normal form
format. The near-identity transform (Eq. (117)) becomes

qqq = uuu+ εbbbu∗ ;

 qp

qm

=

 up

um

+ εα

ω2
n


u3

p

4
−

3upu2
m

4
− u3

m

8

−
u3

p

8
−

3u2
pum

4
+

u3
m

4

 (142)

and because x = qp +qm from Eq. (142) we can express x as

x = up +um +
εα

ω2
n

[
u3

p +u3
m

8
− 3

4
(u2

pum +upu2
m)

]
= (U − ε

3αU3

16ω2
n
)cos(ωrt)+ ε

αU3

32ω2
n

cos(3ωrt)+O(ε2), (143)

once the base solutions from Eq. (22) are substituted49. □
Note that Eq. (141) can be compared with Eq. (20) from Example 2 (Section 1.1.3) in the case where ε = 1

(note also the sign difference because of the −α term in Eq. (19)). Likewise, Eq. (143) can be compared with
Eq. (21) noting again the −α sign difference from Eq. (19). Note also the subtle differences between these
expressions in terms of when ωr appears compared to ωn. In order to formalise this we will introduce a detuning
in Section 4.6.

The zeros in the homological equation, Eq. (140) relate to the resonant terms, that occur in this example. As
a result, the resulting set of normal form equations in Eq. (141) is not linear, the terms relating to the resonances
must be retained.

In order to actually compute the x approximation from Eq. (143), we first need to find the initial condition
value of U , which we denote U0 at time t = 0. Substituting t = 0 into Eq. (143), and using Cardano’s formula
leads to

x(0) =U0 − ε
5αU3

32ω2
n
, ; U0 =

3

√
−Γ

2
+

√
Γ2

4
+

Π3

27
+

3

√
−Γ

2
−
√

Γ2

4
+

Π3

27
, where Π =−32ω2

n

5εα
, (144)

and Γ =−Πx(0). Note that Cardano’s formula applies when the discriminant is positive, meaning 4Π3 +27Γ2 > 0.
A numerical example is shown in Fig. 5.

Next we consider the approach to near-identity transformations for second-order equations.

49Note that the base solutions in Eq. (22) are defined in terms of a response frequency ωr which may be taken as equal to or not equal
to the natural frequencies ωn and ωd depending on the specific context of the problem at hand.
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4.2.3 Second-order equations

Now let us consider second-order differential equations of the form

q̈ = F̂ (q,ε) =−Λ̂q− εn̂1(q)− ε
2n̂2(q)+ ... (145)

where Λ̂ is defined in Eq. (70) and the n̂ j(q) contain the nonlinear terms. In this case, we define the structure of
the desired transformed differential equation to be

ü = Ĝ (u,ε) =−Λ̂u− εn̂u1(u)− ε
2n̂u2(u)+ ... (146)

Now substituting (the lower of) Eq. (116) into Eq. (145) gives

ü+ ε
d2 h1

d t2 + ε
2 d2 h2

d t2 =−Λ̂u− εΛ̂h1 − ε
2
Λ̂h2 − εn̂1(u+ εh1 + ε

2h+ ...)− ε
2n̂2(u+ εh1 + ε

2h+ ...)+ ... (147)

Then substituting for ü from Eq. (146) gives

−Λ̂u− εn̂u1(u)− ε
2n̂u2(u)+ ε

d2 h1

d t2 + ε
2 d2 h2

d t2

=−Λ̂u− εΛ̂h1 − εΛ̂h2 − εn̂1(u+ εh1 + ε
2h+ ...)− εn̂2(u+ εh1 + ε

2h+ ...)+ ...

(148)

Using a Taylor series expansion in the same way as Eq. (123), we obtain

n̂i (u+ εh1(u)+ . . .) = n̂i(u)+ εD{n̂i(u)}h1(u)+ . . . , (149)

where D{n̂i} is the Jacobian matrix (or gradient vector) depending on the dimensions of u. Then equating ε

terms in Eq. (148) gives

ε
0 : − Λ̂u =−Λ̂u (150)

ε
1 : − d2 h1

d t2 − Λ̂h1 = n̂1 − n̂u1, (151)

ε
2 : − d2 h2

d t2 − Λ̂h2 = D{n̂1}h1 + n̂2 − n̂u2, (152)

Obtaining an expression for d2 h j
d t2 will be achieved by differentiating the first Lie derivative from Eq. (127) a

second time. The second Lie derivative of u∗ to order ε0 is then defined by50

d2 u∗

d t2

∣∣∣∣∣
ε=0

=
∂

∂uuu
(Λ∗u∗) u̇uu

∣∣∣∣∣
ε=0

= Λ
∗ ∂u∗

∂uuu
Λuuu = (Λ∗)2 u∗. (153)

Substituting this, and relations for hhh from Eq. (117) into the homological equations Eq. (151) and Eq. (152) gives

ε
1 : − ∂

∂uuu

(
∂h1

∂uuu
Λuuu
)

Λuuu− Λ̂h1 = n̂1 − n̂u1, ; −b1 (Λ
∗)2 u∗− Λ̂b1u∗ = n̂1 − n̂u1, (154)

ε
2 : − ∂

∂uuu

(
∂h2

∂uuu
Λuuu
)

Λuuu− Λ̂h2 = D{n̂1}h1 + n̂2 − n̂u2, ; −b2
(
Λ
+
)2 u+− Λ̂b2u+ = D{n̂1}b1u∗+ n̂2 − n̂u2,

(155)

As a result, the order-ε1 homological equation (without frequency detuning which will be added in Section 4.6)
for second-order equations is

n̂1 − n̂u1 =−b1 (Λ
∗)2 u∗− Λ̂b1u∗ = Ĥ1(u), (156)

which is equivalent to the homological equation defined by [128] when they first introduced this type of
transformation. An example is considered next.

50Notice that the derivative is with respect to uuu just as for first-order differential equations. The relationship is that for for each coordinate
u j in the vector u there is a corresponding up j and um j in the vector uuu, and u∗ is a function of up j and um j, for j = 1,2,3, ...N. In addition,
there is a relationship between Λ̂ and Λ for undamped oscillators that can be inferred from Eq. (70) and Eq. (77).
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4.2.4 Example 12: The real normal form for the undamped cubic-quintic oscillator

In this example, we follow the approach proposed by [128] which leads to a type of real normal form transforma-
tion51. First we note that the undamped cubic-quintic oscillator is the same as the Duffing equation (Eq. (132))
with an additional quintic polynomial term, that we write in the form of Eq. (145), and because this is a single
degree-of-freedom example, x = q, therefore

ẍ+ω
2
n x+ εα1x3 + εα2x5 = 0 with x = q ; q̈+ω

2
n q+ εα1q3 + εα2q5 = 0,

; q̈ =−ω
2
n q− εn̂1(qp,qm) = 0,

(157)

where

n̂1(qp,qm) = α1(qp +qm)
3 +α2(qp +qm)

5

= α1(q3
p +3q2

pqm +3qpq2
m +q3

m)+α2(q5
p +5q4

pqm +10q3
pq2

m +10q2
pq3

m +5qpq4
m +q5

m)

= [α1 3α1 3α1 α1 α2 5α2 10α2 10α2 5α2 α2]q∗,

(158)

where q = [qp,qm]
T and q∗ = [q3

p q2
pqm qpq2

m q3
m q5

p q4
pqm q3

pq2
m q2

pq3
m qpq4

m q5
m]

T . Note that we are treating the
combination of both the cubic and quintic nonlinear terms as just a single nonlinear term, n̂1. This is possible in
the ε-order approach, but not in the k-order approach, where instead we would take n̂1 = α1q3 and n̂2 = α2q5.
However, there are potential drawbacks to be aware of. Specifically, for this example there will be 5th order
terms generated when the assumed solution is substituted into the cubic terms in n̂1 (in the terminology of
Example 10 these are n(3)

(5) terms), and these will only be captured in the ε2-order analysis which we will show in
Example 18 (Section 4.8.1) — see also Example 17 (Section 4.7.1).

Using this approach, we can set n2 = 0, ... etc. and so n1 = n, and correspondingly b1 = b and n̂u1 = n̂u
throughout the rest of this example. Next we apply a near-identity nonlinear transform, Eq. (116), of the form

q = u+ εbu∗ where b = [b1 b2 b3 b4 b5 b6 b7 b8 b9 b10], (159)

and u∗ is defined as u∗ = [u3
p u2

pum upu2
m u3

m u5
p u4

pum u3
pu2

m u2
pu3

m upu4
m u5

m]
T . The transformed dynamic equation,

Eq. (146), is expressed in the new coordinates as

ü+ω
2
n u+ εn̂u(up,um) = 0 ; ü =−ω

2
n u− εn̂u(up,um). (160)

Substituting Eq. (159) and Eq. (160) into Eq. (157) leads the order-ε1 homological equation Ĥ1(u) given in
Eq. (156), which in this example (remembering that we have dropped the subscript 1 from n, b and n̂u) can be
written as

ε
1 : −b

d2u∗

dt2 −ω
2
n bu∗ = n̂− n̂u =−b(Λ∗)2 u∗−ω

2
n bu∗. (161)

The Lie derivative term can be determined from Eq. (153), with uuu = [up,um]
T and Λ as defined in Eq. (133). For

this example we obtain

∂u∗

∂uuu
=



3u2
p 0

2upum u2
p

u2
m 2upum

0 3u2
m

5u4
p 0

4u3
pum u4

p

3u2
pu2

m 2u3
pum

2upu3
m 3u2

pu2
m

u4
m 4upu3

m

0 5u4
p



and
∂u∗

∂uuu
Λuuu≡ iωn



3 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 0 0 −3 0 0 0 0 0 0

0 0 0 0 5 0 0 0 0 0

0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 −3 0

0 0 0 0 0 0 0 0 0 −5





u3
p

u2
pum

upu2
m

u3
m

u5
p

u4
pum

u3
pu2

m

u2
pu3

m

upu4
m

u5
m



=Λ
∗u∗.

51In classifying this as a real normal form, we are following the definitions of [104] who introduced this terminology to distinguish between
the complex normal form format such as [80] and the real normal form formats such as [128, 168, 169].
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(162)

Then using n̂u = [n̂u1 n̂u2 n̂u3 n̂u4 n̂u5 n̂u6 n̂u7 n̂u8 n̂u9 n̂u10]u∗ and substituting Eq. (158), with qi → ui (to order
ε0, similar to Eq. (136)) into Eq. (161) gives

([α1 3α1 3α1 α1 α2 5α2 10α2 10α2 5α2 α2]− [n̂u1 n̂u2 n̂u3 n̂u4 n̂u5 n̂u6 n̂u7 n̂u8 n̂u9 n̂u10])u∗ =

(
−(iωn)

2[b1 b2 b3 b4 b5 b6 b7 b8 b9 b10]



3 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0

0 0 0 −3 0 0 0 0 0 0

0 0 0 0 5 0 0 0 0 0

0 0 0 0 0 3 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 0 −3 0

0 0 0 0 0 0 0 0 0 −5



2

−

ω
2
n [b1 b2 b3 b4 b5 b6 b7 b8 b9 b10]

)
u∗.

(163)

Evaluating the right hand side gives four zero values which allows the n̂u coefficients to be identified such that

([α1 3α1 3α1 α1 α2 5α2 10α2 10α2 5α2 α2]− [0 3α1 3α1 0 0 0 10α2 10α2 0 0])u∗ =

[b1(8ω
2
n ) b2(0) b3(0) b4(8ω

2
n ) b5(24ω

2
n ) b6(8ω

2
n ) b7(0) b8(0) b9(8ω

2
n ) b10(24ω

2
n )]u

∗.

(164)

From which the transform coefficient values are b1 = b4 = α1/8ω2
n , b6 = b9 = 5α2/8ω2

n , b5 = b10 = α2/24ω2
n , and

b2 = b3 = b7 = b8 = 0. Note that b2, b3 b7 and b8 are the free functions in this example, as any value can be
selected without affecting the outcome of the homological equation. Here we choose to set the free functions to
zero. Other choices will be discussed in Section 4.7. Next, using the fact that

εn̂u(up,um) = ε[0 3α1 3α1 0 0 0 10α2 10α2 0 0]u∗ = ε3α1(u2
pum +upu2

m)+ ε10α2(u3
pu2

m +u2
pu3

m)

gives the ε1 normal form as

ü+ω
2
n u+ ε3α1(u2

pum +upu2
m)+ ε10α2(u3

pu2
m +u2

pu3
m) = 0, (165)

where u = up + um, and this type of normal form can be expressed in terms of the up and um coordinates
separately as

üp +ω2
n up + ε3α1u2

pum + ε10α2(u3
pu2

m +u2
pu3

m) = 0,

üm +ω2
n um + ε3α1upu2

m + ε10α2(u3
pu2

m +u2
pu3

m) = 0.
(166)

Note that the analysis needs to be extended to ε2 to capture the effect of the 5th-order term generated by the
cubic nonlinearity — see Example 18 and Eq. (303). The near-identity transform, to order ε1 may now be written
as

x = u+ εbu∗ =
U
2
(ei(ωrt)+ e−i(ωrt))+ ε

[
α1

8ω2
n

0 0
α1

8ω2
n

α2

24ω2
n

5α2

8ω2
n

0 0
5α2

8ω2
n

α2

24ω2
n

]
u∗ (167)

using the base solutions from Eq. (22) in the u = up+um term. Then substituting the base solutions from Eq. (22)
into the u∗ vector, the solution for x becomes

x =U cos(ωrt)+ ε

(
α1U3

32ω2
n
+

5α2U5

128ω2
n

)
cos(3ωrt)+ ε

α2U5

384ω2
n

cos(5ωrt)+O(ε2). □ (168)
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Fig. 5: A simulation of the undamped Duffing oscillator showing (a) the solution, x, and (b) the phase portrait. The normal
form solutions are from Example 12 (complex normal form shown with red crosses), and Example 13 (real normal form
shown with green circles). These normal form solutions are compared with a reference solution generated from a fourth-order
Runge-Kutta integration (the ‘odeint’ numerical integration routine from the Python numerical library — blue solid line). The
complex normal form solution is computed using Eq. (143) with Eq. (144) (red crosses) and the real normal form solution is
computed with Eq. (168) with Eq. (169) with α2 = 0 and α1 = α (green circles). These solutions are differentiated to get ẋ
values. Parameter values are: x(0) = 0.01, ωn =

√
10 rad/s, and α1 = α =−10 N/(kgm3) α2 = 0.

In order to make a comparison with Example 11, we set α2 = 0 and α1 = α. Then if this solution for x,
Eq. (168), is compared to Eq. (143) from Example 11, it can be noted that there is no correction to the cos(ωnt)
term (sometimes also called the fundamental term or the ε0 term). In this normal form, each order of ε adds
an additional term in the series without adding a correction to the fundamental term (although corrections are
added to other terms), a feature called killing the fundamental meaning that the higher-order corrections are
orthogonal to the fundamental part of the solution [85].

Next, in order to compute the x approximation from Eq. (168), we first need to find the initial condition value
of U (which we denote U0 at time t = 0). Substituting t = 0, α2 = 0 and α1 = α into Eq. (168) and using Cardano’s
formula leads to

x(0) =U0 + ε
αU3

32ω2
n
, ; U0 =

3

√
−Γ

2
+

√
Γ2

4
+

Π3

27
+

3

√
−Γ

2
−
√

Γ2

4
+

Π3

27
, where Π =

32ω2
n

εα
, (169)

and Γ =−Πx(0). Note that Cardano’s formula applies when the discriminant is positive meaning 4Π3 +27Γ2 > 0.
A numerical example is shown in Fig. 5.

