
IMPLEMENTATION OF PROGRAMMING LANGUAGES WITH

NEURAL NETS

J. Pedro Netol, Hava T. Siegelmann2, and J. Félix Costal
jpn@di.fc.ul.pt, iehava@ie.technion.ac.il, and fgc@di.fc.ul.pt

lFaculdade de Ciências da Univenidade de Lisboa
BLOCO C5 - PISO I, 17OO LISBOA, PORTUGAL
2Faculty of Industrial Engineering and Management

TECHMON CITY, HAIFA 32 OOO, ISRAEL

Abstract: In this paper we present the implementation of control structures of a highJevel

concurrent programming language into the machine level of analog recurrent neural nets.

Neural nets can thus perform high-level symbolic tasks, together with their reputed

subsymbolic learning capabilities. rWe emphasize the construction of neural software capable

of integrating both learning and programmed control modules.

Keywords: Analog Computation, Symbolic and Subsymbolic Computation, Neural

Computation, Recurrent Neural Nets.

L.The Model

In this paper we show that prograrnming languages are implementable on neural nets, namely,

neural nets can be designed to solve any (computable) high level programming task. In

particular we show how to emulate an OCCAM-like programming languages on nets. We

implemented a compiler and it is offered for the interesûed reader from e-mail: jpn@di.fc.ul.pt.

Our compiler can be used to built large scale neural nets that integrate leaming and control

structures. We use a very simple model of analog recurent neural nets and a number-theoretic

approach. Our results can be generalised to other models of neural computation, and also to

support structured data types (through coding techniques).

The use of such a model for computability analysis is due to Hava Siegelmann and Eduardo

Sontag. In [Siegelmann and Sontag 92, Siegelmann and Sontag 95] Hava Siegelmann and

Eduardo Sontag used it to establish lower bounds on the computational power of analog

recurrent neural nets.

An analog recurent neural net is a dynamic system with aplication map of the form

?1t+t;= O(?ttl,Êttll (l)

Inærnetiond Journd_o-f_Computing Anticipetory Systcms, Volume I, l99EEd. bv D. M. Dubois, pubt. by cHAos; t ioge, B€rgi-un. t-ssr.r rrzrsari rsrx 2-qx'0f,t7yt-g

where x;(t) denotes de activity (firing frequency) of neuron i at time t within a population of N
interconected neurons, and ui(t) the input bit of input stream i at time t within a set of M input
channels. The aplication map Q is taken as a composition of an affine map with a picewise linear
map of the interval [0,1], known as the saturated sigmoid:

r0o(") =
1T

i f x<0
i f 0<x<1
i f x > 1

(2)

/ 3)

(4)

(s)

The dynarnic system becomes

xt(t+l) = o,
rl

a1,x1(r) + I, bi;u.;(t) + ci)

where a1, b1 and c1 are rational weights (and therefore Turing computable).

Within this model (a number-theoretic model) integers are coded as rational numbers in l0,l [.
Since the sigma function is linear in the unit interval, neurons can hold values with unbounded
precision (but always finite). In order to work with bounded resources some fixed precision
must be assumed from the very begining (like maxint in the PASCAL programming language).
We adopt the representatlon,

0 = 0 .1 , I = 0 .01 , 2 = 0 .011. n = 0 .01n

Negative numbers can also be considered as follows:

We assume that all inputs are previously coded before the computation starts, using a stack
technique similar to that found in, e.g. [Siegelmann and Sontag 95], and decoded after the
computation. This notation has already been used in [Neto et al 96].

Our problem will be to find a net

N
x i (t+ l)=o (I a11x i (t) + c ;

j=1

for each program written in a suitable programming language.

M

201

(6)

2.The Language NETDEF

We willadopt a fragment of Occam@ for the programming language. Occam@ was designed to

express parallel algorithms on a network of processing computers (for more information, see

ISGS 951). lWith this language a program can be described as a collection of processes

executing concurrently, and communicating with each other through channels. These two are

the main concepts of the Occam@ programming paradigm.

