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Abstract
In this paper, we present an introduction to the theory of computability and complexity
over a ring proposed by L. Blum, M. Shub and S. Smale in [Blum-Shub-Smale-1989).
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1 Introduction

In [Blumn-Shub-Smale-1989]. Lenore Blun. Mike Shuly and Steve Smale have devel-
oped a general theory of computation (the BSS-mmodel) in which the smallest codable
inforiation elements helong to a ring A (or a field) and whose basic operations are this
ring’s operations and some tests. It allows them to study usual algorithins coming under
(munerical) analysis, geometry, optimization and topology, which deal with continuous
domains, as IR and €, and so, for which the classical theory of computability and com-
plexity (developed for example by Godel. Church and Turing) is inappropriate hecause
restricted to discrete problems.

In the BSS-model. an algorithin is described as a machine Al changing an input y € A*
(k € INy U {oo}) into the output ¢ (y) thanks to a finite sequence of polynomial trans-
formations (rational if A is a field) submitted to tests "= 077 or 7> 07" if A is ordered.
Note that the special case k = oo allows to describe general algorithms (in particular
uniform with the arbitrary size of their inputs) and to build an universal machine able to
simulate any other machine.

Two essential preoceupations of any computation model are. on the one hand, to
describe computable maps in the sense of the model (computability) and on the other
hand, to estimate means neccessary to realize the evaluation of these maps (complezity).

The description of computable maps in the BSS-model - i.e. maps @py - is formally the
same than in classical theory; in particular, it is independent of the ordered ring A. These
maps are the recursive ones over the ring A obtained from some basic maps and rules.
For example, when A = 7Z, they are exactly the maps computed by Turing’s machines.
Domains 37 and codomains ¢ar(Qar) of computable maps are also studied to lead to
results connecting these sets (respectively called halting sets and output sets) and semial-
gebraic sets [Bhun-Shub-Smale-1989, Bhun-Smale-1993, Ceola-1995, Meer-Michaux-1997,
Mercier-1989, Michaux-1990, Saint Jones-1995).

As for the theory of complexity of the BSS-model, it depends appreciably on the ring
A. Here are some illustrations.

The definition of the complexity function involves a notion of height which is defined
explicitly by Blun, Shub and Smale only over some rings: %, @), IR, what sometimes
complicates the transposition of Turing’s methods.
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Classicaly, the complexity classes (such as the class P of decidable problems in polyno-
mial time, the class NP of verifiable problems in polynomial time, ...) are often defined
in terms of decision problems. Maybe some reasons to do so is that it is technically easier
and practically better suited than studying directly complexity of functions. Moreover, it
is justified by the fact [Lewis-Papadimitriou-1981] that the computability of a map f in
the sense of Turing is equivalent to the decidability of its graph G;. In the BSS-model, if
it is always true that the computability of f implies the decidability of G;, the converse
is false: it is true over an algebraically closed field (for example, €) [Ceola-Lecomte-1997)
but over IR, we can show [Ceola-1995] maps which are not computable but whose graphs
are decidable.

In Turing’s theory, it is easy to prove that any problem in class NP is decidable. But
in the BSS-model, this essential fact is not true in general. At first, over A = IR, the decid-
ability of problems in class NP comes, via a non trivial way, from the existence of a prob-
lem in class N PC whose decidability results from the exponential algorithm of quantifier
elimination of Tarski-Seidenberg [Kreisel-Krivine-1967, Renegar-1989, Seidenberg-1954].
Afterwards, a general result [Goode-1994] characterizes rings over which problems in class
NP are decidable, as heing rings which admit quantifier elimination.

At last, the validity of the conjecture P # N P seems to depend on the ring A. Anyway,
it is false in some variations of the BSS-model [Meer-1992, Meer-1993a], in which the basic
operations are modlified.

Most of notations and results cited or used in this paper come from the original paper
[Blum-Shub-Smale-1989]. Proofs are not included in this general presentation but can be
found in references.

