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Abstract. 
A new General Lorentz Transformation model (GL T-model) derived by Novakovic 
( 1999) for the particle motion in x-axis only, has been extended to the full form including 
y and z - axes. Starting with this transformation model, a general line element and a 
corresponding general metric tensor of GL T - model have been derived. The general line 
element and the metric tensor are functions of two free parameters a and a' , which are 
the functions of the space-time coordinates. The identification of two free parameters of 
GL T-model has been done for a weak and a strong gravitational field. The weak 
gravitational field solution of the two free parameters of GL T-model corresponds to the 
well-known Schwartzschild' s metrics of the line element, for a spherically symmetric 
non-rotating body. It is very important to point out that the line element of GLT-model 
given in a non-diagonal form has got a very important property: non-singularity in a very 
strong gravitational field . Finally, a simple coordinate transformation procedure has been 
derived that transforms a general line element into diagonal one, with metric components 
(-1, 1, 1, 1 ), equal to the metrics in Special Relativity. Since the all items in SR and GR 
can be described as the functions of two free parameters of GL T-model, the possibilities 
ofan unification ofEinstein's Special and General Theories of Relativity, as well as a new 
unification of electromagnetic and gravitational fields are opened. 

Keywords: New General Lorentz Transformations, General Line Element, General 
Metric Tensor, Special Relativity, General Relativity. 

1. Introduction 

As it is well-known, there are many derivations of Lorentz Transformations (Einstein, 
1909, 1916, 1955; Miller, 1981; Supek, 1992). In all of the known derivations methods 
of the Lorentz Transformation model (LT-model), it is assumed that the observation 
signal is the light, which has the same (constant) speed in both observer and moving 
systems. Thus, one of the remaining questions is: are there possibilities to generalize LT -
model in the sense of employing of a set of different observation signals including the 
light signal? The basic ideas for solution of this problem are considered by Novakovic 
(1998). It has been expected that this generalization should contain both Lorentz­
Einstein and Galilean Transformations, and could be helpful in a new unification of 
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electromagnetic and gravitational fields. This was the basic motivation for the paper 
(Novakovic, 2000), where a new General Lorentz Transformation model (GLT-model) 
has been derived. In that paper, it has been confirmed that GL T-model contains both 
Lorentz-Einstein and Galilean Transformations, as its special realizations. IfGLT-model 
is correct then there exist four new observation phenomena ( a length and time 
neutrality, and a length dilation and a time contraction ). Besides, the well known 
phenomena ( a length contraction, and a time dilation ) are also the constituents of GL T­
model. A special consideration has been devoted to a correlation between GL T -model 
and a limitation on particle velocities. Furthermore, there was the indication that GL T­
model could be used for coordinate transformation in a gravitational field . This indication 
has been confirmed by this paper. 

The GLT-model in the reference (Novakovic, 2000) has been derived for the particle 
motion in x-axis only. In this paper it is extended to the full form of GL T-model 
including y and z axes. Starting with this new full form of the GL T -model a general line 
element has been derived. This line element is a function of two free parameters, a. and 
a.'. These parameters determine observation signal velocities in systems O and O', where 
the system O' is moving relative to the system O with an arbitrary velocity v, along an 
arbitrary radius vector. From the general line element we obtained a corresponding 
general metric tensor of GL T - model. Generally, the free parameters of the GL T -model 
are functions of the space-time coordinates. It means that these two free parameters are 
functions of the state of the energetic potential of the fields in which observation signals 
propagate. Thus, it is expected that these two free parameters can be identified in each 
potential field, including the combination of two or more potential fields . 