Occam@ programs are built fromprocesses. The simplest process is an action. There are three

types of action: assignment of an expression to a variable, input and output. Input means to

receive a value from a channel and assign it to a variable. Output means to send the value held

by a variable through a channel.

There are two primitive processes: skip and stop. The skip starts, performs no action and

terminates. The stop starts, performs no action and never terminates. To construct more

complex processes, there are several types of construction rules. Herein, we present some of

tl'rem: while, if, seq and par.

The f is a conditional construct that combines a number of processes each of which is guarded

by a boolean expression. The while is a loop construct, that repeats a process while an

associated boolean expression is true. The seq is a sequential construct, combining a number of

processes which are performed sequentially. The par is a parallel construct, combining a

number of processes which are performed concunently.

A communication channel provides unbuffered, unidirectional point-to-point communication of

values between two concurent processes. The format and type of values are defined by a

certain specified protocol.

Here follows the simplified grammar for NETDEF, in EBNF:

program ::= header block.

header::= "input" id {"," id} "output" A {"," idl.

block::-- "netdef" instruction { ";" instruction } ".".

instruction::= def-varl attributionl skipl if+hen-elselwhile-dol seq-blockl par-block.

def-var ::= "var" id {"," id}.

attribution : : = id " : =" expression.

skip ::= "skip".

iJ+hen-else ::= "tf' expression "thcn" instruction "else" instnrction.

while-do ::= "while" expression "da" instnrction

seq-block ::= "seq" instruction [";" instrrction | "endseq".
par-block;;= "par" instrrction { ";" instruction } "endpar".

202

Now we show that all NETDEF programs can be compiled into neural nets. There exists a

dynamic system of the kind (6) that runs any Occam@ program on some given input. This
'universal' neural net is a neural computer able of performing symbolic and subsymbolic

computation. A different but seminal approach to the neural net software construction is found

in [Siegelmann 96].

3.The Implementation Map

Now we introduce the major constructions of our implementation map, but leaving details to the

full paper. Each NsrDeF command denotes an independent neural subnet. Subnets may share

variables (and channels, as we will see later on). The implementation map is recursive, because

each block might correspond to a set of several instructions. Each subnet is activated when the

bit I is received through the input validation line IN. The computation of a subnet terminates

when the validation output neuron OUT writes bit 1, signaling to the following module the

availability of the result at that precise moment. Using this method, we can easily control all

synchronizations.

Subnets are denoted by squares and non-labelled arcs default to weight l

Fig. 1. A := Expr

Fig.2.IF G THEN T ELSE E

203

Fig.3. WHILE G DO A

4.Turing Power

The first (constructive) proof of Turing's power of rational neural nets was given by Hava
Siegemann and Eduardo Sontag in l992,closing an open question since the fourties.

In fNeto et al96] the three of us together with Carmen Araujo used, instead, recursive function
theory to provide insigts of computational completeness and modularity in the neural network
constmction. Recursive function theory identifies the set of computable functions with the set
of partial recursive fwtctions on <o (see [Boolos and Jeffrey 80]).

A function f is said to be computable if it can be manufactured from a specific set of basic
functions and a few construction rules. The basic functions, or axioms, are the zero-ary
constant 0, the unary successor function S(x)=xa1, and the set of n-ary projection functions
U;,1(x1,...,x1)= xi, for ie 1..n. The rules are composition, recursion and minimalisation (for

2M

more details see lNeto et al96]).

We will see that these constructors can be clearly and easily implemented with NETDEF

commands. In each command we make use of function calls. Each function should be replaced

with the specific NETDEF command.

ZERO

DATA1UT:=0;

SUCCESSOR

DATA67r7:=x+1'

PRoJEcTION Ui,n

W
if i=I then DATA67T:=x1;
if i=2 then DATAgyT:=x2;

if i=n then DATA67T:=xn
endpar;

COMPOSITION
var y1, . . . ,yk;
seq

W
y 1:=f1(x1, . . . ,x) ;

Y1ç: =fp(x 1,...,xn)
endpar;
DATA77T:=g0 t , . . . ,Yt)

endseq;

RECURSION
var k,h;
seq

pr
k=0;
h:=f(x t , . . . ,xn)

endpar;
while y<>k do

seq
h:- g(x1, . . . ,xr ,k ,h) ;
k:=k+l

endseq;
DATA6UT:=h

endseq;

MINIMALISATION
var y,k;
seq

y:=0;
lç;-f(x1,...,xn,y)i
while k<>0 do

seq
y:=y+I;
f t ;=f (x 1, . . . ,xn,y)

endseq;
DATA7UT:=Y

endseq;

The six commands given above implement the base functions and construction rules of

recursive function theory. Hence, NETDEF expresses all partial recursive functions.