It can be noted from Fig. 5 that the complex and real normal form solutions give very similar results (note that
the comparison is made with α2 = 0 and α1 = α in Fig. 5). The equivalence of these two solutions in discussed in
Section 4.2.5. In addition, the ε2-order analysis for this example (with frequency detuning) is given in Examples
17 (Section 4.7.1) and 18 (Section 4.8.1). For example, the solutions for x from this example, Eq. (168), can be
compared to Eq. (294) (minimal normal form) and Eq. (305) (non-minimal normal form).

4.2.5 Equivalence of complex and real normal form

In order to make a comparison between the complex and real normal form, we consider the example of the
Duffing oscillator. In order to do this, we make a comparison between Eq. (166) with α2 = 0 and α1 = α (so
the result reduces to that of the Duffing oscillator) and the results from Example 11 (Section 4.2.2). To do this,
first notice that differentiating the normal form equations for the complex Duffing normal form, (Example 11,
Eq. (141)) with respect to time gives

üp = iωnu̇p + ε
3iα
2ωn

d
dt
(u2

pum), (170)

üm =−iωnu̇m − ε
3iα
2ωn

d
dt
(upu2

m).
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Now eliminating the u̇p and u̇m by substituting from Eq. (141) (and using operator representation Section 1.1.2)
leads to

üp +ω
2
n up − ε

3iα
2ωn

(
d
dt

+ iωn

)
(u2

pum) = 0

üm +ω
2
n um + ε

3iα
2ωn

(
d
dt

− iωn

)
(upu2

m) = 0,
;

üp +ω2
n up + ε3αu2

pum = 0,

üm +ω2
n um + ε3αupu2

m = 0.
(171)

Finally it can be seen that adding the two expressions on the right of Eq. (171) gives

üp + üm +ω
2
n (up +um)+ ε3α(u2

pum +upu2
m) = 0 ; ü+ω

2
n u+ ε3α(u2

pum +upu2
m) = 0 (172)

which is the same as the real normal form expression from Eq. (165) when α2 = 0 and α1 = α are introduced.
The solutions for x between the complex and real normal form for the Duffing oscillator can be made the

same using a specific choice of the free functions. This will be described in more detail in Section 4.4.2. Having
shown the equivalence of the complex and real normal form, we will focus on the real, and Hamiltonian normal
form for the remainder of this paper.

4.3 Derivation of the homological equations using Lie series

In the notation of this paper52 the Lie series can be defined in the following way (see [22, 120] for detailed
derivations). Let Θ[q] be an arbitrary function of q, then the Lie series is

Θ[q] = Θ[u]+ ε(GΘ)+
ε2

2!
(G(GΘ))+

ε3

3!
(G(G(GΘ)))+ ... (173)

with group operator

G =
∂ ·
∂u

h
∣∣∣∣
ε=0

. (174)

Notice that from Eq. (173) that the order-ε1 terms satisfy

(Θ[q]−Θ[u])
ε1 ≈ GΘ (175)

which when q is substituted, using the near-identity transformation, Eq. (116), is the order ε1 homological
equation from the method of normal forms discussed in detail in Section 4.2. Furthermore, the term GΘ

corresponds to either H1 for first-order differential equations or Ĥ1 for second-order differential equations, as
will be demonstrated later in this Section.

In order to consider Lie series transformations of both first and second-order differential equations, the
functions Θ will need to include the variables t, qqq, and q̇qq, in the first-order case, and t, q, q̇ and q̈ in the
second-order case. The method for prolonging the group transformation to include these variables is described
in detail by [22]. We now use this analysis to derive the homological equations for both first- and second-order
differential equations.

4.3.1 First-order equations

First let us consider first-order equations in the format of Eq. (119), i.e.

dqqq
dt

= F (qqq,ε) which can be redefined as q̇qq−F (qqq,ε) = Θ1(qqq, q̇qq,ε) = 0. (176)

Now we can consider a transformation of this first-order differential equation using the method of Lie series53.
To do this we need to revisit the near-identity transformation given in Eq. (116). First we write the differentials of
t and qqq as

dt = dt, and dqqq =
∂TTT
∂ t

dt +
∂TTT
∂uuu

duuu, ;
dqqq
dt

=
∂TTT
∂ t

+
∂TTT
∂uuu

duuu
dt

(177)

52We use q etc. in this expression, but the same relationships apply for qqq and so on.
53We follow the analysis from [22].
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Noting that TTT is defined in Eq. (116), and is not an explicit function of t (so that ∂TTT/∂ t = 0) and substituting
TTT (uuu,ε) = uuu+ εhhh(uuu) means that Eq. (177) becomes54

q̇qq =
∂

∂uuu
(uuu+ εhhh)u̇uu = u̇uu+ ε

∂hhh
∂uuu

u̇uu = u̇uu+ εbbbΛ
∗u∗ = TTT †(uuu, u̇uu,ε), (178)

where we have substituted hhh = bbbu∗ and used the Lie derivative from Eq. (127) to evaluate the partial derivative
term. Now Eq. (178) can be added to Eq. (116) as an extension or prolongation of the variables being
transformed, so that

t = t,

qqq = TTT (uuu,ε) = uuu+ εbbbu∗,

q̇qq = TTT †(uuu, u̇uu,ε) = u̇uu+ εbbbΛ
∗u∗.

(179)

Now we will define new augmented vectors as

q̃qq =

 qqq

q̇qq

 , ũuu =

 uuu

u̇uu

 , h̃hh =

 hhh

hhh†

 , T̃TT =

 TTT

TTT †

 , (180)

to give a near-identity transformation in the new variables as

q̃qq = T̃TT (ũuu,ε) = ũuu+ ε h̃hh (181)

where hhh = bbbu∗ and from Eq. (127)

hhh† =
dhhh
dt

= bbb
du∗

dt
= bbbΛ

∗u∗. (182)

Next the augmented variables can be substituted into Eq. (174), so that the group operator becomes

GFOΘ1 =
∂Θ1

∂ ũuu
h̃hh =

∂Θ1

∂uuu
hhh+

∂Θ1

∂ u̇uu
hhh†, (183)

where GFO is the Lie group operator for first-order equations and ∂Θ1
∂uuu and ∂Θ1

∂ u̇uu are N ×N Jacobian matrices.
Note also that ε = 0 is used when evaluating the group operator, so from Eq. (179) we have that qqq = uuu and q̇qq = u̇uu
in the evaluation of GFO. This means that Θ1(qqq, q̇qq,0) = Θ1(uuu, u̇uu,0) = u̇uu−F (uuu,0).

Evaluating the partial derivatives of Θ1 for the group operator with ε = 0 gives

∂Θ1

∂uuu
=−∂F

∂uuu
,

∂Θ1

∂ u̇uu
= 1, (184)

so then

GFOΘ1 =−∂F

∂uuu
hhh+hhh† =−Λbbbu∗+bbbΛ

∗u∗ = H1, where F (uuu,0) = Λuuu (185)

gives the Lie bracket part of the order-ε1 homological equation. The complete homological equation can then
be obtained by substituting Eq. (185) and Eq. (179) into Eq. (175). The resulting expressions can then be
compared with Eq. (131) obtained from the previous normal form techniques.

54Note that throughout this Section we are assuming that nnn2 = 0, ... etc. and so we use nnn1 = nnn, and correspondingly hhh1 = hhh, bbb1 = bbb and
n̂nnu1 = n̂nnu. Similarly for the analysis of second-order equations.
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4.3.2 Second-order equations

Now let us consider equations of second-order written in the form of Eq. (145) so that

d2q
dt2 = F̂ (q, q̇,ε) which can be redefined as q̈− F̂ (q, q̇,ε) = Θ2(q, q̇, q̈,ε) = 0. (186)

The group can now be prolonged again using the same approach as above (but with q instead of qqq etc.). First
the differential of q̇ is written as

dq̇ =
∂T†

∂ t
dt +

∂T†

∂u
du+

∂T†

∂ u̇
du̇. (187)

The function T† comes from the previously prolongated term in Eq. (178) and because T† is not a function of t,
then ∂T†/∂ t = 0. Now setting ∂T†/∂ t = 0 and dividing Eq. (187) by dt gives

q̈ =
∂T†

∂u
u̇+

∂T†

∂ u̇
ü. (188)

Substituting T† = u̇+ εbΛ∗u∗ (i.e. from Eq. (178)) leads to

q̈ = εbΛ
∗
(

∂u∗

∂u

)
u̇+(I +0) ü ; q̈ = ü+ εbΛ

∗2u∗.

So finally the prolonged group is

t = t,

q = T(u,ε) = u+ εbu∗,

q̇ = T†(u, u̇,ε) = u̇+ εbΛ
∗u∗,

q̈ = T‡(u, u̇, ü,ε) = ü+ εbΛ
∗2u∗.

(189)

Now define new augmented vectors as

q̌ =


q

q̇

q̈

 , ǔ =


u

u̇

ü

 , ȟ =


h

h†

h‡

 , Ť =


T

T†

T‡

 , (190)

such that the second, third and fourth equations in Eq. (189) can be combined to give a near-identity transfor-
mation in the new variables as

q̌ = T̂(ǔ,ε) = ǔ+ εȟ, (191)

where from above we know that h = bu∗, h† = bΛ∗u∗, and from Eq. (153)

h‡ =
dh†

dt
= bΛ

∗ du∗

dt
= (Λ∗)2u∗. (192)

Next the augmented variables can be substituted into Eq. (174), so that the group operator becomes

GSOΘ2 =
∂Θ2

∂ ǔ
ȟ =

∂Θ2

∂u
h+

∂Θ2

∂ u̇
h† +

∂Θ2

∂ ü
h‡. (193)

Evaluating the partial derivatives of Θ2 gives

∂Θ2

∂u
=−∂F̂

∂u
,

∂Θ2

∂ u̇
=−∂F̂

∂ u̇
,

∂Θ2

∂ ü
= 1, (194)
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so then

GSOΘ2 =−∂F̂

∂u
h− ∂F̂

∂ u̇
h† +h‡ = Λ̂bu∗+b(Λ∗)2u∗ =−Ĥ1, (195)

because

F̂ (q,ε) = F̂ (T(u,ε),ε)|ε=0 = Λ̂u ;
∂F̂

∂u

∣∣∣∣
ε=0

=−Λ̂ and
∂F̂

∂ u̇

∣∣∣∣
ε=0

= 0. (196)

Note that this analysis works providing all terms relating to q̇ and u̇ are included in the nonlinear vector of the
equation of motion. i.e. from Eq. (145) q̈ = F̂ (q, q̇,ε) = −Λ̂q− εn̂(q, q̇). If damping terms relating to q̇ were

included at ε0, then this would change the homological equation, because ∂F̂
∂ u̇

∣∣∣∣
ε=0
, 0. This is the reason

that damping terms are recommend to be included in the nonlinear vector in Section 4.5.1 for second-order
differential equations. However, this restriction does not apply to first order differential equations.

It’s interesting to note that Eq. (195) gives −Ĥ1 whereas in the first-order case we obtained H1 directly —
see Eq. (185). The reason is that for the definition of Θ2 given in Eq. (186), the term (Θ[q]−Θ[u])ε1 = nnnu −nnn
rather than nnn−nnnu as given in the homological equation for second order equations Eq. (156). If Θ2 is redefined
as Θ2 = F̂ − q̈ = 0 then then Eq. (195) becomes equal to +Ĥ1. In that case the homological equation given in
Eq. (195) becomes the same as Eq. (156). Next we consider the Hamiltonian Normal form first proposed by
Birkhoff [11].

4.4 Hamiltonian normal form

A standard result from classical mechanics (see for example [117, 54], and also [116, 120]) states that55: If the
Hamiltonian, H, of a nonlinear oscillator system can be written in the form

H(q) = H0(q)+ εH1(q)+O(ε2) (197)

then it is possible to define a coordinate transformation from the original coordinate set q to a new set of
coordinates u so that there is a new Hamiltonian function, called the Kamiltonian, given by

K(u) = H0(u)+ ε(H1(u)+{H0,G})+O(ε2), (198)

using the near-identity transformation

q = u+ ε{u,G}+O(ε2), (199)

where G is a generator function, ε is a series expansion parameter, and { f ,g} denotes the Poisson bracket for
two arbitrary functions f and g

{ f ,g}= ∂ f
∂q

∂g
∂ p

− ∂ f
∂ p

∂g
∂q

where q and p are some generalised coordinates. (200)

In the non-resonant case, {H0,G} = 0, which is often referred to as the Birkhoff normal form [11, 6]. In
contrast, the solution to the resonant case when, {H0,G} , 0, is attributed to Gustavson [57] and as a result
is called the Birkhoff-Gustavson normal form [38]. The question of how to choose an appropriate generating
function has a long history, and the interested reader can find full details of this in a number of papers, e.g.
[74, 34, 117, 37, 24, 38, 95, 174] and the textbooks [116, 120].

4.4.1 Hamiltonian to Kamiltonian transformation

The approach taken here will be to define the Kamiltonian in terms of a residual function R(u) such that

K(u) = H0(u)+ εR(u), (201)

55A demonstration of this result for the Duffing example is given later in Section 4.4.2.
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which at order ε1 leads to the relationship

R(u) = H1(u)+{H0,G}; {H0,G}= R(u)−H1(u), (202)

which is the order-ε1 homological equation in Hamiltonian form. To see how this result arises, we start by
substituting Eq. (199) into Eq. (197), so that

H(u+ ε{u,G}) = H0(u+ ε{u,G})+ εH1(u+ ε{u,G})+O(ε2), (203)

which when the right-hand-side is expanded gives to order ε1

K(u) = H(u+ ε{u,G}) = H0(u+ ε{u,G})+ εH1(u)+O(ε2). (204)

Now consider the H0 term on the right-hand-side. Birkhoff [11] showed that for a single degree-of-freedom
system56 H0(q) = ρqpqm where ρ is a constant related to the eigenvalues (a specific example is given in
Eq. (212)) and q = [qp qm]

T are the generalised coordinates. As a result, using Eq. (199) with u = [up um]
T we

have

H0(q) =⇒ H0(u+ ε{u,G}) = ρqpqm = ρ

(
up + ε

∂G
∂um

)(
um − ε

∂G
∂up

)
, (205)

which gives to order ε1

H0(u+ ε{u,G}) = ρ

(
upum + ε

(
um

∂G
∂um

−up
∂G
∂up

))
+O(ε2). (206)

Then because H0(u) = ρupum we can write

H0(u+ ε{u,G}) = ρ

(
upum +

ε

ρ

(
∂H0

∂up

∂G
∂um

− ∂H0

∂um

∂G
∂up

))
+O(ε2), (207)

which can be written as

H0(u+ ε{u,G}) = ρupum + ε{H0,G}+O(ε2),= H0(u)+ ε{H0,G})+O(ε2) (208)

which when substituted into Eq. (204) gives Eq. (198).