2 Basic Definitions

Let’s describe briefly the concept of finite dimensional inachine (in normal form) over
a commutative ring A. It consists of an input space D = A*¥ (k € INy'), a state space
E = A" (1 € INy), an output space R = A™ (m € IN,) and a directed graph whose nodes
are labelled 1, ..., N. These nodes belong to one of the four following types:

(i) dnput node: only node 1 is of this type; it has no incoming edge, only one outgoing
edge to its nest node B(1) and is characterized by the linear injective map 4 : D —
E:yw (y,07%);

(ii) output node: only node N is of this type; it has no outgoing edge and is characterized
by the linear map s : E — R which with x associates (x1,...,2,,) if I > m and
(%1, ..., m,0™") otherwise;

(iii) computation node: such a node n has a single outgoing edge to its next node B(n)
and is characterized by a polynomial map g, : E — F; if A is a field, the map g,
can be rational;

(iv) branch node: such a node n has two outgoing edges to its next nodes 3~ (n) and
Bt (n); if x is a state (that is an element of E), the node 4~ (n) is bound up with the
condition z; = 0 (x; < 0 if A is ordered) and the node 3% (n) up with the condition
21 #0 (z; > 0 if A is ordered).

IThe set IN, consists of all stricly positive integers and IN is the mmion of IN; and {0}.
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An infinite dimensional machine (in normal form) over A consists of an input space
D = AF (k € N,U{oo})!, a state space E = INgx INg X A%, an output space R = A™ (m €
INoU{oo}) and a directed graph. Elements of E are indexed from -1; components of index
-1 and 0 are the counters of the state and so, of the machine. Nodes belong to one of the
five following types®:

(i) input node: the linéar injective map i : D — FE is defined by

ia(y) =1
in(y) =1
| i2y) = Uy
o1 (y) =y 17 <I(y)
iw(y) = 0 if2<r<I(y)-1

Il

i (1) 0 if r > 2i(y)

where I(y) is the length of y, i.e. the greatest integer A such that yx # 0 (the length
of a vector whose all components are zero is zero); then

\V/I/ eD: l(’/) = (11 lv :’/111(:[/)7.1/‘21 07 Ysy .. a()’:’/l(y)v 000)
where 0% is an infinite sequence of zero’s;

(i) output node: the linear map s : E — R is defined by

(iii) computation node: the polynomial (or rational) map g, : E — E is defined by

gnl() = (G (@_1), 9 (z0), 98P ()

where
.{/7(1,” :INg >INy :r—r+1lorl
g E — A
(iv) branch node;

(v) copy node: such a node n has a single outgoing edge to its next node #(n) and is
characterized by a map g, : E — F such that

Inr(x) = 2 if # 3o

Przal®) = By

V?'Z—l:{

Remnark. The concept of infinite dimensional machine has been introduced to solve
problems of same kind, by an uniform method which is independent of the arbitrary
size of the inputs (for example, a polynomial evaluator, independent of the degree of the

IThe set AN consists of all "alinost everywhere mill” sequences over A.
20uly differences with the finite case are mentionned.
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polynomial map). This concept will he also useful to define an universal machine, which
can simulate any other machine.

Ezamnple. Figure 1 shows a finite dimensional machine over IR. The input and ouput
spaces are IR and the state space is IR?. The map of the input (respectively output) node
isi: IR — IR?: y — (y,0) (respectively s: IR* > R : (21, Xp) 1),

0

g(x) = (11 — L)1 2, >0 7

yes

glx) ={xy— Liwy + 1)

110

€< 07?

Figure 1. A finite dimensional machine

Let’s describe how a machine M works on an input y (that is an element of D). The
working is characterized by a sequence of node-state couples. At the heginning, we are
at node 1 in state 2 = i(y). We then go. without changing state, to node n. = (1), next
node of the input node; if 7 is a computation or copy node. we go to node 3(n) while
producing new state g, (x); if 7 is a branch node, the state is still 2 and we go to node
37 (n) or A% (n), according to whether 2, = 0 (2 < 0 if A is ordered) or whether ; # 0
(1 > 0 if A is ordered). Thus this computation proceeds until the output node N is
reached (if ever); we then compute s(z) if x is the state at this node N. We then say that
the computation stops and produces oar(y) = s(x).

Ezample. In the above example, for an input y < 0, the machine never stops while for
an input y > 0, it repeatedly replaces the first component of the state y by y — 1 during
it increases, of one unit, the counter 2 (initially at zero). As soon as y is negative, the
counter minus one is the rendered result.

The halting set Qpp of a machine M is the subset of D of inputs for which the com-
putation stops. The map ¢ar @ Qap — R is the input-output map.