In order to identify two free parameters of GL T-model in a gravitational field. the 
general line element is transformed into spherical polar coordinates, which are 
appropriate to the problem. The next step was the diagonalisation of the line element. 
Thus, we obtained the Schwartzschild's like form of the line element for a spherically 
symmetric non-rotating body. The identification of that line element with the 
Schwartzschild's spherically symmetric vacuum solution (Schwartzschild, 1916) gives the 
solution of the free parameters of the general line element. The line element of GL T­
model has two solutions. The first one is in a weak gravitational field. and the second 
solution is in a strong gravitational field In the case of the weak gravitational field (like 
in our Solar System) the metrics of the line element of GL T-model corresponds to the 
well-known Schwartzschild' s metrics of the line element. 

In a strong gravitational field the solution of the line element contains a quadratic term of 
the gravitational potemial. Of course, this term can be neglected in a weak gravitational 
field, what leads to the solution exactly equal to the Schwartzschild' s metrics of the line 
element. The solution of two free parameters of GL T -model is equal to the solution of 
the same parameters, obtained in the reference (Novakovic, 2000), by employing the 
well-known gravitational red-shift experiment and the energy equations, derived from a 
null component of a four-momentum vector of GLT-model. It is very important to point 
out that the line element of GL T-model given in a non-diagonal form has got a very 



important property: non-singularity in a strong gravitational field . It seems that the 
metrics of GLT-model is valid both in a weak and in a very strong gravitational field . A 
definition of the free parameters of GLT-model includes the possibilities that an 
observation signal can be a subluminal signal (like sonar signal), the light signal, as well 
as a superluminal signal (like tachyons signal) . In that sense, it seems that GLT-model 
can include gravitational influences to a Dual Relativity (Dubois and Nihart, 2000), and 
to the Tachyons Region of motions (Nihart, 2000). The possibility of an application of 
GLT-model to superluminal signals (tachyons ) has been discussed by Novakovic 
(2000) in the sections Particle Speed Limits in GLT-model, and Particle Speed Limits in 
a Gravitational Field. Furthermore, it seams that the GL T-model approach can be 
combined with Computational Derivation of Quantum Relativist Electromagnetic 
Systems with Forward-Backward Space-Time Shifts (Dubois, 2000), and with a 
Relativistic Model of a Particle - Antiparticle Pair (Nihart, 2000). 

The all items in Special and General Relativity, like the Lorentz-Einstein transformations, 
the Maxwell equations, a metric tensor, the Christoffel symbols ( 1869), the Riemann 
Tensor (1876), the Ricci Tensor (1901), the Einstein field equations (1916) and so on, 
can be described as functions of the two free parameters of GL T-model. Consequently, it 
seems that the possibilities of an unification of Einstein's Special and General Theories of 
Relativity, as well as a new unification of electromagnetic and gravitational fields are 
opened. Furthermore, in this paper it is shown that there exists a simple coordinate 
transformation procedure that transforms a general line element into diagonal one, with 
metric components (-1 , 1, 1, 1 ), equal to the metrics of the line element in SR. If this 
transformation is correct, then the transformation of Riemann's metrics into de Cartesian 
or Minkowski one is possible. The final goal of applications of GL T -model could be an 
analysis of a possibility of unification of Quantum Mechanics and General Theory of 
Relativity, trying to avoid the well-known problems of that unification. 

This paper is organized as follows. The second section presents a new full form of GL T­
model, related to x, y, and z-axes. In the third section a general line element and a metric 
tensor of the full form of GL T -model have been derived. The fourth section describes 
the general line element and the metric tensor of the full form of GL T-model in spherical 
polar coordinates. In the fifth section an identification of free parameters of the full form 
of GL T-model in a gravitational field has been discussed. The sixth section presents a 
derivation of a general diagonal form of a line element and a metric tensor of the GL T­
model. Finally, the conclusions are emphasized by the seventh section . 