4.4.2 Example 13 Hamiltonian normal form for the conservative Duffing oscillator

Normally the coordinate displacement q, and momentum p = mq̇ are used for the Hamiltonian, but to avoid
confusion with coordinates qp and qm, here we use coordinates x for the displacement and p = mẋ for the
momentum for the undamped, unforced (i.e. conservative) Duffing oscillator given by Eq. (132) (see Example
11 Section 4.2.2). Then we can rewrite the equations of motion in the Hamiltonian form as

ẋ =
∂H
∂ p

=
p
m
,

ṗ =−∂H
∂x

=−kx− k3x3,

(209)

with the Hamiltonian

H(ppp) =
p2

2m
+

kx2

2
+ ε

k3x4

4
= H0 + εH1, (210)

where, m is mass, k linear stiffness, k3 nonlinear stiffness, ε is a small parameter, α = k3/m, and ω2
n is the linear

natural frequency and ppp = [x, p]T .

56This can be generalised to systems of N-degrees-of-freedom providing that the ith Hi0(q) function has the format Hi0(q) = ρiqipqim for
all i ∈ N, see [11]. However, and important detail to note is that for each degree-of-freedom, the result relies on k = mωn which only works in
a straightforward way for the case without detuning (shown here). In the case when detuning is added, additional frequency terms will be
generated at order ε1. Examples of systems with more than one degree-of-freedom can be found in [38, 174].
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Before we can use the result from Section 4.4.1, we need to apply a diagonalisation transform to get the
equations into the form of Eq. (197). The usual choice for a diagonalisation transform is related directly to the
modal transformation defined in Eq. (4)57. For consistency with the engineering approach we use the change
of coordinates defined by Eq. (4) above. As a result the diagonalisation transformation of the Hamiltonian
H(ppp)→ H(q), will be such that x = qp +qm and p = miωn(qp −qm), which can be written using Eq. (4) as x

p

=

 1 1

mλ1 mλ2

 qp

qm

 . (211)

Note that to use the Birkhoff form of H0 we do not use detuning, and so p = miωn(qp −qm) is assumed.
Substituting these relationships into the Hamiltonian Eq. (210) gives

H(q) = 2mω
2
n qpqm + ε

k3

4
(qp +qm)

4 = H0(q)+ εH1(q), (212)

from which we note that ρ = 2mω2
n in this example. When the H1 term is expanded we obtain

H1(q) =
k3

4
(
q4

p +4q3
pqm +6q2

pq2
m +4qpq3

m +q4
m
)
=

k3

4

[
1 4 6 4 1

]


q4
p

q3
pqm

q2
pq2

m

qpq3
m

q4
m


= H∗

1q†, (213)

where

H∗
1 =

k3

4

[
1 4 6 4 1

]
and q† =



q4
p

q3
pqm

q2
pq2

m

qpq3
m

q4
m


. (214)

The next step is to make the coordinate transformation from q → u via Eq. (199).
Now we define G and R to mirror the structure of H1 in Eq. (213), so that G(u) = G∗u†, and R(u) = R∗u†

where both are functions of u rather than q. Notice that to order ε1, H1(u) = H∗
1u† where u† exactly mirrors q†

but with qp = up and qm = um. This means that the homological equation Eq. (202)) can be written as

{H0,G∗u†}= R∗u† −H∗
1u† ; {H0,G∗u†}= (R∗−H∗

1)u
†. (215)

Next we consider the Poisson bracket {H0,G∗u†} which, using the definition for the Poisson bracket with
u = [up,um]

T , gives

{H0,G∗u†}= ∂H0

∂up

∂G∗u†

∂um
− ∂H0

∂um

∂G∗u†

∂up
. (216)

This leads to

{H0,G∗u†}= 2mω
2
n

(
umG∗ ∂u†

∂um
−upG∗ ∂u†

∂up

)
= 2mω

2
n [G1(−4) G2(−2) G3(0) G4(2) G5(4)]u†, (217)

such that the homological equation becomes

[G1(−4) G2(−2) G3(0) G4(2) G5(4)]u† =
1

2mω2
n
([0 0 R3 0 0]− k3

4
[1 4 6 4 1])u†, (218)

57However, most treatments are from a mathematical perspective, and the scaling m = ωn = 1 is applied (either directly, or through some
form of non-dimensionalisation) such that the transformation to new coordinates x̂xx = [x̂, p̂]T , is carried out such that x̂ = x+ ip and p̂ = x− ip
(see for example [195]). This choice of coordinates will lead to the desired form of the Hamiltonian as defined by Birkhoff [11].

179 | doi:10.25518/2684-6500.84 David J. Wagg

http://dx.doi.org/10.25518/2684-6500.84


Journal of Structural Dynamics, 1, (pp. 138-216) 2022
Normal form transformations for structural dynamics: An introduction for linear and nonlinear systems.

where the Ri coefficients have been set to zero except where a zero appears in {H0,G} on the left hand side of
Eq. (218). So Eq. (218) can be satisfied by setting

R3 =
3k3

2
, and G∗ =

α

8ω2
n

[
1
4

2 0 −2 − 1
4

]
where α =

k3

m
, (219)

and G∗ is multiplied by u† to give the generator function.
Next we consider finding an approximate solution for x using the Poisson bracket {u,G}

{u,G}= ∂u
∂up

∂G
∂um

− ∂u
∂um

∂G
∂up

. (220)

Because u = [up,um]
T is a vector this gives

{u,G∗u†}=

 1

0

G∗ ∂u†

∂um
−

 0

1

G∗ ∂u†

∂up
≡ α

8ω2
n

 2 0 −6 −1

−1 −6 0 2

u∗, (221)

where u∗ for this example is

u∗ =


u3

p

u2
pum

upu2
m

u3
m

 . (222)

Then to obtain the approximate expression for x, we use Eq. (221) with Eq. (199) and Eq. (211) to obtain

x = qp +qm = up +um + ε
α

8ω2
n
(u3

p +u3
m −6(u2

pum +upu2
m))+O(ε2). (223)

Now that the normal form has been obtained, we can substitute an assumed solution, which we take as the two
base solutions (without frequency detuning or phase lag) given as

up =
U
2

eiωnt and um =
U
2

e−iωnt , (224)

which then leads to a final expression for approximate displacement

x = (U − ε
3αU3

16ω2
n
)cos(ωnt)+ ε

αU3

32ω2
n

cos(3ωnt)+O(ε2). (225)

This can be compared to Eq. (143), which is the result from Example 12 (Section 4.2.2). □
As noted in Example 11, one characteristic of the approximation in Eq. (225) is that each order ε will update

each of the harmonic components in the series. So as more ε terms are added, the coefficients of each
harmonic components are modified. This is in contrast to the real normal form expression from Example 12,
Eq. (168), where the higher-order corrections are orthogonal to the fundamental part of the solution. However,
because there are free functions (see for example [85]) in the G∗ matrix, Eq. (225) can also be made to have
orthogonal higher-order correction terms. In this case the coefficient G3 can be chosen to have any value with
no change to the homological equation. In this example, if G3 = 3 is selected then the series solution becomes

x =U cos(ωnt)+ ε
αU3

32ω2
n

cos(3ωnt)+O(ε2). (226)

This is the same result as that obtained in Example 12, Eq. (168), when α2 = 0 and α1 = α are substituted.
Notice that although we have obtained a solution for x we have not yet defined the Kamiltonian or the

equations or motion for this example. To do this we first use Eq. (201) from which the Kamiltonian can be written
as

K(u) = 2mω
2
n upum + ε

3k3

2
u2

pu2
m +O(ε2), (227)
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which is the normal form of the Hamiltonian up to order ε, and can be compared with previous results, for
example in [195], which has the same structure, but different scaling, as part of the chosen coefficients and
diagonalisation transform. Substituting Eq. (224) into Eq. (227) gives

K(u) = k
U2

2
+ ε

3k3U4

32
+O(ε2), (228)

which implies that K(u) is independent of mass m, and is dependent on just the stiffness parameters k and k3
together with the amplitude value U . As such, it represents a nonlinear potential energy function for the Duffing
oscillator.

One of the advantages of using the Hamiltonian normal form is that you can work with Hamiltonians rather
than equations of motion. However, the transformations introduce a scaling factor, which is related to the nature
of the diagonalising transformation. To see this we note that in the original coordinates, ppp = [x, p]T the following
standard relationship holds

ṗpp = {ppp,H} (229)

which when evaluated gives Eq. (209). We would now like to find the equivalent version of this for the transformed
coordinates q and u. First consider the coordinate change from ppp → q, for which Eq. (229), via the chain rule,
becomes

∂x
∂qp

q̇p +
∂x

∂qm
q̇m =

∂H
∂qp

∂qp

∂ p
+

∂H
∂qm

∂qm

∂ p
,

∂ p
∂qp

q̇p +
∂ p

∂qm
q̇m =−

(
∂H
∂qp

∂qp

∂x
+

∂H
∂qm

∂qm

∂x

)
.

(230)

To compute the partial derivatives on the left of Eq. (230) we use Eq. (211) to find that

∂x
∂qp

=
∂x

∂qm
= 1,

∂ p
∂qp

= mλ1,
∂ p

∂qm
= mλ2. (231)

To find the partial derivatives on the right of Eq. (230) it is useful to explicitly define the inverse relationship of
the transformation using Eq. (211) giving

 qp

qm

=
1

m(λ2 −λ1)


mλ2 −1

−mλ1 1


 x

p

 . (232)

From this we obtain

∂qp

∂ p
=

−1
m(λ2 −λ1)

,
∂qm

∂ p
=

1
m(λ2 −λ1)

,
∂qp

∂x
=

1
2
,

∂qm

∂x
=

1
2
. (233)

Now, using these definitions, we can rewrite Eq. (230) as

q̇p + q̇m =
∂H
∂qp

(
−1

m(λ2 −λ1)

)
+

∂H
∂qm

(
1

m(λ2 −λ1)

)
,

mλ1q̇p +mλ2q̇m =− 1
2

(
∂H
∂qp

+
∂H
∂qm

)
,

(234)

which can be solved as a pair of simultaneous equations. For example, multiplying the first line in Eq. (234) by
−mλ1 and adding the two equations results in

q̇mm(λ2 −λ1) =
∂H
∂qp

(
−1

2

)
+

∂H
∂qm

(
1
2

)
− 1

2

(
∂H
∂qp

+
∂H
∂qm

)
,;

q̇m =− 1
m(λ2 −λ1)

∂H
∂qp

=
1

2miωn

∂H
∂qp

=−iωnqm + ε
3k3

2miωn
(qp +qm)

3,

(235)
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where ∂H
∂qp

has been obtained from Eq. (212). Similarly, multiplying the second line in Eq. (234) by −mλ2 and
adding the two equations results in

q̇p =
1

m(λ2 −λ1)

∂H
∂qm

= iωnqp − ε
3k3

2miωn
(qp +qm)

3, (236)

where ∂H
∂qm

has been obtained from Eq. (212).
Note that if we define ρ̂ = 1/(m(λ2 −λ1)) , then we have the modified Hamiltonian relationships58

q̇p =
1
ρ̂

∂H
∂qm

, q̇m =− 1
ρ̂

∂H
∂qp

, ; q̇ =
1
ρ̂
{q,H}. (237)

Now the transformation from q → u leads to the relationship

u̇p =
1
ρ̂

∂K
∂um

= iωnup + iε
3α

2ωn
u2

pum,

u̇m =− 1
ρ̂

∂K
∂up

=−iωnum − iε
3α

2iωn
upu2

m,

(238)

where, α = k3/m, and so u̇ = 1
ρ̂
{u,K}, which is exactly the same result we obtained using the complex normal

form in Example 11, as given in Eq. (141). Note that the scaling factor, ρ̂ relates to the term multiplying the
inverse matrix in Eq. (232).

4.5 Damping in normal form transformations

For the linear systems in Section 2 and Section 3 dealing with damped oscillators is relatively straight forward
(assuming viscous damping) and leads to well established results. However, in nonlinear normal form analysis,
the inclusion of damping is more complicated. We motivate this discussion, with the following example.

4.5.1 Example 14: the damped, unforced escape equation

The damped, unforced escape equation can be written as

ẍ+2ζ ωnẋ+ω
2
n x+βx2 = 0, ; ẋxx = Axxx+ ˜N (xxx) : A =

 0 1

−ω2
n −2ζ ωn

 , ˜N (xxx) =

 0

−βx2
1

 , (239)

where the states are xxx = {x1 x2}T = {x ẋ}T . Transforming to new coordinates qqq = {qp,qm}T using the linear
normal modes of the system, xxx = Φqqq (see Section 3.2) gives modal matrices

Λ =

 λ1 0

0 λ2

 , Φ =

 1 1

λ1 λ2

 , Φ
−1 =

1
λ2 −λ1

 λ2 −1

−λ1 1

 ,
where λ1 and λ2 are the eigenvalues of A, given by λ1,2 =−ζ ωn ± iωd . The transformed equation of motion is
given by

q̇qq = Λqqq+ εnnn1(qqq) where nnn1(qqq) = Φ
−1 ˜N (Φqqq) =

β

λ2 −λ1

 (qp +qm)
2

−(qp +qm)
2

 and nnn2 = 0, .... (240)

We know from Example 10 (Section 4.1.1) that quadratic terms can be eliminated at order k = 2 or ε1 and so
we assume that a nonlinear coordinate transformation from coordinate qqq to a new coordinate set uuu, is possible
obtain a linear system of the form

u̇uu = Λuuu+O(ε2) or written in full

 u̇p

u̇m

=

 λ1 0

0 λ2

 up

um

+O(ε2), (241)

58We note that [6] also comments on modified Hamiltonian relationships for the case where ρ̂ = i.
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which means completely eliminating the nonlinear term nnn1(qqq) in Eq. (240)59. To do this we make the transforma-
tion

qqq = uuu+ εhhh(uuu) =

 up

um

+ ε

 h1(up,um)

h2(up,um)

=

 up

um

+ ε

 b1u2
p +b2upum +b3u2

m

b4u2
p +b5upum +b6u2

m

+O(ε2), (242)

where the dots are used to denote that the h j(up,um) series can have higher order terms, and we have included
up to quadratic terms because the nonlinear term in Eq. (239) is quadratic. The b j are coefficients that are yet
to be identified. Substituting the first of Eq. (242) and Eq. (241) into Eq. (240) leads to order-ε1 homological
equation of the form

ε
1 :

d
dt

hhh−Λhhh = nnn(uuu) ;
∂hhh
∂uuu

Λuuu−Λhhh = nnn(uuu) ; bbbΛ
∗u∗−Λbbbu∗ = nnn∗u∗. (243)

In order to compute the Lie derivative we use

∂hhh
∂uuu

Λuuu =


∂h1

∂up

∂h1

∂um
∂h2

∂up

∂h2

∂um


 λ1 0

0 λ2

 up

um

 . (244)

As a result the order-ε1 homological equation Eq. (243) can be written as b1(−λ1) b2(−λ2) b3(λ1 −2λ2)

b4(λ2 −2λ1) b5(−λ1) −b6(λ2)

u∗ =− β

λ2 −λ1

 1 2 1

−1 −2 −1

u∗, (245)

where u∗ = [u2
p upum u2

m]
2. Eq. (245) can be solved for the b j coefficients and substituted into Eq. (242) to give

a transformation of

qqq = uuu+hhh(uuu) =

 up

um

+ ε

 β

(λ2−λ1)λ1
u2

p +
2β

(λ2−λ1)λ2
upum − β

(λ2−λ1)(λ1−2λ2)
u2

m
β

(λ2−λ1)(λ2−2λ1)
u2

p −
2β

(λ2−λ1)λ1
upum − β

(λ2−λ1)λ2
u2

m

+O(ε2) (246)

up to quadratic terms. □
This analysis relies on the denominator terms such as (λ2 −2λ1) that occur in Eq. (245) and Eq. (246) not

becoming zero (otherwise the system would have resonances). In this case, the eigenvalues are complex, and
therefore they are in the Poincaré domain (see Fig. 4), meaning non-resonant. However, what happens as the
damping becomes small and ζ → 0 so that λ1,2 →±iωn? In that case, we might want to consider the case when
the eigenvalues are in the Siegel domain, and therefore the homological equation detects the resonant terms
(see Section 4.1.2 for a more detailed discussion of resonance in this context). There are three methods that
can do this, and these are:

Method 1: A solution to this problem proposed by Jezequel & Lamarque [80] was to reformulate the eigen-
values using the idea of a detuning parameter (using a k-order methodology). So for Example 14 where the
eigenvalues are λ1,2 =−ζ ωn ± iωd we write

λ1 = iωn +δ

λ2 =−iωn + δ̄
(247)

where δ is the detuning parameter such that, Reδ =−ζ ωn, Imδ = ωn(1−
√

1−ζ 2) and |δ | ≪ 1 meaning that
ζ ≪ 1. Here Imδ is used to represent the detuning (meaning small difference) between ωn and ωd .