Ezxample. In the above example, the halting set of the machine is the set IRY of positive
reals and the input-output map computes the greatest integer in a positive real y.
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A partial map f: Y C A¥ — A™ (k,m € Ny U {oc}) is computable over A if there
exists a machine M such that

Y C Qy and M|y = f.

A subset Y of A¥ (k€ IN, U {oo}) is acceptable over A if there exists a machine whose Y
is the halting set. It is decidable over A if it and its complement in A¥ are both acceptable
over A.

The following result, well known in classical recursion theory, still holds in the BSS-
model.

Lemma 2.1 A subset Y of A* (k € INyU {oo}) is decidable over A if and only if its
characteristic function over A¥ is computable over A.

3 Universal Machine

In this section. we present the concept of universal machine which, given the code of
a machine M over A and an input » of A, has the saune hehaviour than M on y.

Let’s first introduce the powerfree representation of a polynomial function f : AF — A
(k € Ny U {oc}). Let d be the degree of f and sn the munber of monomials (of non null
coefficient). The representation which belongs to A% is defined by

PFR(f) = (d.k.af...., aboag.oal ol g, 07°)

where the of (1 < i < d. 1 £ j < m) are integers between 0 and k; in fact, via the
convention "y = 17, (o], ... ad,a;) (1 < j <o) represents the monomial Gl -+ Yo of
f. The (o, a) are lexicographically ordered. Note that if k = oc, it is replaced in PFR(f)
by the munber of effective variables appearing in f.

The code of a machine M over A is the element ¢(A) of A% defined as follows:
(i) (M) = 0 or | according to M is finite or infinite;
(i) (M), =0 or | according to A is a commutative ring or a field;
(iii) the next components are the codes (n. t,. 3, L., g.) of nodes where

- n refers to the node;

- t,, is the type of the node: 1 if n is the input node, 2 if it is the output node, 3
if it is a computation node. 4 if it is a branch node and 5 if it is a copy node;

- /3, is the next node; if ¢, = 4, 3, = (37, 35); it t,, = 2, 3, is omitted;

o

- I, and g,, are present only for #,, = 3; [,, is the length of the description of the
map ¢, of the computation node n; if A is a ring (respectively a field), g, is
described Dy its dimension followed by powerfree representations of polynomial
functions (respectively of munerators and denominators) appearing in effective
components of the state;

(iv) the obtained vector is followed by an infinity of zero's.
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Theorem 3.1 [Blun-Shub-Smale-1989, Ceola-1995] There exists an universal ma-
chine My over A such that for any machine M of finite (respectively infinite) input space

{ Q= {(c(M), (1,0°)) € A% x A® : y € Qu}
emy (e(M), (y,07)) = ear(y)

(respectively
{ Quty = {(c(M),y) € A= x A= : y € Qu}
oMy (c(M),y) = om(y)).

4 Recursive Maps

A basic map over A is any polynomial map (or rational map if A is a field) f : A¥ — A™
(k,m € INg) as well as the function

-1 ify<0
sign: A— Ay 0 ify=0
1 otherwise

if A is ordered. Therefore sums, products, projections, constant functions and the suc-
cessor function (which adds one to its argument) are basic maps.

The composition of partial maps f:Y; C A¥ — A' (k,l € N,) and g: Y, C A" —» A™
(m € INy) is the partial map go f: f71(Y,) C A* = A™ 1y g(f(y)).

The juztaposition of partial maps f; (1< i < I, 1 € INy): Y; ¢ A* — A% (k,1y,...,l; €
INy) is the partial map ¢(f1,..., fr) : N_,Y; € AF — Ah+-H1 guch that for all j €
{1,...;h+...+ 11}

'd’(flv ey f])j(y) = .f‘iv,l'—ll—--~_li—1 (:’/)

where i + ...+l <j<lLi+...+10 (fori=0,1; +...+1[;_; is, by convention, as well
0). :
The primitive recursion of the partial map f : Yy ¢ A¥ — A% (k € INy) is the partial
map
, ’ ’ 0,9) —

g:Y, CINx A* = A*: (0, <

g t+1Ly) — flgt,y)
where Y, = {(0,y) : y € AFJU{(t + 1,y) € Ny x A* : (t,y) € Y, and g(t,y) € Y;}. So
g(t,y) is f composed with itself ¢ times applied to y.

