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Mathematical models of dynamical systems typically employed in modem science are 
based on a very simple paradigm: the system has a state and an environment, and the time 
rate of change of the state is a function of the state and the environment. This function is 
a known mathematical function, and the system evolution if possible is studied under the 
assumption that the environment stays constant. 

This paradigm, derived originally from Newton's Second Law, is one of the greatest 
achievements of science. It has been used with overwhelming success to describe a vast 
range of phenomena in nature. However, its apparent simplicity belies its true nature. 

The paradigm serves to unify extremely diverse conceptual structures, subjecting 
them to mathematical treatment in a common language while scarcely limiting their reach. 
In this paper we illustrate this fact by offering examples of the paradigm of different types, 
showing how widely it has been used, and how little restriction it imposes on nature. We 
also propose some generalizations that have rarely been seen outside pure mathematics. 
Finally we note that the essential value in this paradigm is to be found in both its 
malleability and its relation to mathematics and quantity. 
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1 Introduction 

Here we investigate various notions of state in the sciences, focusing on the protean 
character of these notions, on their capacity to embrace manifold possibilities and to 
metamorphose into new forms that encompass new phenomena. 

Aristotle said that each object in nature has its own natural path. Any other path is 
unnatural and is known to be such by its difference from the natural one and hence by the 
constraints and forces that necessitate it. The modem form of Aristotle' s idea is that of a 
path in state space. 

2 The Notion of State 

The point of view to be examined and expanded upon here is most simply illustrated by 
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Malthus' law: 

dx(t) 
-- = Ax(t) 

dt 
(1) 

The state is population size x and the law asserts that the time rate of change of the state 
equals the net growth rate times the current state. The net growth rate ). is typically equal 
to b - d where b and d respectively are the net birth and death rates of the population 
(possibly including immigration and emigration). The parameter ). represents the total 
influence of the environment. Here "environment" refers to all aspects of the Universe not 
under direct scrutiny (including not only spatially separate aspects but aspects representing 
a different level of detail - for example, the properties ofindividual members of the species 
and how they interact with each other and their surroundings as opposed to their number 
alone) . The object of study is a system whose state is changing in time according to an 
evolutionary law. The evolutionary law describes the rate of change in terms of the state 
and in terms of the environment. 

The state of a system is generally taken to be a collection of observable quantities 
characterized by certain properties. One property is independence - e. g., x and x2 are 
both observables, but they are not independent. The state variables should be independent 
so that no one of them can be determined from the others if the latter are known. Another 
property is completeness. The state variables should form a maximal independent set. Any 
observable not included among them should be a mathematical function of them. Thus 
energy, position, and momentum are not all needed to characterize the state of a Newtonian 
particle since the energy is a function of the position and the momentum (in a closed 
conservative system), and we would expect any other observable besides energy to be a 
function of the particle position and momentum (and other fixed parameters such as the 
mass). One other property of the state is that the time rate of change of each state variable 
should itself be a mathematical function of the state variables. Thus the evolutionary law 
is of the form: 

dx(t) 
--= F(x(t)) 

dt 
(2) 

The function F and other observables may depend on other quantities besides the state x but 
these quantities are to be thought of as outside the system and are typically represented by 
constants or given functions of time. 

The Universe is thus divided mentally into two parts: the system and its environment. 
The state describes the system, and its evolution depends on itself and the environment. 
This is a program for modeling systems. Let a system be thought of as any aspect of the 
Universe on which we wish to focus attention. Then we collect, or contemplate collecting, 
observables related to this aspect, aiming for independence and completeness. At each stage 
we must decide whether a variable is part of the system or outside of it, and we thus clarify 
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our notion of the system with respect to desired generality, level of detail, elements 
considered, and elements ruled out. Although our original idea of what the system is may 
be somewhat vague, our model-building forces us to make decisions and move toward 
exact if idealized conceptions. 

For this discussion we accept time as a fundamental concept and do not offer an analysis 
ofit. A system that does not persist for some duration of time is ofno interest since truly 
unique events are not the proper object of science. Time need not be absolute time, just the 
experimenter's clock time. We shall also ignore the relativistic perspective since it does not 
substantially alter the points to be made here. (Indeed by a familiar device time can be 
included as a state variable s satisfying the evolutionary law ds/dt = 1.) Time 
measurements shall be treated as lying in the continuum and the methods of calculus shall 
be assumed. If one prefers discrete time, just substitute differences for derivatives 
throughout. 