Applying this approach to Example 14, Eq. (244) becomes

∂h
∂uuu

Λuuu =


∂h1

∂up

∂h1

∂um
∂h2

∂up

∂h2

∂um


 iωn 0

0 −iωn

 up

um

+ terms in δ ,

and
1

λ2 −λ1
=

1
−2iωn

+ terms in δ

(248)

59Note that because nnn2 = 0, ... etc. we use nnn1 = nnn, and correspondingly bbb1 = bbb and n̂nnu1 = n̂nnu.
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where the terms in δ are assumed to be relevant only at the next highest order than the one currently being
computed (e.g in this example we are computing to quadratic, so δ terms are assumed to be included at cubic
order). Now substituting these new expressions into Eq. (246) (with ε = 1) gives

q = uuu+h(uuu) =

 up

um

+ β

ω2
n


u2

p

2
−upum −u2

m

6

−
u2

p

6
−upum

u2
m

2

 , (249)

which once the base solutions are substituted, and using x = x1 = qp + qm, gives the same solution for x as
Eq. (105) (the undamped normal form). The normal form equations, Eq. (241), become

u̇p = +iωnup +δup,

u̇m = −iωnum + δ̄um,

(250)

which is a linear damped system. We note at this order, damping appears in Eq. (250), but not in the series
solution for x1 (e.g. Eq. (105)) because the damping terms have been shifted up to the next order. To see the
effect of damping in the solution for x1 it would be necessary to compute the next order of the normal form.

The concept of detuning is a very important one for nonlinear normal forms and we will return to it in
Section 4.6. However, to continue the discussion on including damping in normal form transformations of
nonlinear systems we mention two further methods.

Method 2: This is to use the method of reduction of order presented in Section 2.3. Let’s consider how this
might work for the damped escape equation from Example 14 (Section 4.5.1). The damped, unforced escape
equation (e.g. Eq. (239)) can be expressed as

ẍ+ ε ẋ+ω
2
n x+ εβ̂x2 = 0, (251)

where we have rescaled the β coefficient such that β = εβ̂ and ε = 2ζ ωn. This rescaling means that we are
assuming that both the damping and nonlinear coefficient are of the order ε1 small, which is a reasonable
assumption for many weakly nonlinear oscillators, but will restrict the parameter values for which this method
can be applied. Next make the reduction of order substitution x = q(t)e−

ε
2 t so that the escape equation becomes

q̈+ω
2
d x+ εe−

ε
2 t

β̂q2 = 0. (252)

Now, assuming ε is a small quantity we can apply an approximation of the exponential function e−
ε
2 t =

1− ε

2 t + ...O(ε2t2) we obtain

q̈+ω
2
d x+ ε(1− ε

2
t)β̂q2 = 0 ; q̈+ω

2
d x+ εβ̂q2 + ...O(ε2) = 0, (253)

which is valid when ε is small, and is equivalent to the case when damping is small, ζ ≪ 1. Now Eq. (253) has
the same structure as the undamped escape equation, except now the damping is included in the damped
natural frequency, ωd . Applying the normal form transformation to Eq. (253) gives a normal form equation (e.g.
Eq. (83) with n(2)u = n(3)u = 0 and ωd replacing ωn) of

ü+ω
2
d u = 0. (254)

and a solution for x (e.g. Eq. (105) with ωd replacing ωn) of

x =U cos(ωdt)+
βU2

6ω2
d

cos(2ωdt)− βU2

2ω2
d
. (255)

Notice that now the solution for x in Eq. (255) is in terms of ωd , but there is no exponential decay, and just
like the Jezequel & Lamarque [80] solution, higher order terms need to be computed to include these effects,
which in this case are the O(ε2) terms60. In fact computing the higher order terms in both the above methods is
non-trivial, and so we present a third method which is used in preference to both previous methods.

60The interested reader might want to study the related method proposed by Burton [17] which avoids the expansion of the exponential
term.
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Method 3: In this method we treat the damping terms as part of the nonlinear vector such that the unforced
version of Eq. (79) becomes

Mẍ+Kx+Nd(x, ẋ) = 0, (256)

where the Nd vector now also contains the damping terms. The particular logic for doing this for systems of
equations written in second-order form, has been described in Section 4.3.2, and for such systems this is the
most straightforward method to implement. Further details can be found in [183]. An example will be shown in
Section 4.6.1

4.6 Frequency detuning

We now consider an important modelling technique that will allow us to distinguish between a response
frequency, ωr, that is different from the linear damped or undamped natural frequencies, ωd and ωn respectively.
This will enable us to develop the idea of amplitude-dependent backbone curves in Section 4.8, although it
should be noted that backbone curves (and other types of parameter variation) can be obtained using many
other techniques — see for example [163, 112, 148, 149, 150, 90, 50, 53, 119, 173, 101, 119]. We consider
the multi-frequency case (i.e. more than a single-degree-of-freedom) where

ω
2
ni = ω

2
ri + εδi +O(ε2) for i = 1,2,3...N. (257)

Then we can form a matrix equation

Λ̂ = ϒ+ ε∆+O(ε2) where ϒ =


ω2

r1 0 ... 0 0

0 ω2
r2 ... 0 0

...
...

...
. . . 0

0 0 ... 0 ω2
rN

 , (258)

the matrix Λ̂ is given by Eq. (70) and ∆ is a diagonal matrix of the δi values.
Now consider the case when the homological equation is derived up to second order (Eq. (154) and Eq. (155)

combined), which gives

−εn̂u1(u)− ε
2n̂u2(u)+ εḧ1 + ε

2ḧ2 =−Λ̂(εh1 + ε
2h2)− εn̂1(u)− ε

2 ∂ n̂1(u)
∂u

h1 − ε
2n̂2(u), (259)

where ∂ n̂
∂u is the Jacobian matrix (or gradient vector) depending on the dimensions of u, and an overdot represents

d
dt . Now we introduce detuning using Eq. (258) to give

−εn̂u1(u)− ε
2n̂u2(u)+ εḧ1 + ε

2ḧ2 = (ϒ+ ε∆)(εh1 + ε
2h2)− εn̂1(u)− ε

2 ∂ n̂1(u)
∂u

h1 − ε
2n̂2(u). (260)

Now it can be seen from Eq. (260) that the terms at orders ε1 and ε2 can be equated separately such that

ε1 : n̂1 − n̂u1 =−ḧ1 −ϒh1 =−b1 (Λ
∗

d)
2 u∗−ϒb1u∗,

ε2 : ∆h1 +
∂ n̂1
∂u

h1 + n̂2 − n̂u2 =−ḧ2 −ϒh2 =−b2ϒ̃
2u+−ϒb2u+.

(261)

The first line in Eq. (261) is the detuned order-ε1 homological equation (compare with in Eq. (156)), where
Λ∗

d represents the Lie derivative coefficient matrix obtained from Eq. (127) (and Eq. (153)) when the detuned
system is being considered. This type of detuned formulation will be used for the rest of the examples in this
paper, starting with Examples 15 and 16 (Section 4.6.1 and Section 4.6.2 respectively).

The second line in Eq. (261) gives the detuned order-ε2 homological equation which needs to be solved if
the normal form is to be computed to order ε2 or higher. In this case the basis function is u+ such that h2 = b2u+.
Notice also that evaluating the ḧ2 term leads to a ϒ̃2 term. This term is equivalent to (Λ∗

d)
2, and is computed as

the Lie derivative coefficient matrix obtained from Eq. (127) (and Eq. (153)) when the detuned system is being
considered. This will be demonstrated in Example 18, Section 4.8.1. Now we consider two detuned examples
computed to order ε1.
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4.6.1 Example 15 the unforced Van der Pol oscillator

The unforced Van der Pol oscillator can be written as

ẍ+ ε(µx2 − γ)ẋ+ω
2
n x = 0, with x = q ; q̈+ω

2
n q+ ε(µq2 − γ)q̇ = 0, ; q̈+ω

2
n q+ εn̂1(qp,qm) = 0, (262)

where by using q = qp +qm and q̇ = iωr(qp −qm) we can obtain

n̂1(qp,qm) = iωr(µq3
p +µq2

pqm −µqpq2
m −µq3

m − γqp + γqm) = iωr[µ µ −µ −µ − γ γ]q∗, (263)

where q∗ = [q3
p q2

pqm qpq2
m q3

m qp qm]
T and n2 = 061. Notice that, as described in Section 4.5.1, we are

including the linear damping term in the nonlinear vector n̂(qp,qm).
Now apply a near-identity nonlinear transform, Eq. (116), of the form

q = u+ εbu∗ where b = [b1 b2 b3 b4 b5 b6], (264)

and u∗ = [u3
p u2

pum upu2
m u3

m up um]
T . The transformed dynamic equation, Eq. (146), is expressed in the new

coordinates as

ü+ω
2
n u+ εn̂u(up,um) = 0. (265)

Substituting Eq. (264) and Eq. (265) into Eq. (262) (with detuning) leads to the ε1 homological equation Ĥ1(u)
given by

ε
1 : −b

d2u∗

dt2 −ω
2
r bu∗ = n̂− n̂u =−bΛ

∗2
du∗−ϒbu∗. (266)

Then using n̂u = [n̂u1 n̂u2 n̂u3 n̂u4 n̂u5 n̂u6]u∗, the second Lie derivative Eq. (153), with qi → ui (to order ε0) gives

(iωr[µ µ −µ −µ − γ γ]− [n̂u1 n̂u2 n̂u3 n̂u4 n̂u5 n̂u6])u∗ =
−(iωr)

2
[

b1 b2 b3 b4 b5 b6

]


3 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −3 0 0

0 0 0 0 1 0

0 0 0 0 0 −1



2

−ω
2
r

[
b1 b2 b3 b4 b5 b6

]


u∗.

(267)

Evaluating the right hand side gives four zero values which allows the n̂u coefficients to be identified such that

(iωr[µ µ −µ −µ − γ γ]− iωr[0 µ −µ 0 − γ γ ])u∗ = [b1(8ω
2
r ) b2(0) b3(0) b4(8ω

2
n ) b5(0) b6(0)]u∗. (268)

From this, the transform coefficient values are b1 = iµ/8ωr, b4 =−iµ/8ωr, and b2 = b3 = b5 = b6 = 0. Note that
b2, b3, b5 and b6 are the free functions in this example, as any value can be selected without affecting the
outcome of the homological equation. Other choices will be discussed in Section 4.7. Next, using the fact that

εn̂u(up,um) = εiωr[0 µ −µ 0 − γ γ ]u∗ = εiωr(µu2
pum −µupu2

m − γup + γum) = εiωr(µupum − γ)(up −um),

and noting that iωr(up −um) = u̇ gives the ε1 real normal form as

ü+ω
2
n u+ ε(µupum − γ)u̇ = 0, ; ü+ω

2
n u+ ε(µ

U2

4
− γ)u̇ = 0, (269)

when the base solutions are used in the upum term. In fact, substituting the base solutions into Eq. (269) gives

(iωr)
2 U

2
(eiωrt + e−iωrt)+ω

2
n

U
2
(eiωrt + e−iωrt)+ iωrε(µ

U2

4
− γ)

U
2
(eiωrt − e−iωrt) = 0. (270)

61As n2 = 0, ... etc. we set n1 = n, and correspondingly, h1 = h, b1 = b and n̂u1 = n̂u throughout this example.
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Fig. 6: Two simulations of the undamped Van der Pol oscillator showing the solution, x, from Example 15 (real normal form
shown with red crosses). The normal form solution is compared with a reference solution generated from a fourth-order
Runge-Kutta integration (the ‘odeint’ numerical integration routine from the Python numerical library — blue solid line). The
real normal form solution is computed with Eq. (273) (red crosses). Parameter values are: x(0) = 0.025, γ = 0.2, and ωn = 1.
In panel (a) the nonlinearity is relatively small µ = 1, so that U = 0.89, and in panel (b) the nonlinearity is five times larger,
µ = 5, so that U = 0.4. The initial condition for the odeint simulation has been deliberately set to be less than the steady
state amplitude of the limit cycle (i.e. periodic solution), in order to demonstrate how the transient solution converges to the
limit cycle as time increases.

The real and imaginary parts of the eiωrt terms (or the e−iωrt ) can be balanced to give

Re : ω2
r = ω2

n , ; ωr = ωn,

Im : ωrε(µ
U2

4
− γ) = 0, ; U =

√
4

γ

µ
,

(271)

which corresponds to the classical solution to the unforced Van der Pol oscillator with a single limit cycle solution.
Using ωr = ωn, the near-identity transform, to order ε1 may now be written as

x = u+ εbu∗ =
U
2
(eiωnt + e−iωnt)+ ε

[
iµ

8ωn
0 0

−iµ
8ωn

0 0
]

u∗, (272)

which gives the solution for x as

x =
√

4
γ

µ
cos(ωnt)− ε

µ

32ωn

(√
4

γ

µ

)3

sin(3ωnt)+O(ε2). □ (273)

A numerically computed example is shown in Fig. 6.

4.6.2 Example 16 the unforced Rayleigh oscillator

The unforced Rayleigh oscillator can be written as62

ẍ+ ε(
ẋ2

3
−1)ẋ+ω

2
n x = 0, with x = q ; q̈+ω

2
n q+ ε(

q̇2

3
−1)q̇ = 0, ; q̈+ω

2
n q+ εn̂(qp,qm) = 0, (274)

where by using q = qp +qm and q̇ = iωr(qp −qm) we can obtain

n̂(qp,qm) =−iωr(
ω2

r

3
(q3

p −3q2
pqm +3qpq2

m −q3
m)+qp −qm) = iωr[−

ω2
r

3
ω

2
r −ω

2
r

ω2
r

3
−1 1]q∗, (275)

where q∗ = [q3
p q2

pqm qpq2
m q3

m qp qm]
T . Notice that, as described in Section 4.5.1, we are including the linear

damping term in the nonlinear vector n̂(qp,qm).