The minimalization of the partial map f: Yy € IN x A¥ — A (k € INy) is the partial
map g : Y, C A* > N :y— min{t € N: f(t,y) = 0} where Y, = {y € AF¥ : 3t €
IN such that (t,y) € Y7 and f(t,y) = 0}.

The set P5™ of recursive maps over A between finite dimensional spaces is the smallest
set of partial maps f : Y, ¢ A¥ — A™ (k,m € INy), containing basic maps over A and
stable by composition, juxtaposition, primitive recursion and minimalization.

Remark. If we compare the BSS-theory over the countable ring Z with Turing’s one,
we can prove [Blum-Shub-Smale-1989, Ceola-1995] that the set of recursive maps in the
sense of Turing’s theory coincide with the set P> of recursive maps in the sense of
BSS-theory.
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Theorem 4.1 [Blun-Shub-Smale-1989] If C5™ is the set of partial maps between fi-
nite dimensional spaces and computable over A by a finite dimensional machine, then

<oo _ <oo
CA o ’P14 .

Remark. Let C§% be the set of partial maps between finite dimensional spaces, com-
putable over A by an infinite dimensional machine. Since a finite dimensional machine is
equivalent to an infinite dimensional one, we have the inclusion C§* C C{%, which is, in
fact, an equality [Blum-Shub-Smale-1989, Michaux-1989].

5 Halting Sets and Output Sets

A subset S of A* (k € INy U {o0}) is a basic semialgebraic set over A if it is the set
of elements of A* which satisfy a finite system of polynomial inequalities over A; it is a
semdalgebraic set over A if it is the finite union of basic semialgebraic sets over A.

Let M De a machine over A. If y € Qpr, we denote y(y) the path followed in the graph
of M during its computation on y. If € € {1,...,N}T (T € N,), we denote V; the set of
inputs y of Qpr such that v(y) = & Thus

w=U U %

TeNy ¢e{l,...,.N}T

Proposition 5.1 [Bhun-Shub-Smale-1989] If M is a machine over A, then each Vg
(€ e{l,...,N}T, T € Ny) is a semialgebruic set over A (basic if the maps at computation
nodes are polynomial) and @pr restricted to Vi is a rational map. Moreover, without loss
of generality, the denominator of this map can be assumed to vanish nowhere on V.

Corollary 5.2 [Blum-Shub-Smale-1989] Any acceptable set over A is a countable u-
nion of basic semialgebraic sets over A.

Proposition 5.3 Any semialgebraic set over A is acceptable over A.

Proposition 5.4 [Mercier-1989] All countable unions of basic semialgebraic sets over
R are NOT acceptable over 1R..

Proposition 5.5 [Michaux-1990] Any FINITELY generated countable union of semi-
algebraic sets over IR is acceptable over IR.

Proposition 5.6 [Michaux-1990] A countable union of basic semialgebraic sets over
IR. is acceptable over R if and only if the set of real coefficients which appear in the defining
inequalities (of the basic semialgebraic sets) lie in o finitely generated subring of IR.

In particular [Cucker-1992], any subset of Z becomes decidable over IR and any func-
tion from IN to IN is computable over IR.

The output set of o machine M over A is the subset pa(Qpr) of its output space. It
is clear that any halting set Qa7 of a machine M is the halting and output set of another
machine M’ obtained by the juxtaposition of a machine computing identity and of M. In
fact, we have a characterization of subrings of IR for which the halting and output sets
coincide.
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Theorem 5.7 [Saint Jones-1995] A subring A of R is such that the class of halting
sets is equal to the class of output sets if and only if one of the following conditions holds:

(i) A is a real closed ficld;

(ii) A is of finite transcendence degree (over Q) and it is a recursive ring relative to the
Dedekind cuts of members of a transcendence base of A over Q.

Proposition 5.8 [Blum-Shub-Smale-1989] Ouer a real closed field, the class of halting
sets is equal to the class of output sets.

6 Undecidable Sets

_Proposition 6.1 [Blhun-Smale-1993] Any algebraic nunber ring A (i.e. a finite al-
gebraic extension of Z) has a subset which is first-order definable over A (in the natural
language for ordered rings) but undecidable over A.

Proposition 6.2 [Ceola-1995] Any subset of IR dense in IR and with emnpty interior
is undecidable over R.