Calculus leads us, in connection with evolutionary laws, to consider time rates of change 
of observables as new observables (derived observables). Either these derived observables 
are expressible in terms of other observables or else we must add them to the list of state 
variables. Thus by a combination of observation and logic we can arrive at evolutionary 
laws of Newtonian type: 

dx dv 1 
dt= v,dt= m f(x,v) (3) 

Here the time rate of change of the state (x,v), namely (dx/dt, dv/dt), depends on the state 
(and the parameter m). Mathematically there is no barrier to repeating such a process 
indefinitely. Thus given a variable x1, its successive time derivatives might be called x2, x3, 

.. . , x" , and can be added to the state until one is found that is empirically expressible in 
terms of the previous ones. The evolutionary law is then: 

(4) 

This evolutionary law describes how x1, x2, •• • , x" evolve as a function of x1, x2, ••• , x". 
Of course new observables are also generated in other ways than by taking derivatives. 

We would expect to have a finite number ofbasic variables and then take derived variables 
until we obtain the "closure" that an evolutionary law gives. Newtonian (and Galilean) 
mechanics gives closure at the second derivative. 

Note that state variables are not unique. A population x might be described just as well 
by x3 as by x ( or by x2 if we assume nonnegati vi ty). Newtonian mechanics can be expressed 
in terms of position x and velocity v or in terms of position x and momentum p = mv, and 
thus by the evolutionary law: 

(5) 
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This is a matter merely of recoordinatization. The state is thus an abstract notion that can 
be expressed in terms of different sets of quantities, different coordinates. It has alternative 
numerical representations depending on which observables are taken as basic and which 
units of measurement are adopted. The evolutionary law singles out paths in state space, 
a unique one through each state, but the equations describing these paths will vary with the 
coordinate system. See Mackey (1963) for discussion of these issues, and motivation for 
many of the ideas in this article. 

Yet we should acknowledge an anomaly. By allowing derived variables, we have subtly 
enlarged the notion of state. If the state represents the system at an epoch of time, then it 
should be a snapshot of the system. Time derivatives, though, require comparing the value 
of an observable at two nearby times. Such observables are not really instant, but have 
tendency and multiple times built into them. Once one allows tendency there is no telling 
where one will stop. The idealized instant is of limited value even in so basic a theory as 
Newtonian mechanics. One needs to know more about the system than merely its status, 
or standing, at an instant in time. 

In fact, many systems have closure at the first derivative. Population models, linear and 
nonlinear, for single or multiple populations (e.g., predator-prey), do; the differential 
equations describing a system of chemical reactions do (the state variables being the 
concentrations of the reactants); models of epidemics do. So do compartment models that 
describe the contents (or one type of content) of a compartment with immigration and 
emigration taking place. Such models have a special place in biology where they are used, 
for example, to describe the amount of medication in body organs. 

The logical progression ofideas just developed permits indefinite iteration. As we study 
the system, we may, even without benefit of derivatives, discover an infinite number of 
independent variables. Or when we take successive time derivatives, we may never arrive 
at closure. In practice closure is usually encountered by the second, third, or fourth 
derivative ifit is encountered at all. 

Suppose closure fails under differentiation. Then x2 can be defined to be dx/dt, x3 can 
be defined to be dxif dt, etc. Formally we may write the infinite-dimensional vector 
equation: 

(6) 

Eq. 6 can be regarded as an evolutionary law. Indeed it is even possible to write down a 
formal solution expressing the state at time t2 in terms of the state at time t1: X(t2) = 
exp{(t2 - t1)S}X(t1) = X(t1) + (t2 - t1)S{X(t1)) + ((t2 - t1)2/2)S2(X(t1)) + ... where S is an 
infinite matrix with ones on the first superdiagonal and zeroes elsewhere. Whether the 
solution makes sense depends on whether X(t) can be regarded as analytic in t and whether 
the components of the initial state X(t1) converge to zero with sufficient rapidity so that the 
sum is finite. If the i-th component ofX(t) is bounded by a constant independent ofi and 
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independent of t for short time intervals, convergence does occur. Note that the 
evolutionary law is linear. 

The formal solution of eq. 6 raises as many questions as it answers. In particular, its 
practicality is in doubt since determining a state, say the initial state, may be beyond human 
powers. Indeed, humans prefer finitary measurements and computations. We like to think 
about a finite number of things or about a finite number of types of things. 