62As before n2 = 0, ... etc. so we set n1 = n, and correspondingly, h1 = h, b1 = b and n̂u1 = n̂u throughout this example.
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Now apply a near-identity nonlinear transform, Eq. (116), of the form

q = u+ εbu∗ where b = [b1 b2 b3 b4 b5 b6], (276)

and u∗ = [u3
p u2

pum upu2
m u3

m up um]
T . The transformed dynamic equation, Eq. (146), is expressed in the new

coordinates as

ü+ω
2
n u+ εn̂u(up,um) = 0. (277)

Substituting Eq. (276) and Eq. (277) into Eq. (274) (with detuning) leads to the ε1 homological equation Ĥ1(u)
given by

ε
1 : −b

d2u∗

dt2 −ω
2
r bu∗ = n̂− n̂u =−bΛ

∗2
du∗−ϒbu∗. (278)

Then using n̂u = [n̂u1 n̂u2 n̂u3 n̂u4 n̂u5 n̂u6]u∗, the second Lie derivative Eq. (153), with qi → ui (to order ε0) gives(
iωr[−

ω2
r

3
ω

2
r −ω

2
r

ω2
r

3
−1 1]− [n̂u1 n̂u2 n̂u3 n̂u4 n̂u5 n̂u6]

)
u∗ =

−(iωr)
2
[

b1 b2 b3 b4 b5 b6

]


3 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −3 0 0

0 0 0 0 1 0

0 0 0 0 0 −1



2

−ω
2
r

[
b1 b2 b3 b4 b5 b6

]


u∗.

(279)

Evaluating the right hand side gives four zero values which allows the n̂u coefficients to be identified such that(
iωr[−

ω2
r

3
ω

2
r −ω

2
r

ω2
r

3
−1 1]− iωr[0 ω

2
r −ω

2
r 0 −1 1]

)
u∗= [b1(8ω

2
r ) b2(0) b3(0) b4(8ω

2
n ) b5(0) b6(0)]u∗.

(280)

From this the transform coefficient values are b1 = iωr/24, b4 =−iωr/24, and b2 = b3 = b5 = b6 = 0. Next, using
the fact that

εn̂u(up,um) = εiωr[0 ω
2
r −ω

2
r 0 −1 1]u∗ = εiωr(ω

2
r u2

pum −ω
2
r upu2

m −up +um) = εiωr(ω
2
r upum −1)(up −um),

and noting that iωr(up −um) = u̇ gives the ε1 real normal form as

ü+ω
2
n u+ ε(ω2

r upum −1)u̇ = 0, (281)

Substituting the base solutions into Eq. (281) gives

(iωr)
2 U

2
(eiωrt + e−iωrt)+ω

2
n

U
2
(eiωrt + e−iωrt)+ iωrε(ω

2
r

U2

4
−1)

U
2
(eiωrt − e−iωrt) = 0. (282)

The real and imaginary parts of the eiωrt terms (or the e−iωrt ) can be balanced to give

Re : ω2
r = ω2

n , ; ωr = ωn,

Im : ωrε(ω
2
r

U2

4
−1) = 0, ; U =

√
4

ω2
r
,

(283)

which is the same as the unforced Van der Pol oscillator with parameters µ = ω2
r and γ = 1. Using ωr = ωn, the

near-identity transform, to order ε1 may now be written as

x = u+ εbu∗ =
U
2
(eiωnt + e−iωnt)+ ε

[
iωn

24
0 0

−iωn

24
0 0
]

u∗, (284)
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which gives the solution for x as

x =

√
4

ω2
n

cos(ωnt)− ε
ωn

96

(√
4

ω2
n

)3

sin(3ωnt)+O(ε2). □ (285)

Using this type of real normal form approach, the Rayleigh and Van der Pol oscillators therefore have the same
normal form structure, and only differ in terms of the constants in the nonlinear term. Next we consider how the
choice of the free functions can be used.

4.7 Choice of free functions

As was previously noted, if zeros occur in the homological equation, then the bi coefficient that corresponds to
the zero can be chosen to have any value without changing the homological equation. We follow [85] in calling
the bi coefficients the ‘free functions’. The key point to note is that although the free functions do not change
the homological equation they do change the solution for x. In most of the examples shown so far, bi = 0 is
chosen whenever there was a free function choice, except in Example 13, Section 4.4.2, where we showed
how a specific choice of the free function could be used to alter the solution for x (see Eq. (226) and the related
discussion).

Another concept, called the minimal normal form, uses the choice of free functions to try an eliminate terms
at higher order in the solution for x. For example, in the case where we are truncating at order ε1, then the idea
is to try and eliminate terms at order ε2 and above. In order to carry out a minimal normal form, we need to
compute the homological equation truncated at second order (or higher), which is taken as the second line in
Eq. (261) .

Now consider eliminating the ε2 terms (and higher if required) in the solution for x. In this context it means
setting h2 = 0 (i.e setting all the bi coefficients to zero for h2). It can be seen that if this is done for the second
line in Eq. (261), the result is

∆h1 +
∂ n̂1
∂u

h1 + n̂2 − n̂u2 = 0. (286)

So, to obtain the minimal normal form to order ε2 step one is to solve the ε1 homological equation (first line in
Eq. (261)) to find h1, then use Eq. (286) to solve for n̂u2. An example will be considered next.

4.7.1 Example 17: The minimal normal form for the undamped cubic-quintic oscillator

We consider the cubic-quintic oscillator from Example 12 (Section 4.2.4) written as

ẍ+ω
2
n x+ εα1x3 + εα2x5 = 0 with x = q ; q̈+ω

2
n q+ εα1q3 + εα2q5 = 0, ;

q̈ =−ω
2
n q− εn̂1(qp,qm) = 0,

(287)

from which the ε1 homological equation gives (see Eq. (164))

([α1 3α1 3α1 α1 α2 5α2 10α2 10α2 5α2 α2]− [0 3α1 3α1 0 0 0 10α2 10α2 0 0])u∗ =

[b1(8ω
2
r ) b2(0) b3(0) b4(8ω

2
r ) b5(24ω

2
r ) b6(8ω

2
r ) b7(0) b8(0) b9(8ω

2
r ) b10(24ω

2
r )]u

∗,

(288)

although here we apply detuning using the analysis in Section 4.6 so that the expression has ωr rather than ωn
as in Eq. (164). In this case the coefficient values are b1 = b4 = α1/8ω2

r , b6 = b9 = 5α2/8ω2
r , b5 = b10 = α2/24ω2

r ,
and b2 = b3 = b7 = b8 = 0 which means that the ε1 term in Eq. (116) will be given by

h1 = b1u∗ =
α1

8ω2
r

u3
p +

α1

8ω2
r

u3
m +

α2

24ω2
r

u5
p +

5α2

8ω2
r

u4
pum +

5α2

8ω2
r

upu4
m +

α2

24ω2
r

u5
m. (289)

We can use this to find the minimal normal form for the cubic-quintic oscillator using Eq. (286). To do this note
that for the single-degree-of-freedom oscillator such as this u = u, so from Eq. (287),

n̂1(q) = α1q3 +α3q5 ; α1(u+ εh1)
3 +α(u+ εh1)

5 ; (α1(u)3 +α2(u)5)|ε=0 ;

∂ n̂1(u)
∂u

= 3α1(u)2 +5α2(u)4 = 3α1(up +um)
2 +5α2(up +um)

4
(290)
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where ε = 0 has been used in the partial derivative, so that when the resulting expression are substituted into
the second line of Eq. (261) then only terms up to order-ε2 are retained.

Now we can write Eq. (286) for the cubic-quintic oscillator (noting that n̂2 = 0 from Eq. (287)) as

(∆+3α1(up +um)
2 +5α2(up +um)

4)

(
α1

8ω2
r

u3
p +

α1

8ω2
r

u3
m +

α2

24ω2
r

u5
p +

5α2

8ω2
r

u4
pum +

5α2

8ω2
r

upu4
m +

α2

24ω2
r

u5
m

)
= n̂u2

; n̂u2 = A1u3
p +A2u3

m +A3u5
p +A4u4

pum +A5u3
pu2

m +A6u2
pu3

m +A7upu4
m +A8u5

m +O(k = 7)

(291)

where ∆ = ω2
n −ω2

r and

A1 = A2 =
∆α1

8ω2
r
, A3 = A8 =

9α2
1 +∆α2

24ω2
r

, A4 = A7 =
6α2

1 +5∆α2

8ω2
r

, A5 = A6 =
3α2

1
8ω2

r
, (292)

and we have included terms up to k = 5 order in Eq. (291). Then by adding the ε2 (e.g up to k = 5) terms to the
ε normal form, Eq. (165), (e.g. to obtain Eq. (146)), the minimal normal form becomes

ü+ω
2
n u+ ε3α(u2

pum +upu2
m)+ ε10α2(u3

pu2
m +u2

pu3
m)

+ε
2(A1u3

p +A2u3
m +A3u5

p +A4u4
pum +A5u3

pu2
m +A6u2

pu3
m +A7upu4

m +A8u5
m)+O(ε3,k = 7) = 0.

(293)

Then the assumed base solutions (from Eq. (22)), are substituted into Eq. (116) (lower) to give the solution for x
as

x =U cos(ωrt)+ ε

(
α1U3

32ω2
r
+

5α2U5

128ω2
r

)
cos(3ωrt)+ ε

α2U5

384ω2
r

cos(5ωrt)+O(ε3). □ (294)

Note that due to the fact that this is a single-degree-of-freedom oscillator and h2 = 0, Eq. (294) is given by
x = q = u+ εh1 + ε2(0). When Eq. (294) is compared with Eq. (168) from Example 12, it can be seen that the
expressions are almost the same except Eq. (294) has the detuned frequency, ωr, and is computed to order
O(ε3) rather than O(ε2). As can be seen from this example, this type of manipulation is just forcing all the terms
that would appear in the solution for x, Eq. (294) into the normal form Eq. (293). The complexity of Eq. (293) is
significantly increased, which may be a disadvantage for some applications. If instead of this we set h2 , 0 in
the ε2 homological equation (second line in Eq. (261)) then we can obtain the real normal form to order ε2. This
will be demonstrated in Example 18 (Section 4.8.1).

4.8 Backbone curves

An important application that can be achieved using normal form is the computation of backbone curves.
The idea of a backbone curve was introduced in Section 1.1.3, and an example was shown in Fig. 2. To
compute backbone curves using the types of normal form transformations described in this paper, detuning
needs to be included. This is because, the backbone curve represents (an approximation) of the nonlinear
amplitude-frequency variation which is a fundamental characteristic of many nonlinear oscillators. For example,
the backbone curve relationship shown in Fig. 2, can be derived from the detuned version of Example 12
(Section 4.2.4). From Example 12, substituting the (detuned) base solutions (Eq. (22)) into Eq. (165),

(iωr)
2 U

2
(eiωrt + e−iωrt)+ω

2
n

U
2
(eiωrt + e−iωrt)+ ε3α

U3

8
(eiωrt + e−iωrt) = 0. (295)

The coefficients of the eiωrt terms (or the e−iωrt ) can be balanced to give

ω
2
r = ω

2
n + ε

3αU2

4
+O(ε2), (296)

from which, when ε = 1, we can obtain

ωr =

√
ω2

n +α
3U2

4
+O(2). (297)
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Fig. 7: Conservative backbone curves, showing (a) examples of conservative backbone curves for the Duffing oscillator
computed using Eq. (297) for different values of α when ωn = 1, and (b) a schematic diagram of the conservative backbone
concept. Here the conservative backbone curve is defined as the curve that joins all the points of maximum displacement
for a family of periodic orbits generated by the nonlinear oscillator under investigation. For clarity, just two periodic orbits
are shown here (blue curves). The maximum (and minimum) points of displacement amplitude are shown as black dots,
and both the positive and negative backbone curves are shown (red curves). Typically just the upper half of this diagram is
shown (as in panel (a)), and symmetry is assumed for the lower half. Note that units of frequency are in radians per second,
and units of displacement amplitude, U are in mm or m.

It should be noted that the example shown in Fig. 2 had negative α and so substituting −α into Eq. (296)
gives the same relationship as Eq. (26) from Example 2. Backbone curves computed for undamped, unforced
systems are called conservative backbone curves. A schematic diagram of the concept and example curves for
Eq. (297) are shown in Fig. 7. We now consider computing the backbone curve to order ε2 for the undamped
cubic-quintic oscillator

4.8.1 Example 18: the ε2 real normal form of the undamped cubic-quintic oscillator

The ε2 real normal form of the undamped cubic-quintic oscillator can be found by extending the analysis from
the order-ε1 approach shown in Example 12, Section 4.2.4 (noting that n̂2 = 0 from Eq. (287), and that the
quintic nonlinear terms are included in n̂1 in these examples). To do this, we first express Eq. (291) as

∆h1 +
∂ n̂
∂u

h1 = A1u3
p +A2u3

m +A3u5
p +A4u4

pum +A5u3
pu2

m +A6u2
pu3

m +A7upu4
m +A8u5

m = n̂+u+, (298)

where

n̂+ = [A1 A2 A3 A4 A5 A6 A7 A8] and u+ =



u3
p

u3
m

u5
p

u4
pum

u3
pu2

m

u2
pu3

m

upu4
m

u5
m


, (299)

such that if we use u+ as the basis for all the terms in the ε2 homological equation, and the A j coefficients are
given in Eq. (292). Then (the second line in) Eq. (261) becomes

n̂+u+− n̂+
u2u+ =−b2ϒ̃

2u+−ϒb2u+, (300)
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where we have used the second Lie derivative (Eq. (153)) in order to evaluate ḧ2 and thus find ϒ̃2. In addition,
n̂+

u2 and b2 are coefficient matrices of the same dimension as n̂+.
Computing the ε2 homological equation for the undamped cubic-quintic oscillator gives

([A1 A2 A3 A4 A5 A6 A7 A8]− [n̂u21 n̂u22 n̂u23 n̂u24 n̂u25 n̂u26 n̂u27 n̂u28])u+ =

−(iωr)
2[b1 b2 b3 b4 b5 b6 b7 b8]



3 0 0 0 0 0 0 0

0 −3 0 0 0 0 0 0

0 0 5 0 0 0 0 0

0 0 0 3 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 −3 0

0 0 0 0 0 0 0 −5



2

−ω
2
r [b1 b2 b3 b4 b5 b6 b7 b8]



u+.