Corollary 6.3 [Ceola-1995] The set Q) of rational numbers is undecidable over R.
Remark. The set Q)is hence an example of an acceptable set which is not decidable.

Other examples of this type are given by the Cantor Middle third set and the complement
of some Julia sets [Bhun-Shub-Smale-1989].

A decision problem over A is a pair (Y.Y') such that Y/ C Y C A* (k € IN, U {oo}).
It is decidable if the characteristic function of Y/ over Y is computable over A.

Theorem 6.4 [Meer-Michaux-1997] The halting decision problemn (HP, HP') over A
defined by

HP = {(c(M),y) € A® x A : M machine over A}
HP' = {(«(A),y) € HP : (yy.. ... yi) € Qg with A¥ as input space of M}

18 undecidable.

7 Computability of a Map and Decidability of its Graph

Over a ring A, the graph of a map f: Y C AF — A™ (k.1 € Ny U {oo}) is the subset
of A¥ x A™ defined hy

Gr={ly. fy) e A" x A" :yeY}.

We point here a major difference between the classical model and the model of Blum,
Shub and Smale. In the first one, we have [Lewis-Papadimitriou-1981] the equivalence
hetween the computability of a map f and the decidability of its graph Gy. In the latter
one, the computability of f still implies the decidability of Gy hut the converse depends
on the ring. Tt is false over IR hut true over any algebraically closed field.
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Proposition 7.1 [Ceola-Lecomte-1997) If a map f: A¥ — A™ (k,m € IN, U {oo}) is
computable over A, then its graph Gy is decidable over A.

Lemma 7.2 [Ceola-1995] If a function f:Y C R — R is computable over IR, then
any subset Y' of Y, with non empty interior, contains a non empty open interval on
which f is rational.

In a model of computation over IR, close to BSS-one [Herman-Isard-1970], it is men-
tionned that the square root is not computable but has a decidable graph. Using Sturm’s
theorem [Jacobson-1974], this example can he generalized as follows.

Proposition 7.3 [Ceola-1995] For each n > 2, define the function f, : R"! - R by
./"n.(”‘(h s ﬂ”’ll.) =

inf{teR:ap+art+...+a,d" =0} ifao+ait + ...+ a,t" has a real zero
0 otherwise.

Each function f, is not computable over IR but has o decidable graph over R.

In the rest of this section, the ring A is seen as a structure whose functions are the
binary sum and product and whose constants are elements of A. It is an algebraically
closed field if A is a field such that every non constant polynomial in A[X] has a zero in
A. Quantifier eliminalion means that there exists an effective procedure such that, given
a formula

quty ...y Flry, ..o a,y)

where qq,...,q, are quantifiers in {V,3} and F(x).....2,,y) is a first-order formula
allowing constants to denote elements of A, without quantifiers, outputs an equiva-
lent first-order foriula G(y) without quantifiers. It is known [Kreisel-Krivine-1967,
Seidenberg-1954] that such effective quantifier elimination algorithms exist if A is an
algebraically closed field. Moreover it is clear that the truth of a first-order sentence
without (uantifiers can be tested by a machine in the sense of Blum, Shub and Smale.
Therefore the truth of every first-order sentence over an algebraically closed field can be
tested.

The next result is true for a ring with an effective quantifier elimination algorith-
m; in particular, it holds over the ordered ring of the reals [Renegar-1939] and over an
algebraically closed field.

Proposition 7.4 [Ceola-Lecomte-1997] Let A a ring with quantifier elimination and
M a machine over A deciding o set Y C A¥ (k € Ny U {oo}). There exists an effective
procedure which, given ' € A (k' < k) and T € Ny, finds the paths of length T, followed
by M on inputs of the form (y',y") € Y as well as the length k' of the corresponding y".

Remark. A more general version of the previous result holds for a machine M comput-
ing the characteristic function of Y’ over Y where Y/ C Y C (A*N Q) (k € INgU {o0}).
In this case, one searches the paths followed by A7 on inputs of the form (y',y") € Y.

Remark. Note that in the previous result, the »” are not computed. It is done in the
next result thanks to the algebraically closedness of A.
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Theorem 7.5 [Ceola-Lecomte-1997] Over an algebraically closed field A, a map f :
AF — A™ (k,m € IN, U {20}) whose graph is decidable is computable.