3 Fields 

The notion of field comes to our rescue. Examining a piece of string tied between two 
points in a vertical plane, if the displacement is not so extreme that the string can curve 
back or forth over itself, we can imagine a unique string height at each horizontal location 
from one end to the other. We have one kind of variable "height," but it is evaluated at 
infinitely many horizontal positions, giving us a profile of the string at a particular time. 
The continuous structure of space is taken for granted here, including the remarkable 
construct of the real numbers to represent spatial coordinates (as well as the time 
coordinate). We now have an infinite number of observables, namely, string height u(x) at 
horizontal position x for x varying from one end of the string to the other. Letting x remain 
abstract, we can specify a height function u( · ). This is called a scalar field, and this function 
is part of the state. Permissible functions might be polynomials and the like represented by 
formulas or functions piecewise representable by formulas, but we may impose other 
requirements such as continuity (so that the string is unbroken). With this field as part of 
the state, we have many observables implicitly included. Thus if u is assumed to be 
differentiable with respect to x, then c3u(x)/ox, a2u(x)/ax2 are available (if space is taken to 
be discrete, differences or second differences ofu at various locations can be taken instead). 
None of these observable is independent of u('). They can be aggregated into fields 
themselves such as au(·)/ox, a2u(•)/ax2

, and various operations such as applying functions 
or integrating can be performed on them to yield real-valued obsen1ables, all dependent on 
the original field u(·). 

Evolutionary laws can now be developed of partial differential equation type: 

ou(· t) --at-= F(u(,t)) (7) 

to describe the field u(·, t) at time t. This equation is usually local, i. e. , it is interpreted 
pointwise in x with u and any spatial derivatives evaluated at each x. Examples include: the 
heat equation where u is a temperature field and F(u(-,t)) = k a2u(·,t)/ax2, or the reaction­
diffusion equation where u represents the concentration of a chemical throughout a region 
and F(u(-,t)) = au(·,t)h + k a2u(·,t)/ox2

• 

The evolutionary law need not be interpreted pointwise, though. Indeed the state u at 
least in principle need not be differentiable and neither u nor aulot need exist as point 
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functions. They can be equivalence classes of measurable functions in the Lebesgue theory, 
or distributions in the sense of Dirac and Laurent Schwartz. Think of them as mathematical 
limits of sequences of familiar functions . What is important is that suitably concatenated 
with other entities at hand, they yield real numbers, i.e., values of observables. 

If au(·,t)/at is not a function of u(· ,t), we can take another time derivative and treat 
au(- ,t)/at as part of the state. Thus we might obtain: 

au(, t) av(, t ) 
~= v(, t), ~ = F(u(, t), v (,t)) 

(8) 

or 

a2u(, t) au (, t) 
a t2 = F(u(, t),~) 

(9) 

Laws of this type include the wave equations for sound and water waves, for pressure and 
displacement. Remember that the mathematical function F can perform operations such 
as spatial differentiation and many others. 

The state space of fields u(·) or pairs of fields (u(·),au(·)/at) can be taken to satisfy 
certain constraints such as differentiability or having fixed values for certain observables 
so long as these constraints are compatible with the evolutionary law. In many cases the 
constraints are specific boundary values - either behavior at spatial infinity or behavior at 
the boundary of a finite region. In the latter case the system is spatially internal to that 
region and the boundary values represents a stipulated interaction with the environment. 
That environment may include the same variable, e.g., temperature evaluated outside the 
region of interest. 

Other classical examples where fields arise include the Navier-Stokes equations, where 
the state may consist of a fluid density field together with a fluid velocity field defined at 
each point occupied by the fluid. Maxwell's equations are of the same type with the state 
being the six-component electromagnetic field. The two vector equations are the 
evolutionary law and the scalar equations are constraints compatible with the evolutionary 
law. In the simplest case charge density and current density are givens in the environment 
satisfying a charge conservation law. The Navier-Stokes equations, it should be noted, are 
still the subject of major research: no one has managed to show or disprove existence, 
uniqueness, or well-behavedness of solutions to these equations in the general case (Clay 
Mathematics Institute, 2000). 
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4 Probability 

It may happen that the state x is defined and an evolutionary law dx/dt = F(x) exists, but 
for one reason or another it is more convenient to treat the probability density function 
p(x,t) of the states. For a region A in the original state space f A p(x,t) dx is the probability 
that at time t the state x is in the region A. Then Liouville's equation, derived from the 
original evolutionary law, describes the evolution of probabilities: 

8p(x, t) at = - 'v X (p(x, t)F(x)) (10) 

The quantity Vx is the gradient with respect to the original state variables. Eq. (10) is linear 
in p( ., t) and can be solved explicitly provided the original evolutionary law can be. 