(301)

Evaluating the right hand side gives two zero values which allows the n̂+
u2 coefficients to be identified such that

([A1 A2 A3 A4 A5 A6 A7 A8]− [0 0 0 0 A5 A6 0 0])u+ =

[b1(8ω
2
r ) b2(8ω

2
r ) b3(24ω

2
r ) b4(8ω

2
n ) b5(0) b6(0) b7(8ω

2
r ) b8(24ω

2
r )]u

+.
(302)

Next we substitute for A5 and A6 from Eq. (292) and then use the fact that

ε
2n̂u2(up,um) = ε

2[0 0 0 0
3α2

1
8ω2

r

3α2
1

8ω2
r

0 0]u+ = ε
2 3α2

1
8ω2

r
(u3

pu2
m +u2

pu3
m),

which is up to k = 5, as for Example 17. Then by adding the ε2 (e.g up to k = 5) terms to the ε normal form,
Eq. (165), (e.g. to obtain Eq. (146)), the ε2 normal form becomes

ü+ω
2
n u+ ε3α1(u2

pum +upu2
m)+

(
ε10α2 + ε

2 3α2
1

8ω2
r

)
(u3

pu2
m +u2

pu3
m) = 0. (303)

Using the values for b1 from Eq. (289), and b2 from solving Eq. (302), the near-identity transform, to order ε2

may now be written as

x = u+ εb1u∗+ ε
2b2u+ =

U
2
(ei(ωrt)+ e−i(ωrt))+ ε

[
α1

8ω2
r

0 0
α1

8ω2
r

α2

24ω2
r

5α2

8ω2
r

0 0
5α2

8ω2
r

α2

24ω2
r

]
u∗+

ε
2[

∆α1

64ω4
r

∆α1

64ω4
r

9α2
1 +∆α2

576ω4
r

6α2
1 +5∆α2

64ω4
r

0 0
6α2

1 +5∆α2

64ω4
r

9α2
1 +∆α2

576ω4
r

]u+,

(304)

where u∗ is given by Eq. (162). Then the assumed base solutions (from Eq. (22)), are substituted into Eq. (304)
to give the solution for x as x = q = u+ εh1 + ε2h2 which leads to

x =U cos(ωrt)+
[

ε
α1U3

32ω2
r
+ ε

5α2U5

128ω2
r
+ ε

2 ∆α1U3

256ω4
r
+ ε

2 3α2
1U5

512ω4
r
+ ε

2 ∆α2U5

1024ω4
r

]
cos(3ωrt)

+

[
ε

α2U5

384ω2
r
+ ε

2 α2
1U5

1024ω4
r
+ ε

2 ∆α2U5

9216ω4
r

]
cos(5ωrt)+O(ε3,k = 7).

(305)

To find an expression for ω2
r the (detuned) base solutions (Eq. (22)) are taken to be the assumed solution,

and are substituted into Eq. (303) to give

(iωr)
2 U

2
(eiωrt +e−iωrt)+ω

2
n

U
2
(eiωrt +e−iωrt)+ε3α1

U3

8
(eiωrt +e−iωrt)+

(
ε10α2 + ε

2 3α2
1

8ω2
r

)
U5

32
(eiωrt +e−iωrt) = 0.
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Fig. 8: Numerically computed conservative backbone curves for the oscillator in Example 18 with ωn =
√

10 rad/s, and
ε = 1. Showing (a) the case for α1 = −0.5 & α2 = 0.1, and (b) the case when α1 = 0.5 & α2 = −0.1. The blue dots are
numerically computed maximum values of the displacement amplitude, and are taken as the reference solution. The blue
line is the ε1 backbone curve solution computed by substituting the assumed solution into Eq. (165), and the purple line is
the ε2 backbone curve solution computed from Eq. (307). It can be noted from both plots that as U increases, there is a
combination of both softening and hardening frequency behaviour. In (a) the backbone curve first softens and then hardens
as U increases, whereas in (b) (where the coefficients α1 & α2 have the opposite signs) the backbone curve first hardens
and then softens as U increases. From a perturbation viewpoint, it could be expected that the solutions will give better
agreement with the reference solution for “small" U (and α1, α2) values. In this interpretation, for values U > 1 we should be
cautious about how accurate the predictions from these types of approximate solutions might be.

(306)

The coefficients of the eiωrt terms (or the e−iωrt ) can be balanced to give

ω
2
r = ω

2
n + ε

3α1U2

4
+ ε

5α2U4

8
+ ε

2 3α2
1U4

128ω2
r
+O(ε3,k = 7). □ (307)

A numerically computed example is shown in Fig. 8 for the case when α2 = 0. Further details of this type of
analysis is given in Nasir et al. [122].

4.9 Normal form transformations of bifurcation phenomena

An important use of normal form transformation in the field of nonlinear dynamics is to simplify models of
important dynamic phenomena, such as bifurcations. From a structural dynamics perspective, we can start
with model containing multiple terms and coefficients, and use the normal form process to eliminate as many
of them as possible at a given order, resulting in a simpler system with fewer coefficients [100, 78, 61]. In this
use of normal form transformations, it is not necessarily expected that the process will provide an approximate
solution of the equations. Instead, a systematic reduction of terms (and equations) is carried out, until there
is no further reduction possible. Ultimately, this can result in just a single equation and parameter remaining
that determines the behaviour of the bifurcation. In other words, a reduction to the simplest non-trivial case is
sometimes possible. We consider the example of the Hopf bifurcation.

4.9.1 Example 19 a normal form analysis for a Hopf bifurcation

We revisit the unforced Van der Pol oscillator from Example 15, and start by writing it in a slightly modified form
as

ẍ+(µx2−2ζ ωn)ẋ+ω
2
n x = 0, ; ẋxx = Axxx+ ˜N (xxx) : A =

 0 1

−ω2
n 2ζ ωn

 , ˜N (xxx) =

 0

−µx2
1x2

 , (308)
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where the states are xxx = {x1 x2}T = {x ẋ}T . Next we will use the Jordan normal form technique from Section 2.2,
specifically Example 6, to transform the systems so that the linear matrix A has the real form for complex
eigenvalues.

To do this we first note that the eigenvalues of A in this example are λ1,2 = ζ ωn ± iωd , where ωd = ωn
√

1−ζ 2

is the damped natural frequency. Therefore, for the linear part of the problem we have a similar situation to that
in Example 6, and we can make the coordinate transformation xxx = Pqqq where in this example

P =

 0 1

ωd ζ ωn

 , P−1 =

 −ζ ωn
ωd

1
ωd

1 0

 and ˜N (Pqqq) =

 0

−µq2
m(ωdqp +ζ ωnqm)

 , (309)

where qqq = {qp qm}T . Next we can write down the transformed system as

q̇qq = P−1APqqq+P−1 ˜N (Pqqq) ;

 q̇p

q̇m

=

 ζ ωn −ωd

ωd ζ ωn

 qp

qm

+
 −µq2

mqp −µγq3
m

0

 . (310)

where γ = ζ ωn
ωd

.
Next we use a process of complexification to obtain new coordinates of the form z = qp + iqm and z̄ = qp − iqm,

so that qp =
z+z̄

2 , qm = z−z̄
2i , ż = q̇p + iq̇m and ˙̄z = q̇p − iq̇m. Using these relationships with Eq. (310) we then obtain

ż = λ z−µ

(
z− z̄

2i

)2( z+ z̄
2

)
−µγ

(
z− z̄

2i

)3

and ˙̄z = λ̄ z̄−µ

(
z− z̄

2i

)2( z+ z̄
2

)
−µγ

(
z− z̄

2i

)3

, (311)

where λ = λ1 = ζ ωn + iωd and λ̄ = λ2 = ζ ωn − iωd .
Now expanding the nonlinear terms and projecting them onto the nonlinear basis vector z∗ = [z3 z2z̄ zz̄2 z̄3]T

we obtain the system ż

˙̄z

=

 λ 0

0 λ̄

 z

z̄

+ µ

8

 1− iγ −1+ i3γ −1− i3γ 1+ iγ

1− iγ −1+ i3γ −1− i3γ 1+ iγ

z∗ or żzz = Λzzz+Nzz∗, (312)

where zzz = [z, z̄]T , Λ =

 λ 0

0 λ̄

 and Nz =
µ

8

 1− iγ −1+ i3γ −1− i3γ 1+ iγ

1− iγ −1+ i3γ −1− i3γ 1+ iγ

 . (313)

We now seek a near-identity normal form transformation from zzz to a new coordinate set www = [w, w̄]T , such that
zzz = www+bbbw∗ where bbb is a coefficient matrix, w∗ = [w3 w2w̄ ww̄2 w̄3]T , and the transformed system is governed
by

ẇww = Λwww+Nww∗, (314)

where Nw is the new (simplified) coefficient matrix. Substituting for zzz in Eq. (312) and using Eq. (314) leads to a
homological equation of the form

Nz −Nw = bbb
∂w∗

∂www
Λwww−Λbbbw∗, (315)

which can be written asµ

8

 1− iγ −1+ i3γ −1− i3γ 1+ iγ

1− iγ −1+ i3γ −1− i3γ 1+ iγ

−
 n∗w1 n∗w2 n∗w3 n∗w4

n∗w5 n∗w6 n∗w7 n∗w8

w∗ =


 b1 b2 b3 b4

b5 b6 b7 b8




3λ 0 0 0

0 2λ + λ̄ 0 0

0 0 λ +2λ̄ 0

0 0 0 3λ̄

−
 λ 0

0 λ̄

 b1 b2 b3 b4

b5 b6 b7 b8


w∗ =

 b1(2λ ) b2(λ + λ̄ ) b3(2λ̄ ) b4(3λ̄ −λ )

b5(3λ − λ̄ ) b6(2λ ) b7(λ + λ̄ ) b8(2λ̄ )

w∗.

(316)
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Now we wish to consider what happens very close to the Hopf bifurcation point. To do this we need to
consider what happens when the damping ratio, ζ , is allowed to vary. The Hopf bifurcation will occur when ζ = 0,
and to understand the process, three cases are defined in Table 3. Case iii) is the initial case for this example,
with the additional condition that ζ > 0. Case ii) is the bifurcation point itself, and Case i) can be thought of as
the case before the bifurcation happens. It should also be understood that Cases i) and iii) are very close to the
bifurcation point63

Case i) ζ < 0 Case ii) ζ = 0 Case iii) ζ > 0

λ = (−ζ )ωn + iωd λ =+iωn λ = ζ ωn + iωd

λ̄ = (−ζ )ωn − iωd λ̄ =−iωn λ̄ = ζ ωn − iωd

Re(λ , λ̄ )< 0 Re(λ , λ̄ ) = 0 Re(λ , λ̄ )> 0

λ + λ̄ =−2ζ ωn λ + λ̄ = 0 λ + λ̄ = 2ζ ωn

λ − λ̄ = 2iωd λ − λ̄ = 2iωn λ − λ̄ = 2iωd

γ = (−ζ )ωn
ωd

γ = 1 γ = ζ ωn
ωd

Table 3: Three cases in the neighbourhood of the Hopf bifurcation for the Van der Pol oscillator.

It can be seen from Table 3 that λ + λ̄ = 0 in Case ii) when ζ = 0, and so we treat these terms as resonant
and using Eq. (316), set all n∗wi terms to zero, except for n∗w2 =

µ

8 (−1+ i3) and n∗w2 =
µ

8 (−1− i3) such that using
Eq. (314) the normal form can be written ẇ

˙̄w

=

 λ 0

0 λ̄

 w

w̄

+ µ

8

 0 −1+ i3γ 0 0

0 0 −1− i3γ 0

w∗ or
ẇ = λw+n∗w2w2w̄,

˙̄w = λ̄ w̄+n∗w7ww̄2.
(317)

Note that the eight coefficients in Nz from Eq. (313) has now been reduced to just two. Even so, further
reduction and insight can be gained by changing to polar coordinates such that w = r(t)eiθ(t) and w̄ = r(t)e−iθ(t).
Substituting these relationships into the right-hand expression of Eq. (317) gives

ṙeiθ + riθ̇eiθ = λ reiθ +n∗w2r3eiθ ,

ṙe−iθ − riθ̇e−iθ = λ̄ re−iθ +n∗w7r3e−iθ ,
;

ṙ+ riθ̇ = λ r+n∗w2r3,

ṙ− riθ̇ = λ̄ r+ n̄∗w2r3,
(318)

where we have used the fact that n∗w7 = n̄∗w2 in the right-hand expressions. Now treating the right-hand expression
of Eq. (318) as a pair of simultaneous equations, and adding, then subtracting them leads to

ṙ =
λ + λ̄

2
r+

n∗w2 + n̄∗w2
2

r3,

θ̇ =
λ − λ̄

2i
+

n∗w2 − n̄∗w2
2i

r2,

;

ṙ = Re(λ )r+Re(n∗w2)r
3,

θ̇ = Im(λ )+ Im(n∗w2)r
2,

(319)

where Re(n∗w2) =− µ

8 , Im(n∗w2) =
3µγ

8 and Re(λ ) & Im(λ ) can be obtained from Table 3.
Now consider the equation for ṙ on the right-hand side of Eq. (319). The righthand side of this equation is

zero when

Re(λ )r+Re(n∗w2)r
3 = 0 ; three possible solutions r = 0 and r =±

√
− Re(λ )

Re(n∗w2)
. (320)

The solution r = 0 exists for all three cases listed in Table 3, but the solutions r =±
√
−Re(λ )/(Re(n∗w2)) only

exist for Case iii) when ζ > 0, because Re(n∗w2) =− µ

8 < 0 (assuming µ > 0) and so −Re(λ )/(Re(n∗w2))> 0. □

63A more rigorous mathematical approach is normally applied by defining the size of this region more specifically — see for example
[77, 52]. Note also that the phrase ‘in the neighbourhood of’ is taken to mean ‘sufficiently close to’.
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Re(  )λ

Re(  )<0λ λRe(  )>0

0

wRe(  )
Im( )w

  re
 -iθ

  re iθ

Fig. 9: A schematic representation of the limit cycle (i.e. periodic orbit) behaviour obtained from the normal form of a
(supercritical) Hopf bifurcation, as derived in Example 20 (Section 4.9.1). For Re(λ ) < 0 there is just one solution, r = 0,
and the dynamics consists of stable spirals converging to the r = 0 equilibrium point. At Re(λ ) = 0 the Hopf bifurcation
occurs and a limit cycle is created. When Re(λ )> 0 there are now two further solutions that are shown as red vectors (in
polar coordinates) in the figure. These solutions relate to the limit cycle (stable in this example) where the radius of the
limit cycle corresponds to r and the angle, θ , denotes the rotation (and −θ the counter-rotation) of the two solution vectors.
Furthermore when Re(λ )> 0 the solution at r = 0 becomes unstable, and therefore there are now unstable spirals emanating
from the equilibrium point, see discussions in [77, 55, 52, 162].

Of course, in the case when µ < 0, then the sign of Re(n∗w2) changes, meaning that the additional solutions
will occur instead for Case i), when ζ < 064. So it can be seen that these successive coordinate changes, i.e.
normal form transformations, have reduced the system to the point where the sign of just a single coefficient
can be used to determine the type of Hopf bifurcation (supercritical or subcritical). A schematic representation
of the Hopf bifurcation normal form is shown in Fig. 9.

It is important to note that this is a relatively simple example. However, even if we had all possible quadratic
and cubic terms in the nonlinear vector on the righthand side of Eq. (310), then these could still be projected
onto the z∗ basis in the form of Nzz∗ (with different entries in Nz from those shown above). In this way, all the
terms in such as system can be reduced to a normal form controlled by just a single parameter.

4.10 Summary

In this Section, the normal form transformations of nonlinear systems have been considered. Several important
topics have been introduced, including the use of near-identity transformations, derivation of the homological
equations using Lie series, Hamiltonian normal form, frequency detuning, choice of free functions, backbone
curves and bifurcations. Although the analysis has been developed for multi-degree-of-freedom systems, all
the examples in this Section have been single-degree-of-freedom. The complexity of applying normal form
techniques to nonlinear oscillators with more than one degree-of-freedom is significant, as will be seen in the
next Section. In particular it is the topic of backbone curves that will be of most interest as we consider coupled
nonlinear oscillators next.