Corollary 7.6 [Ceola-Lecomte-1997] Over an algebraically closed field A, a com-
putable bijective map f : A¥ — A™ (k,m € INy U {oo}) has a computable inverse map

=

8 Basic Notions of Complexity

Let M be a machine over A and y an input of M. If y € Qyy, the halting time Ty (y)
of M on y is the length of the path y(y). For an input y & Qr, Ta(y) = oo. The height
h(y) of an element y of Z (respectively Q) is logy(|y | +1) (respectively sup(h(p), h(q))
if y = p/q with p and q relatively prime integers). As for as the height of a real, it is 1.
The height of an element y of A* (k € Ny U {oo}) is the sup{h(y;) : i > 1}.

Remark. The height of an element can be interpreted as proportional to the memory
unit necessary to code it. Indeed, over ZZ, it is of the order of the number of bits required
to represent an integer while over Q, it is of the order of the mumber of bits necessary
to represent, the munerator and denominator. As for the height over IR, it indicates that
each real is representable with an infinite precision.

The size t(y) of an element y of A¥ (k € INy U {oo}) is the product of its length by its
height. The cost function Crp(y) of @ machine M over A on the input y is

Cum(y) = har(n)Tae ()

where ha(y) is the maximum height of states met during the working of M on y. A
map f:Y c A —» A" (k,m € N, U {oo}) is polynomially computable over A if it is
computable by a machine M over A for which there exists a polynomial function p with
coefficients in IN such that

YyeY : Cu(y) < p(t(y)).

Remark. In the case of the ring IR, since Cp(y) = Tar(y), a map defined over Y c R
(k € INy) polynomially computable is in fact computable in constant - time.

Remark. Beside the time needed to compute, one can consider, as in classical the-
ory, the space used during the computation. But it is irrelevant since [Michaux-1989,
Michaux-1991] there exists an universal constant ¢ such that for any decision problem
and for any input, the size of space needed to the computation is at most the size of the
input plus ¢. So this implies that any decision problem (over any ordered ring) can be
solved in linear space. Unfortunately the price to pay is an exponential loss of time in the
computations.

9 Decision Problems in Class P4

A decision problem (Y,Y”) over A is in class Py (deterministic Polynomial time) if
the characteristic function of Y’ over Y is polynomially computable over A.
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Theorem 9.1 [Meer-1990] If (Y,Y") is a decision problem over R. such that Y' C
Y C IR, then it is in class Pg if and only if there exists a finite union I of intervals of R
such that
Y'=YnNnI

Corollary 9.2 Decision problems (R,7Z), (R, @), (R,IN) et (Q Z) are not in class
Pg.

Remark. We yet knew that (IR, Q) was even not decidable over R; as for as (R, IN),
we can deduce from the fact that it is not in class Pgr that the entire part of a positive
real is not polynomially computable over IR.

Let Fy (d € IN) be the subset of A= of powerfree representations of multivariable poly-
nomial functions over A of degree at most d. The set F, (respectively Fyp ) is the subset
of Fy of powerfree representations of polynomial functions having a zero (respectively a
zero with positive components) in A.

Proposition 9.3 [Ceola-1995, Triesch-1990] For any d € {1,2,3}, the decision prob-
lem (Fu, Fao) over R is in class PR.
10 Decision Problems in Class NP,

A decision problem (Y.Y") over A is in class N P4 (Nondeterministic Polynomial time)

if there exist a machine M whose input space is A¥ x A¥ and a polynomial function p
with coefficients in IN such that

N v oo sk, Jemlyy) € {01}
V(I/,I/) € Y X A : { 301\[(.’/’//) = ] & Y S YI

a1 1 -
Yy e Y Iy c Ak . ‘pf\l(.’/v!/ ) =
4 d { Cuy,y') < pty)).

Theorem 10.1 [Ceola-1995] Any decision problem over A in class P4 is in class
NPy.

The code c(S) of a matrix § € A7 is the element of A% obtained by juxtaposing its
dimensions 7 and s, elements of its columns and an infinity of zero’s.