S.Complexity of Computations

The proposed implementation map is able to translate any given NerDnr program to an analog

recurrent (rational) neural net that performs the same computations. We next calculate the space

complexity of the implementation, i.e., how many neurons are needed to support a given

NetDer program?

The assignmer?/ inserts 5 neurons plus those that are needed to compute the expression. The

skrp needs only one neuron. The if-then-else and the while statements need 5 neurons plus

20s

those that are needed for the evaluation ofthe guard. The seq statement requires 1 neuron and

the par of n statements asks for n+2 neluons. All expressions can be evaluated with a linear

growth in that number. Every,command adds a constant or linear complexity to the final net.

The spatial complexity of the emulation is linear in the size of the program.

Concerning time complexity, each subnet executes its respective Occam@ command with a

constant delay. NETDEF adds a linear time slow down to the complexity to the corresponding

program.

6.Channel Synchronisatioh

NETDEF also assumes the Occam@ channel communication protocol, allowing for the

synchronisation of two independent instructions. We introduce three new instructions cha, send

and receive.

def-cha::= "cha" id {"," idl.

send::= "send" id "into" id.

receive ::= "receive" id "from" id.

cha defrnes a new channel, senl sends an integer through a channel, blocking the process if tbe
channel is full, and receive receives an integer through the channel, blocking ifthe channel is
empty, and waiting until something arrives. Each channel has memory just for one integer.

Using several channels in sequence, it is possible to create larger buffers.

Fig.5. SEND X INTO C

Ce? b f whencverchannel
C is empty

206

7.Non Determinism

The choose construct introduces non determinism in NETDEF. Command choose non

deterministicaly selects one of its arguments and executes it. To do so, it includes an oracle that

outputs a binary value. This value is random or given in some predefined list of values.

choose ::= "choose" id {";" id} "endchaose".

We next show an example with only two arguments, but the same method can be used for n

choices, with a need oflog2 n oracles. In neuron Xguess, the oracle guess inserts a 0 or 1 into its

input.

Fig.6. CHOOSE Ar ;Az ENDCHOOSE

8.Summary

Vy'e showed how to handle control structures in neural networks of a picewise-linear activation

function to implement programming languages. We provided the construction for the

concurrent Occam@ programming language. The programmability of neural networks to

perform higher level programming tasks, together with their recognised learning capabilities

provide an interesting workbench for the integration of symbolic and subsymbolic computation.

207

References

[Boolos and Jeffrey 80]
Boolos, G. and Jeffrey, R., Computability and Logic, Cambridge University Press,
1980.

lNeto er a/ 96]
Neto, J. Pedro, Siegelmann, Hava T., Costa, J. Félix, and Carmen Surârez Araujo, Turing
Universality of Neural Nets Revisited, 1996, Lecture Notes in Computer Science, Springer-
Verlag, to appear.

[Siegelmann and Sontag 91]
Siegelmann, H. and Sontag, 8., Neural Nets Are Universal Computing Devices, SYCON
Report 91-08, Rutgers University, 1991.

[Siegelmann and Sontag 95]
Siegelmann, H. and Sontag, E., On the Cornputational Power of Neural Ners, Joumal of
Computer and System Sciences [50] l, Academic Press, 1995, L32-150.

lSiegelmann 961
Siegelmann, H. On NIL: The Software Constructor of Neural Networks, Parallel
Processing Letters [6] 4, 575-582,1996.

ISGS-Thomsom 951
SGS-THOMSON, Occam@ 2.1 Reference Manual. 1995.

208