5 Normal form transformations for coupled nonlinear oscillators

In this final Section we will consider how normal form transformations can be applied to systems of coupled
nonlinear oscillators. All the analysis developed in Section 4 can be applied to systems with more than a
single-degree-of-freedom. However, one important addition is needed. In the base solutions for Example 1, (see
Eq. (13)) we included a phase lag term, which we have (deliberately) neglected throughout the discussion of
the nonlinear oscillators so far. Although this might be acceptable in many cases for single-degree-of-freedom
oscillators, it needs to be included in the case of coupled (e.g. multi-degree-of-freedom) oscillators. Therefore,
in this Section we define the assumed base solutions for the ith degree-of-freedom as

upi =
U
2

ei(ωrit−φi), and umi =
U
2

e−i(ωrit−φi). (321)

where ωri and φi are the response frequency and phase lag for the ith degree-of-freedom respectively.
64We do not go into further detail here, but this will correspond to a subcritical rather than supercritical type of Hopf bifurcation. Much

more in depth treatments can be found in many texts on nonlinear dynamics, see for example the discussions in [77, 55, 52, 162].
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It should be noted that the assumptions regarding these solution types will capture only periodic solutions
with a frequency ωri. Coupled nonlinear systems typically exhibit far more complex behaviours, such as quasi-
periodic and chaotic motions — see for example [2, 59, 40, 53] and references therein. The type of analysis
presented here will only capture the most basic underlying dynamical behaviour. We now consider an example.

5.0.1 Example 20: Two degree-of-freedom undamped system with cubic spring nonlinearities

We consider the two-degree-of-freedom lumped mass system65, as shown in Fig. 10 (a), in which the spring
forces contain linear and cubic terms with coefficients k,k2 and κ,κ2 respectively for masses, m. The equations
of motion may be written as m 0

0 m

 ẍ+

 k+ k2 −k2

−k2 k+ k2

x+

 κx3
1 −κ2(x2 − x1)

3

κx3
2 +κ2(x2 − x1)

3

= 0, ; Mẍ+Kx+N (x) = 0, (322)

where x = [x1 x2]
T in this case. The linearised version of this system, where κ = κ2 = 0, results in the modal

transform

x = Φq where Φ =

 1 1

1 −1

 , ; q̈+

 ω2
n1 0

0 ω2
n2

q+
κ

m

 q3
1 +3q1q2

2

γq3
2 +3q2

1q2

= 0, (323)

where γ = 1+8κ2/κ, ω2
n1 =

k
m and ω2

n2 =
k+2k2

m are the linear natural frequencies. Now we define66

Λ =

 ω2
n1 0

0 ω2
n2

 , and εn̂(q) = ε
κ̂

m

 q3
1 +3q1q2

2

γq3
2 +3q2

1q2

 (324)

where κ = εκ̂ has been used67. Now we are transforming from qi to ui, using TSO from Eq. (116). Note that
ui = uip +uim which can also be expressed as the vector relationship u = up +um. Therefore we obtain

εn̂(q) = εn̂(up,um) = ε
κ̂

m

 (u1p +u1m)
3 +3(u1p +u1m)(u2p +u2m)

2

γ(u2p +u2m)
3 +3(u1p +u1m)

2(u2p +u2m)

=

κ̂

m

 1 3 3 1 3 6 3 3 6 3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 3 3 6 6 3 3 γ 3γ 3γ γ

u∗ = ε
κ̂

m
n∗u∗,

(325)

65This is example is taken from Chapter 5 of [128] and [68], and further details can be found there. See also the nonlinear normal mode
analysis given by Vakakis et al. [175].

66As before n2 = 0, ... etc. so we set n1 = n, and correspondingly, h1 = h, b1 = b and n̂u1 = n̂u throughout this example.
67Note that the specific structure in the nonlinear vector, n̂(q), of Eq. (324) is of a relatively simple form because of the structure of the

original nonlinear vector N (x) in this example. In general for problems of this type each row would have terms of q3
1, q1q2

2, q2
1q2 and q3

2 such
that there would be eight coefficients in total in n̂(q).
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where n∗ is the coefficient matrix for the nonlinear terms in the untransformed equation and

u∗ =



u3
p1

u2
p1um1

up1u2
m1

u3
m1

up1u2
p2

up1up2um2

up1u2
m2

um1u2
p2

um1up2um2

um1u2
m2

u2
p1up2

u2
p1um2

up1um1up2

up1um1um2

u2
m1up2

u2
m1um2

u3
p2

u2
p2um2

up2u2
m2

u3
m2



and Λduuu =


iωr1 0 0 0

0 −iωr1 0 0

0 0 iωr2 0

0 0 0 −iωr2




up1

um1

up2

um2



= iωr1


1 0 0 0

0 −1 0 0

0 0 r 0

0 0 0 −r




up1

um1

up2

um2

 ,
(326)

where r = ωr2/ωr1, and Λd is the detuned frequency matrix obtained from u̇uu = Λduuu using Eq. (321). Next the
detuned Lie derivative is computed by substituting Λ = Λd into Eq. (127) to give the coefficient matrix Λ∗

d . This
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is repeated in Eq. (153) to give the following

Λ
∗

d = iωr1I20



3

1

−1

−3

1+2r

1

1−2r

−1+2r

−1

−1−2r

2+ r

2− r

r

−r

−2+ r

−2− r

3r

r

−r

−3r



, ; (Λ∗
d)

2 =−ω
2
r1I20



9

1

1

9

(1+2r)2

1

(1−2r)2

(−1+2r)2

1

(−1−2r)2

(2+ r)2

(2− r)2

r2

r2

(−2+ r)2

(−2− r)2

9r2

r2

r2

9r2



, (327)
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where I20 is a 20×20 identity matrix. These relationships are substituted into the detuned homological equation,
Eq. (261), to give

−bΛ
∗2

du∗−ϒbu∗ = ω
2
r1



b1(8) b21(9− r2)

b2(0) b22(1− r2)

b3(0) b23(1− r2)

b4(8) b24(9− r2)

b5(4(r2 + r)) b25(1−4r+3r2)

b6(0) b26(1− r2)

b7(4(r2 − r)) b27(1−4r+3r2)

b8(4(r2 − r)) b28(1−4r+3r2)

b9(0) b29(1− r2)

b10(4(r2 + r)) b30(1+4r+3r2)

b11(3+4r+ r2) b31(4(1+ r))

b12(3−4r+ r2) b32(4(1− r))

b13(r2 −1) b33(0)

b14(r2 −1) b34(0)

b15(r2 −2r) b35(4(1− r))

b16(3−4r+ r2) b36(4(1+ r))

b17(r2 −1) b37(8r2)

b18(r2 −1) b38(0)

b19(r2 −1) b39(0)

b20(r2 −1) b40(8r2)



T

= n∗u∗−n∗
uu∗, (328)

where b and n∗
u are coefficient matrices of the same dimension as n∗ defined in Eq. (325). As with previous

examples there is now a choice of free functions for bi and i = 1,2,3...20. Notice that some terms have a
zero associated with the bi (as we saw previously), and these are the unconditional resonances (as defined
in Section 4.1.2). In addition, now that we have multiple degrees-of-freedom, and therefore more than one
response frequency, there are other bi values which could have a zero term associated with them depending on
the frequency ratio value, r. These are the conditional resonances, and as we discussed in Section 4.1.2 are
also called internal resonances.

Notice also that the simplest way to satisfy Eq. (328) is to set bi = n∗ui = 0 whenever n∗i = 0. From
Eq. (325) it can be seen that this applies to i = 11,12,13...28,29,30. After setting the associated bi = 0 for
i = 11,12,13...28,29,30 we are left with unconditionally resonance terms for b2,b3,b6,b9,b33,b34,b38,b39 and
conditionally resonant terms for b7,b8,b32,b35 based on the condition r = 1. This is called a one-to-one resonant
interaction, because it occurs when ωr1 = ωr2.

Therefore to satisfy Eq. (328) for both the conditional and unconditional resonances we set the coefficients
of n∗

u to be

n∗
u =

κ̂

m

[
0 3 3 0 0 6 3δ1r 3δ1r 6 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 3δ1r 6 6 3δ1r 0 0 3γ 3γ 0

]
u∗

(329)

where δ1r is the Kronecker delta function defined such that δ1r = 1 (i.e. when r = 1) and δ1r = 0 for all other
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values (i.e. when r , 1). Substituting Eq. (329) into Eq. (146) gives the ε1 normal form as

ü+

 ω2
n1 0

0 ω2
n2

u+
3κ

m

 u2
p1um1 +up1u2

m1 +2up1up2um2 +2um1up2um2 +δ1r(up1u2
m2 +um1u2

p2)

2up2up1um1 +2um2up1um1 + γu2
p2um2 + γup2u2

m2 +δ1r(u2
p1um2 +u2

m1up2)

= 0, (330)

where u = [u1 u2]
T . Furthermore, using Eq. (116), we find that the modal displacements are given by q1

q2

=

 u1

u2

+ κ

mω2
r1

 1
8 (u

3
p1 +u3

m1)+
3

4(r2+r) (up1u2
p2 +um1u2

m2)+
3

4(r2−r) (up1u2
m2 +um1u2

p2)

γ

8r2 (u3
m2 +u3

p2)+
3

4(1+r) (um2u2
m1 +up2u2

p1)+
3

4(1−r) (u
2
p1um2 +u2

m1up2)

 , (331)

when r , 1, and q1

q2

=

 u1

u2

+ κ

mω2
r1

 1
8 (u

3
p1 +u3

m1)+
3

4(r2+r) (up1u2
p2 +um1u2

m2)

γ

8r2 (u3
m2 +u3

p2)+
3

4(1+r) (um2u2
m1 +up2u2

p1)

 , (332)

for the case when r = 1. □
Expressions for the backbone curves can be found by taking the base solutions from Eq. (321) as the

assumed solutions and substituting them into Eq. (330). For example, carrying this out for the first line of
Eq. (330) gives(

ω
2
n1 −ω

2
r1
)

U1

(
ei(ωr1t−φ1)+ e−i(ωr1t−φ1)

)
+

3κ

4m
U1

[
(U2

1 +2U2
2 )
(

ei(ωr1t−φ1)+ e−i(ωr1t−φ1)
)

+δ1rU2
2

(
e−i(ωr1t−φ1)e−i2(φ1−φ2)+ ei(ωr1t−φ1)ei2(φ1−φ2)

)]
= 0.

(333)

Using the same approach for the second line of Eq. (330) and then balancing the ei(ωr1t−φ1) terms gives68{
ω

2
n1 −ω

2
r1 +

3κ

4m

[
U2

1 +U2
2

(
2+δ1rei2(φ1−φ2)

)]}
U1 = 0,

{
ω

2
n2 −ω

2
r2 +

3κ

4m

[
γU2

2 +U2
1

(
2+δ1re−i2(φ1−φ2)

)]}
U2 = 0.

(334)

There are several cases of backbone curves, depending on the parameters in Eq. (334). The first case is for
single mode backbone curves where we set either U1 = 0 or U2 = 0 to give

S1 : when U2 = 0, ω
2
r1 = ω

2
n1 +

3κ

4m
U2

1 ,

S2 : when U1 = 0, ω
2
r2 = ω

2
n2 +

3κγ

4m
U2

2 .

(335)

These expression relate to the non-resonant case, r , 1 (therefore δ1r = 0), when there is no phase coupling
between the modal coordinates u1 and u2 (and then by definition q1 and q2) via the e−i2(φ1−φ2) term in Eq. (334).

To consider the resonant case, when r = 1 (and therefore δ1r = 1), we first introduce a general frequency
response parameter Ω and then rewrite Eq. (334) such that we consider the response of both equations at a
specific Ω value which gives

Ω
2 = ω

2
n1 +

3κ

4m

[
U2

1 +U2
2 (2+ p)

]
= ω

2
n2 +

3κ

4m

[
γU2

2 +U2
1 (2+ p)

]
, where p = e i2(φ1−φ2). (336)

In order to maintain real solutions we require that p =±1 such that69

p =+1 corresponds to |φ1 −φ2|= 0,±nπ, for n = 1,2,3... This corresponds to the in-unison case, with
either in-phase (0) or out-of-phase (±nπ) cases,

68As in previous examples, balancing the e−i(ωr1t−φ1) terms gives equivalent expressions.
69This analysis was first developed in [114], where these two solutions were referred to as the normal mode and elliptic mode due to

their shapes in the configuration space.

201 | doi:10.25518/2684-6500.84 David J. Wagg

http://dx.doi.org/10.25518/2684-6500.84


Journal of Structural Dynamics, 1, (pp. 138-216) 2022
Normal form transformations for structural dynamics: An introduction for linear and nonlinear systems.

p =−1 corresponds to |φ1 −φ2|=±nπ/2, for n = 1,2,3... This is the out-of-unison case, with ±nπ/2 phase
differences in the response behaviour.

Here we consider just the p =+1 case. Details of the out-of-unison case can be found for example in [114, 68].
Setting p =+1 and n = 1 yields two backbone curves, labelled D12+i and D12−i , with the phase differences

D12+i : |φ1 −φ2|= 0 , D12−i : |φ1 −φ2|= π . (337)

Note that the notation is D for double (i.e. two mode) interaction, followed by the modes that interact (1 and 2 in
this case), the subscript i means in-unison, and plus (in-phase) or minus (out-of-phase)70 Substituting p =+1 in
Eq. (336) leads to

D12±i : U2
1 =

(
1−4

κ2

κ

)
U2

2 − 2m
3κ

(
ω

2
n2 −ω

2
n1
)

and Ω
2 =

3ω2
n1 −ω2

n2
2

+
3(κ −κ2)

m
U2

2 . (338)

From the first expression of Eq. (338) it can be seen that to ensure real solutions the following conditions can be
imposed

U2
2 >

2m
3(κ −4κ2)

(ω2
n2 −ω

2
n1), and κ ≥ 4κ2 . (339)

Numerically computed results are shown in Fig. 10 (b), (c) and (d). The numerical results are for the case where
the central spring connecting the two masses is much less stiff than the springs connecting the masses to the
rigid walls at each end, e.g. k2 ≪ k and κ2 ≪ κ. We call this type of system weakly coupled, and for very small
amplitudes, the two masses both oscillate at a frequency very close to one, on the S1 and S2 curves. Then as
the Ui or Xi amplitudes increase, it can be seen that the S2 backbone curve has a bifurcation at which point the
stable D12±i curves coalesce with S2. The bifurcation is caused by the underlying periodic orbit undergoing a
secondary-Hopf type bifurcation. This manifests itself in terms of the backbone curve, as a supercritical pitchfork
bifurcation event. After the bifurcation point, the S2 becomes unstable, and the stable solutions are given by the
D12±i backbone curves. The type of modal coordinate motion that occurs for each backbone curve is shown in
the inset diagrams in Fig. 10 (b). Further details and discussion of this example is given in [128].

Note also that these type of backbone curves can be interpreted as the underlying “skeleton" which govern
some of the key characteristics of the forced-damped responses. For example the curvature of the forced-
damped resonance curve, as was shown in Fig. 2 (c). In this example, the structure of the backbone curves
is considerably more complex than those shown in Fig. 2 (c), but the same principle holds true. A detailed
discussion of the forced-damped responses relevant to this example is given in [67] — see also [21, 68, 73].