Proposition 10.2 [Blum-Shub-Smale-1989, Ceola-1995] The travelling salesman de-
cision problem (T'S,TS") over IR defined by

TS = {(5,¢(5) € R® : S symnetrical matriz € (RY)7,r € Ny, s € RF}

Il

TS {(5,¢(5)) € TS : there exists a non orientated circular permutation v

r—1
of length v of {1,...,7} such that ¥ Sygwii+1) + Svewy < s}
Ji=1

is in class NPg.
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11 Decision Problems in Class NPCy4

A decision problem (Y, Y”) over A is reducible to the decision problem (Z, Z) over A if
there exists amap f : Y — Z polynomially computable over A such that y € Y if and only
if f(y) € Z'. The decision problemn (Z, Z') over A is in cluss NPC, (Nondeterministic
Polynomial time and Complete) if it is in class N P4 and if every decision problem (Y,Y”)
in class NP4 is reducible to (Z, Z'). .

Since any problem in class N Py4 is reducible to a problem in class N PCl, if there exists
a decision procedure for this latter, it is also valid for any problem in class NP4. And

| more precisely, if there exists a resolution algorithim which is implementable in polynomial
| time for a problem in class N PCy and if composition conserves the polynomial character,
then any problem in class NPy is polynomially decidable. Tn other words, Py = N Pa.
But, up to now, as in the classical model, it is only a conjecture.

Theorem 11.1 [Blun-Shub-Smale-1989, Ceola-1995] For any d > 4, the decision
problemn. (Fy, Fyo) over IR is in class NPC.

Remark. The previous result is analogous to Cook’s theorem about the 3-satisfiability
problem which is NP in the classical setting [Garey-Johnson-1979]. Here the proof
consists of connecting the working of a BSS-inachine over 4 to a system of polynomial
inequalities over A such that the machine stops if and only if the system (and so an
associated polynomial function of powerfree representation in Fy) has a solution.

Corollary 11.2 [Meer-1993h] For any d > 4, the decision problem (Fy, Fyo4) over
R is in class NPCR.

Rernark. Since the algorithmn of Tarski-Seidenberg [Seidenberg-1954] allows us to elin-
inate, over a real closed field, variables of a polynomial system. it solves (Fy, Figo) (d > 4)
and so decision problems in class NPy are decidable; moreover they are decidable in
single exponential time [Blun-Shub-Simale-1989]. Up to now, no one has proved that
this algorithm is polynomially implementable. If it is (or if there exists one), the class
Pr and N PR coincide since in this precise case, composition conserves the polynomial
character. The next result characterizes rings A for which decision problemns in class N Py
are decidable. The ring A is seen as a structure whose functions are the hinary sum and
product and whose constants are elements of A.

Theorem 11.3 [{Goode-1994] Decision problemns over A in class NPy are decidable
of and only of A admits effective quantifier elimination for first-order formulae over A.

Theorem 11.4 [Bhun-Shub-Smale-1989, Shub-Smale-1997] The k™ Hilbert’s Null-
stellensatz decision problem (HNy, HN]) (k € INy) over an algebraically closed field A
defined by

HN, = {(PFR(f1),....PFR(f,)) € A= : fi,.... fr(r € Ny) polynomial functions

over A of k variables and degree dy, ... . d, respectively}

HN = {(PFR(f))....,PFR(f,)) € HNy : there exists y € A* such that for all
ie{l,....r}: fi(y) =0}
is in class NPCly.




Remnark. Tt is a general fact that the Hilbert’s Nullstellensatz decision problem is not
in class Py if and only if classes Py and NP, are different. More precisely, over A = C,
the belonging of this problem to class Fg is a conjecture which can be reduced to the
algebraic problem of finding the "hardness to compute” the sequence (k!)ren of integers
[Shub-Sinale-1997]. This is interesting because it combines a problem from number theory
with the Py # N Pg question.

12 Conclusions

This presentation is far away from to be complete. For more results and references,
you can consult the recent survey of Meer and Michaux [Meer-Michaux-1997], in par-
ticular for separation results, lower hounds and descriptive complexity theory. Let’s
point out variations about the basic definition of machines as additive and linear ma-
chines [Koiran-1994. Meer-1992, Meer-1993h] or as machines performing trigonometric
functions [Meer-1993a). Another variant consists of using a different (iayhe more real-
istic) cost measure [Koiran-1993]. Machines including round-off errors and approximate
solutions or probabilistic features should be examined carefully [Blun-Shub-Smale-1989].
And finally let’s stress on the forthcoming book of Bhun, Cucker, Slmb and Smale
[Blum-Cucker-Shub-Siale-1997].
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