Probability in this way affords the opportunity for another expansion of the notion of 
state. The original state x has its own "deterministic" evolution, and is called the 
deterministic state, while a probability distribution p(· ,t) is called the probabilistic state. 
This is a generalization of the former since a distribution concentrated at a single point x 
corresponds to the original state. Probabilistic observables are the probabilities that the 
original observables will take values in arbitrarily prescribed regions. Instead of asking for 
g(x(t)), we ask for P(g(x(t)) E B) = f p(x,t) dx where the integration is over the region {x 
: g(x) E B}. We can also ask for the expected value of g(x), i.e., E(g(x)) = f g(x)p(x,t) dx 
where integration is over the deterministic state space. The new observables, based on the 
probability distribution p(· ,t), are not even potentially observable in the sense that 
deterministic variables are. One needs to make repeated observations of systems with a 
given probability distribution to verify probabilities or expected values. 

Opening this door permits us to consider probabilistic models in which the evolutionary 
law is not obtained from a deterministic counterpart. Examples include the Fokker-Planck­
Kolmogorov equation used in statistical mechanics and genetics and the Sewall Wright 
equation in genetics. Stochastic differential equations may be regarded in the same light. 
Although they are often regarded as arising from a probability measure on the space of all 
classical trajectories (world lines), they can be reformulated to represent evolution in time 
of a probabilistic state at each given time. 

Probability may be introduced because we lack true knowledge of the deterministic state, 
but it also serves us when no deterministic evolutionary law can be discerned and the only 
regularity is the evolution of probabilities. 

5 The Quantum State 

The most unusual extension of the notion of state in common use is that of the quantum 
state. Observables are probabilities and expected values corresponding to (repeated) 
measurements performed on a quantum system. The measurement protocols are linked by 
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semi classical and ad hoe reasoning to self-adjoint operators on a Hilbert space. This Hilbert 
space, in general, is isomorphic to the set of equivalence classes of square-integrable 
complex-valued functions defined on the product of the spectra of a complete and 
independent set of these operators (where complete and independent are used in senses 
similar to our earlier usage). Thus in the simplest case the Hilbert space is L2(R3

") where 
the observables are the three position coordinates of n spinless particles, each coordinate 
operator having spectrum equal to the entire real number system R. The quantum state is 
a unit vector in this Hilbert space, also called a wave function, two such being regarded as 
equivalent if they differ by a scalar of the form ei\ A a real number. The number A has no 
physical significance in general and is like a constant added to a classical potential. The 
quantum state evolves according to the Schrodinger equation or one of its relativistic 
counterpart, the Klein-Gordon equation or the Dirac equation. 

What is most bizarre about the quantum theory is not only that states are probabilistic 
entities describing ensembles of systems rather than a single system, but also that, although 
classical observables are present, there is no classical state underlying the quantum state. 
There appears to be no determinate reality beyond that of the evolving probabilities. 
Measurement of the state, as in conventional probability theory, results in new statistics, 
but these statistics are incompatible with proposed classical states. Collapse of the wave 
function occurs at a measurement, and the state jumps into one of a set of orthogonal states 
associated with the type of measurement. This jump substitutes for the old probabilities 
new ones and constitutes an irreducible interaction with the environment. For example, a 
relatively precise measurement of a position coordinate, according to the Uncertainty 
Principle, leads to a situation where the conjugate momentum probabilities are dispersed 
over a wide range of momenta. 

6 Other Exotica 

In addition to deterministic states, probabilistic states, and quantum states, many other 
avenues for expansion of the notion of state have been pursued. 

Control theory arose with the advent of self-regulating machinery and has been applied 
to chemical, biological, and social systems. The basic notion is that some aspect of the state 
is fed back into the system and used to update the state or restore it to a desired region. This 
falls under traditional notions of evolution except in the case when delay occurs. 

Imagine a system with conventional state x(t) that is updated on the basis of the values 
ofx(t), x(t - h1), x(t - h2), •• • , x(t - h0 ) where O < h1 < h2 < ... < h0 =D. The evolutionary law 
takes the form: 

dx(t) 
--= F(x(t),x(t- h1), ... ,x(t- h0 )) 

dt 

(11) 

To accommodate this form, the notion of state can be expanded further. The state is no 
longer taken to be instant or with the infinitesimal delay of a time derivative, but is taken 
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to be a time profile of the former state over a time interval of length D. Thus the state is 
a portion of the time trajectory of the original state. The evolutionary law can now be used 
to update this trajectory. Given x(t) for O 2 T 2 -D, we find x(t) for T 2 t 2 T - D at any time 
T > 0. The former is the state at time O and the latter is the state at time T. The state 
includes a memory of the recent past. 