5.1 Summary

The example considered in this Section demonstrates how normal form methods can be used to help understand
the behaviour of coupled nonlinear oscillators. We have limited the examples in this Section to just one, because
(i) we are now going beyond the introductory remit of this paper, and (ii) there are multiple published examples
for the interested reader to find in the literature. For example, normal form analysis of structural elements
such as beams, plates, shells and cables can be found in references [124, 194, 171, 68, 128, 44, 33, 50], to
highlight just a few. Perhaps the most important features highlighted in this Section is the role of the conditional
resonances, and how they can be interpreted using backbone curves.

To demonstrate the approach with as much simplicity as possible, this example has not included either
damping or forcing, which are typically needed for real applications. That said, forced-damped cases have also
been treated using normal form methods — see for example [128, 15] and references therein. An alternative
is to capture the forced-damped behaviour using numerical continuation packages, such as COCO [153],
MATCONT [35], MANLAB [56], and AUTO [36], and the conservative backbone curves are found using normal
form techniques — for example as shown in Fig. 271. Of course backbone curves are independent of normal
forms, and can be found using multiple other methods as well, see for example [128, 41, 42] and references
therein. Further potential developments will be discussed in Section 6.3.

70In [128] and [68] these curves are referred to as S3± for the p = 1 case and S4± for the p =−1 case.
71Interesting recent studies on the stability of the forced-damped curve and the relationship to the backbone curve have been undertaken

by Cenedese and Haller [27, 28].
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q
1

q
2

Fig. 10: The two-degree-of-freedom nonlinear oscillator considered in Example 20, Section 5.0.1. Showing (a) the schematic
diagram of the two-degree-of-freedom nonlinear oscillator, (b) plot showing the backbone curves in the projection of the
displacement amplitude X1 against Ω, where ( Xi = ||xi|| for i = 1,2). This shows the in-phase backbone, S1, the out-of-phase
backbone, S2, and the conditionally resonant double mode (also called “mixed mode") backbones D12±i . The inset diagrams
show the behaviour in modal coordinates q1, q2 (noting that qi = ui to order ε0). Green dots represent the points where
the double backbone curves D12±i bifurcate from the single mode curve S2. Black dots represent the birth of a nonlinear
normal mode family of periodic solutions via a Hamiltonian Hopf bifurcation. (c) The backbone curves in the projection of U1
against Ω, where red dots represent the start of a non-oscillatory curve e.g. when either U1 = 0 or U2 = 0. (d) Projection of
U2 against Ω, where the dash red line represents an unstable part of the backbone curve. Parameter values are m = 1 kg,
k = 0.98 N/m, k2 = 0.0202 N/m, κ = 0.2 N/m3 and κ2 = 0.02 N/m3. Note that κ > 4κ2 in this example, and that parameters are
chosen to show the phenomena rather than relate to a physical example.

6 Conclusions and future directions for research

6.1 Summary and conclusions

In this paper an introduction to using normal form transformations for linear and nonlinear structural dynamics
has been given. After some motivating examples, the paper investigated linear single-degree-of-freedom
systems, which is a topic that is fundamental to structural dynamics. In that discussion, we outlined the
importance of exponential base solutions for both damped and undamped oscillators. However, it was also
highlighted how simplifying the matrix structure of the oscillator model could significantly simplify the solution
procedure. Coordinate transformations were considered via Jordan normal form and the method of reduction of
order.

Simplifying matrix structures leads naturally to coordinate transformations, and structural dynamists are
generally very familiar with this concept via the idea of modal analysis. This was the starting point for the
discussion of multi-degree-of-freedom linear systems. Modal transformations were demonstrated both for
differential equations written in state-space form and classical coupled ordinary differential equations in second-
order form. This type of modal coordinate transformation was then used as a first step when analysing nonlinear
oscillators.

We began the discussion of nonlinear systems, by highlighting some of the key issues. Most importantly the
concept of nonlinear resonance. Following that, the idea of near-identity transformations was described in detail
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for both first-order and second-order sets of equations. This led to expressions for the homological equation, the
solution of which is the central operation of a normal form method. Another important detail considered at this
point was to show the equivalence of the real and complex normal forms using a Duffing oscillator example.

Normal form transformations can be expressed in terms of Lie series, and to give an insight into this
connection we described a derivation of the homological equations using Lie series. This required prolongation
of the near-identity transformation, and gives additional insight into the structures that underly the complex and
real normal form transformations. This was followed by a description of the Hamiltonian normal form. This type
of normal form is not used very often in structural dynamics, and is more commonly used in maths and physics.
However, for completeness, it has been included to show the relationship with both the complex and real normal
form variants described previously.

In order to describe amplitude-frequency nonlinear effects, the concept of frequency detuning was introduced.
Following this, the choice of free functions in the homological equation was discussed, and an example of a
minimal normal form included. Next the topic of backbone curves was described, although as pointed out at the
time, this is an independent concept that can be used for nonlinear oscillators without normal form methods.

Finally, we considered the case of a coupled nonlinear oscillator system. This final example showed the
concept of conditional resonances, a phenomena that is very naturally modelled via the homological equation. It
also demonstrated how the real normal form method could be used to find approximate analytical expressions
for backbone curves. The conditional (nonlinear) resonance was represented as a bifurcation of one of the
backbone curves into a double backbone curve solution.

In Section 1.1.4 we outlined five useful properties of normal form transformations for structural dynamicists.
We now revisit each of these in turn:

I. Obtaining approximate solutions for x: This was demonstrated for most of the examples throughout the paper.
For nonlinear systems certain conditions are required for this to be possible; specifically the eigenvalues of
the underlying linear problem need to be semisimple — see [120]) for details. For multi-degree-of-freedom
nonlinear systems, the algebraic complexity of trying to obtain an approximate solutions for x quickly becomes
prohibitive.

II. Obtain information on the nonlinear resonances: This is one of the most important aspects, particularly for
nonlinear multi-degree-of-freedom oscillators, as we saw in Example 20. It will also be discussed in the next
Section.

III. Obtain frequency amplitude relationships known as backbone curves: Again this is particularly relevant
for nonlinear multi-degree-of-freedom oscillators (e.g. Example 20) and will also be discussed in the next
Section.

IV. Simplify models of important dynamic phenomena, such as bifurcations. An example was shown for the Hopf
bifurcation in Section 4.9. This is one of the most important dynamic phenomena for vibration problems, and
using normal form transformations it can be reduced to a model with just a single parameter that determines
the key behaviour.

V. Normal form transformations used to achieve model-order reduction or system identification. In fact, (and
related to point IV above) normal forms can be used not just to reduce the number of states, but also the
number of parameters. This comes from the ethos of normal forms, which is to systematically produce the
simplest model that captures the important dynamics, both in terms of the number of states and the number
of parameters. Model-order reduction or system identification were not discussed in detail in this paper, but
they are mentioned in Section 6.3 where we will discuss future research directions.

Other concluding points regarding the normal form techniques introduced in this paper are:

a) Coordinate transformations can simplify, but not without work! Both linear and nonlinear systems can be
simplified using coordinate transformations, as demonstrated in this paper. However, this is not without work.
The algebraic intensity, and work required in some of the methods presented here is a significant limitation of
both their application and popularity.

b) Formats and styles are important. As has been shown in this paper, normal form transformations are not
unique, and are reliant on many choices. This gives a lot of flexibility in how they can be tailored to suit a
particular application. However, it can also be confusing when there are so many different variants, and small
variations in the outcomes. That said, the final results should be equivalent, regardless of which style was
used, as was shown for example in Section 4.2.5 with the equivalence between the complex and real normal
form. For linear systems, there is less to be chosen, but the scaling of eigenvectors is one example where
choices made in the method can affect the outcome.
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c) The homological equation is central to the method. For nonlinear systems, this offers the key advantage of
the normal form technique over other methods. By developing a homological equation, that is linear to solve,
and also identifies the conditional and unconditional resonances, the normal form approach can give insight
into the likely behaviour of the nonlinear system. This insight is explicit, in terms of structures like backbone
curves and their bifurcations.

d) Normal forms transformations can be used as part of a reduced order modelling process. In general, a
normal form transformation will result in a system that has the same number of degrees-of-freedom as the
original system. The examples in this paper have all been either single, two or three degree-of-freedom.
As the number of degrees-of-freedom increases beyond this, it makes sense to combine the normal form
method with a reduction in the order of the system, in order to capture just the essential dynamics. There
have been many investigations into combining normal form and order reduction methods (mentioned below),
and this is a rapidly expanding area of future research72.

6.2 Comparison with other methods; some advantages and disadvantages

In the context of structural dynamics, the method of normal forms has been compared to other techniques
that are used to carry out similar tasks, for example to compute nonlinear normal modes or backbone curves
[66, 41, 42, 180]. As was described in Section 4.1.3 there are subtle but important distinctions between normal
form methods and perturbation techniques, and so we will outline some of the potential advantages of using
normal form techniques compared to these and other methods. Choosing a particular technique to use will
depend on multiple factors, but the typical advantages of normal form methods are:

1. There is no explicit requirement of “smallness" of either the nonlinear terms or amplitude of response73 in
the same way that a perturbation method inherently has — see for example the study carried out by [104].
Observations by [66, 41, 42] also show examples of how normal form approximations to backbone curves
can be extended to relatively large amplitudes without significant loss if accuracy, in comparison to harmonic
balance and the method of multiple scales.

2. During the normal form procedure, no secular terms are generated, and as a result there are no “solvability
conditions" (to use the terminology of [84]) that occur, for example, in the method of multiple scales74.
Advocates of other methods point out that secular terms can be used to infer that resonances are present in
the system being considered. However, in a normal form approach, the resonance’s are revealed explicitly
in the homological equation. Furthermore, the homological equation also gives information on more subtle
features of the resonance, such as whether they are conditional or unconditional, without needing to carry
out additional work.

3. The resonant terms can be dealt with in a systematic way via the homological equation, whereas in
perturbation methods this process is ad-hoc and (depending on the exact details) can require additional
terms to “fix" the solutions depending on the exact resonant conditions, as mentioned above.

4. For reduced-order models of high-dimensional systems, normal form techniques provide a very strong
modelling framework, particularly in terms of intrusive methods — see for example the comparison made
by [180]. That said, normal forms is not the only approach to this problem. For example, harmonic balance
methods have also been developed in combination with reduction of order techniques to create reduced-order
models — see for example [176].

In terms of disadvantages of the normal form technique, Kodama and Mikhailov [92] pointed out some issues
that occur when normal form transformations are applied to certain partial differential equations. This subject

72It should be noted that care needs to be taken with these types of reduction methods, as terms from neglected modes can affect the
normal form of the reduced model.

73The exception is where it is deliberately introduced, as discussed in Section 4.1.3.
74These issues have been known about for some time. For example, they are described in [141], but first became apparent in a structural

dynamics context in the work of [147], where the authors tried to apply the method of multiple scales to systems with internal resonances.
In their conclusions the authors stated: “This indicates a yet unclear mathematical drawback in the specific application of the method of
multiple scales to this two time-scale-dependent problem." The underlying reason for these issues are explained in detail in [84] (which
references the theoretical work of [91]). In single-degree-of-freedom systems, the solvability conditions are (typically) benign, and do not
restrict choices too much (see [98] for an example of how this restriction can be effectively removed by adding an additional time scale).
However, as the system becomes more complex, particularly for systems with more degrees-of-freedom, solvability conditions start to
become restrictive, and to get the method of multiple scales to work (without adding additional time scales) the solutions are “fixed" by
adjusting both free functions and initial conditions — see the two-degree-of-freedom examples shown in [125] (Chapter 10 page 267)
and [41] where it is observed that the initial conditions cannot be set to zero, and instead they need to be used to satisfy the solvability
conditions.
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has been subsequently further explored by other authors [71, 93, 191]. In addition, normal forms techniques
are often regarded as being algebraically intense, and some authors have developed symbolic computation
methods (particularly using Maple) in order to try and mitigate this effect [10, 190, 193, 122].

6.3 Future directions for research

In terms of future research, it seems likely that normal form methods will continue to be an important class of
methods for studying the behaviour of nonlinear oscillator systems. From the authors perspective, there are
several key areas that would be of interest for future research development:

1. Investigation of nonlinear resonances. This longstanding topic continues to be of significant interest, and there
are still several aspects that can be investigated. From a structural dynamics perspective, the understanding
of the phenomena has been progressed in several different ways. Firstly from a geometric perspective,
and with particular application to the geometric definition of nonlinear normal modes (NNMs) as invariant
manifolds — first put forward by Shaw and Pierre [155] — and formalised using normal forms by Touzé
[168, 169] (see also the overview given by Volvert and Kerschen [182]). From a normal form perspective
this study of resonance in coupled oscillators is mainly being advanced via the analysis of backbone curves
— see for example [21, 68, 15, 50, 53]. However, other methods are also relevant in this area. Particularly
following the work of Haller and Ponsioen [59] in defining spectral submanifolds, which are now able to
capture some of the more subtle and interesting [139] phenomena in this domain. In particular, the spectral
submanifold technique can be applied in a normal form style (or as an alternative in a graph style), and
an interesting comparison of the spectral submanifold method and other normal form techniques has been
carried out by Breunung and Haller [15]. Also related to this topic is the relationship between NNMs (or
backbone curves) and the forced-damped responses of coupled oscillator systems [170, 169, 67, 70, 15].
Recent developments have included analysis of rotor stator contact [154], analyses using a Melnikov function
approach [28, 27], parametric antiresonance [86], and vibration of nancomposite shells [118] to name just a
few. This will continue to be a key area of future research.

2. Identification methods from experimental data. This is also a longstanding topic of interest, that has not been
approached using normal forms until relatively recently — see [50, 33]. In contrast there are a selection
of other approaches that are typically used for this techniques, see for example [135, 39, 69, 148, 33, 150]
and references therein. Other recent developments include analysis of wheel-set dynamics [187] and
power grids [94]. It is likely that this research topic will grow as an area of interest. In particular, there
is considerable potential cross-over between using normal form transformations to create reduced-order
models for engineering structures, and identification methods. Specifically the reduced-order models of
structural elements, such as beams, cables plates and shells, lead to much simpler models with a number of
key parameters that can potentially be identified. See for example [169, 179, 173, 133].

3. Nonlinear model reduction. Reducing large scale systems (for example from finite element models) down
to smaller models that capture the key dynamical behaviour is another area of great importance in the
structural dynamics field — see for example [172, 19, 131, 20, 62, 138, 177]. As mentioned above, normal
form methods have been used extensively in combination with methods to reduce the order of the system —
see for example [110, 180, 156, 173], and it is likely that this topic will grow considerably in the future. In
particular, the connection of invariant manifold computation techniques (described in point 1.) has recently
been developed to work for structures with complex geometries, such as those represented in finite element
models [180, 181, 79]. A comparison has also been recently made between reduced-order normal form
methods, and other similar methods, such as modal derivatives [180]. This is an important development for
the application of these methods to more complex engineering problems.

4. Hamiltonian normal form. This is mostly used in physics, astronomy and celestial mechanics, as described
for example by [63, 49] and references therein. That said, there are also some applications in maths and
physics that relate to structural dynamics, such as resonances in chains of oscillators [178], triangular
connected spring-mass systems [87], resonance-assisted tunnelling [46], and this is an open area for
structural dynamists in the future.
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