2. The Full Form of the GL T - Model 

The GLT- model derived by Novakovic (2000) for the particle motion in x-axis only, can 
be extended to the full form including y and z - axes. In order to derive the full form of 
the GLT -model let define the coordinates of the two parallel systems O and O ' by x , 
y , z , t , and x ' , y ' , z ' , t ' , respectively, and the time t = t ' = 0 , when the 
origins of the two systems coincide. The system O' is moving relative to the system 0 
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with an arbitrary velocity v, along an arbitrary radius vector. Let an observation signal 
(which is a bearer of information) has the velocity a c in system 0, and a' c in 
system O ', where c is a constant reference signal velocity, and a and a ' are free 
parameters which are positive constants, or functions of the space-time coordinates, 
a > 0, and a ' > 0. 
Generally, parameters a and a' are functions of the space-time coordinates, and 
velocity v is not a constant. In the derivation of the differential form of GL T-model 
(eqs.2 and 3) we supposed that in infinite small intervals of dxi, and dx' i, i = 0, 1, 2, 3, 
parameters a and a' , and the particle velocity v are constants. Finally, for the 
convenience, we employ parameter 8, where 8 = I if an observation signal is emitted 
from the origin of the system 0, and 8 = -1 if an observation signal is emitted from the 
origin of the system O'. 
Let the displacement four-vectors dX and dX' are defined in frames O and O' 
respectively, by the expression: 

(1) 

dX' ➔ o'(✓aa'cdt',dx',dy',dz')= {a,;} i = 0,1,2,3, 

where dX has the components in the frame 0, and dX' has the components in the frame 
O'. Applying this four-vector concept the GLT-model for the events in O system is 
described by the tensor equation : 

dx" = A' /J dx fl, i,/3 = 0,1, 2,3, (2) 

where Ai p is the element in the i-th line and ~-th column of [A; p], which is the (4x4) 
transformation matrix of GL T-model: 

H D~(a - a'tc-v1
] D[o(a-a')yc-v2

] D[o(a-a'tc-v3
] 

[A' /J] = 
-D v1 H 0 0 

(3) 
-D v 2 0 H 0 

-D v3 0 0 H 

In the equation (3), D =HI ra;l c, and v1
, v2

, and v3 are projections of the particle 

velocity v to the x, y, an z - axes, respectively, while 8( a - a' )x , o( a- a' )y , and 
8( a - a' )2 are the corresponding projections of the term 6( a - a' ) to the x, y, an z -

axes. Finally, parameter His described by the equation: 

H =l / [1- (v~2 + 8(a-~')v]112. (4) 
aac2 aac 
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The corresponding full form of GLT-model for the events in O' system can be described 
by the tensor equation: 

dxi = A'ip dx'P, i, 13 =O, 1, 2,3, (5) 

where (4x4) transformation matrix [A'i p] is given by the following form : 

H D~1 -J(a -a'tc] D[v 2 -J(a -a')Yc ] D[v 3 -J(a -a').c] 

[A 11 11 ]= Dv1 H 0 0 

Dv 2 0 
(6) 

0 H 

Dv 3 0 0 H 

Remarks. The GL T-model ( eqs. 2 to 6), is general in the sense that it satisfies Lorentz -
Einstein Transformation model in Special Relativity (for a= a'= 1, and c is the speed of 
the light), and the Galilean Transformation model ( for o = 1, a= 1, and a'c = (c - v), 
and for o = -1 , a ' = 1, and a c = ( c - v)) . The GLT-model can also be used in General 
Relativity by identification of parameters a and a' in a gravitational field ( see the next 
sections) The possible observation phenomena related to the GL T-model ( a length, a 
time and a mass neutrality, contraction and dilation) have been presented in the reference 
(Novakovic, 2000). 

3. A General Line Element and a Metric Tensor of the Full Form of 
GLT-Model 

In order to derive a line element ds2 of the full form of GL T -model one can start with 
the equations: 

dr2 = -ds2 = _l_dt 2 
aa'c 2 H 2 

(7) 

where d1: is a proper time of the moving particle. Applying H from (4) to the equation 
(7) we obtain the line element in the form : 

ds 2 =-aa'c 2dt 2 -8(a-a'~1cdt 2 +(v)2dt 2 (8) 

Now, one can make the following substitutions: 

8(a - a')v = 8(a - a't v1 + 8(a - a\, v 2 + 8(a - a't v3
, 
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dx' 
v' =-

dt ' 
i = 1,2,3. 