The state notion can be generalized further still to include an infinite memory, with the 
new notion of state at time t consisting of the original state trajectory for the entire past, 
i.e., the state at time T is the entire set ofreadings x(t) for T 2t 2-00. The evolutionary law 
may now draw on all quantities obtainable from the past or present, e.g, values ofx at any 
past time, integrals of x over past time intervals, time derivatives of x at past times, et 
cetera. The original state x before this generalization may already be a field. Hence the 
evolutionary law may be a partial integro-differential delay equation. 

A system of particular interest is a family of charged particles interacting electro­
magnetically and relativistically. The acceleration of a particle at the space-time point P is 
a function of the electromagnetic fields generated at P by the other particles. The values of 
these fields can be expressed in terms of the positions and velocities of the other particle 
at the times when they were on the past light cone of P, i.e., events that can send a signal 
to P at the speed of light. To understand the interaction of the system, positions and 
momenta of all particles in some Lorentz frame must be given over a range of times, and 
then one must show how the evolutionary law predicts what will happen over an equally 
large range of times. A multi-time state seems to be inherent in this case. 

When an evolutionary law is incomplete or is given by a multi-valued "function," 
another adjustment of the state notion can be contemplated. Suppose the evolutionary law 
for a conventional state is of the form: 

dx(t) dtE F(x(t)) (12) 

where F(x(t)) denotes a state-dependent set of values and E denotes membership. Then the 
future state lies on any trajectory compatible with the relation (12). 

Such a situation may be handled by probabilistic methods or one may introduce another 
new notion of state, namely any set of conventional states. If S(t1) denotes a set of 
conventional states at time ti, then S(t2) denotes the set of all conventional states reachable 
at time t2 along a conventional trajectory satisfying relation (12) for t1 ~ t ~ t2 and 
beginning in S(t1) at time t1• Thus sets of states evolve. Although this notion may seem far­
fetched, it sometimes yields results for sets of points that are comparable to those for 
deterministic evolution along point trajectories. For example, Barnsley et al. (1988) have 
shown that fractals arise as the equilibrium sets in a discrete form of relation (12) (with x 
updated each time period by applying one of a finite number of contractions). More general 
forms than relation (12) can also be accommodated. Indeed, if any aspect of the future can 
be predicted, it can be used to define an evolution of sets of states to sets of states. Fuzzy 
sets can also be substituted for ordinary sets. 

Category theory can also be used to extend the reach of the notion of state. (I am indebted 
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to Paul Kainen for reminding me of this point). If an evolutionary operator T(t) takes the 
state space X to itself, updating the state by a time interval t, then a functor ~ can induce 
~T(t)) taking ~X) to ~X). The object ~) may contain X as a subobject or may contain 
all important structures in X. Examples already given fall under this rubric. 

Also worthy of mention is the notion of a superstate. If trajectories in state space 
intersect, it is sometimes appropriate to regard these trajectories as projections or shadows 
of non-intersecting trajectories in a higher-dimensional space, a space of superstates. The 
superstates will involve additional variables that may or may not have physical significance 
but do permit a deterministic evolution. The opposite case may hold as well, namely, the 
trajectories in the state space down below, the base space, are deterministic, but there are 
multiple trajectories in the superstate space, the total space, all of which project down to 
the visible trajectory. Both types of space, hypothesized for mathematical convenience or 
speculative adventure, have played generally constructive roles in theoretical physics - in 
hidden variable theories, gauge theories, and string theories. 

7 Conclusion 

The repertoire of the system modeler thus includes: additional independent variables, 
derived variables, fields, probabilistic and quantum states, states with finite or infinite 
memory, sets of states, category-theoretic states, and superstates. This litany perhaps 
suggests a decline in the importance of physical observables and an increase in the 
importance of nominal prediction. However, the more advanced notions of states generally 
have earlier notions embedded in them so that traditional observables are represented. 

Nonetheless, we are a long way from Aristotle's natural paths. The malleability of the 
notion of state, as it becomes more remote from simple observation, threatens to deprive 
it of meaning. In reality, though, the state approach is a sturdy one and only changes in the 
face of stubborn facts. It has successfully survived its greatest challenge to date, namely, 
the quantum theory. Its essence is a framework to express temporal pattern and mathe­
matical lawfulness. 
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