(9) 



This substitution transforms the equation (8) into the final form of a line element of 
GLT-model: 

ds 2 = -aa'c 2dt 2 -8(a - a'tdx1cdt-8(a -a')Ydx 2cdt-

-8(a - a'), dx3cdt +{dx1 )2 +(dx2)2 +{dx3}2. 
(JO) 

Since dx 1 
= dx, dx2 = dy and dx3 

= dz, we can describe a general line element of the full 
form of GLT-model by the equation: 

ds 2 = -aa'c2dt 2 -8(a - a'Lcdtdx-8(a -atcdtdy­

-8(a - a') , cdtdz +dx 2 +dy 2 +dz 2
. 

( I I) 

It is very easy to see that for ( a = a' = 1) the general line element ( eq. 11) is transformed 

into the well-known line element in Special Relativity: 

ds 2 = -c 2dt 2 + dx: + dy 2 + dz : . (I 2) 

We expected this result, because in Special Relativity there is no a gravitational field , and 
parameters ex. and ex.' are constants and equal to one. 
Applying displacement four-vector dX from eq. !, the line - element (eq. I!) can be 
transformed into the form : 

ds2 = -(dx0 )2 + 2bxdx0 dx1 + 2b_v dx0 dx 2 + 2bzdx0 dx3 + (dx1 )2 + (dx2 )2 + (dx3 )2, ( 13) 

where the elements bx, by and b, are given by the equations: 

- 8(a ..:. a't - 8(a - a') 
bx= ~ , b_v = ~ v , 

2 aa' 2 aa' 

-8(a-a')_ 
b, = . 

2.Jaa' 
(14) 

As it is well-known, the corresponding Riemann's line element is given by the form: 

_.,,.2 (<1xo)2 d odx1 dxodx2 = = goo +2go1 x +2go2 + 

O 3 ( 1)2 ( 2)2 ( 3)2 +2g03dx dx + g 11 dx + g22 dx + g33 dx 

(15) 

Comparing equations (13) and (15), one can derive a general covariant metric tensor of 
the full form of the GLT-model: 

hx 

0 

0 

bv 

0 

0 

~=1 0 ' 

I 

which is symmetric and has ten non-zero elements, as we expected. 
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In the case a= a'= 1, the parameters bx= by= b2 = 0, and the metric tensor (eq. 16) is 
transformed into the well-known metric tensor of Lorentz-Einstein Transformation 
model: 

0 

1 

0 

0 

0 

0 

0 

(17) 

The contra-variant general metric tensor gij, of GL T-model can be derived by inversion 
of the covariant one using eq. 16: 

g oo g OI g 02 g03 

[g v ]= 
glO g11 g12 g !3 

g20 g 2I g 22 g 23 , (18) 

g 30 g 3I g 32 g 33 

where the elements gij are given as follows: 

01 IO bx 
g =g =l+b 2 ' 

03 30 b, 
g =g =l+b 2 ' 

II 1 +b/ +b,2 
g = l +h 2 

22 1 +bx2 +b=1 
g = l +b2 

( 19) 

33 1 + bx2 + b/ 
g = 1 + b2 

The parameters bx, by, and b2 are given by eq. 14. The determinants of the metric tensor 
(eqs. 16 and 18) can be calculated by the equations: 

det[gul=-(1+b 2
} det[gu ]=-ll(l+b2

) (20) 

The traces of the metric tensors (giJ] and [giJ] are identical: 

TR[gJ= TR(gt; ]= 2 (21) 

what we expected that should be. 

Remarks. The metric tensor of GLT-model ( eqs. 16 and 18), is general in the sense that 
it satisfies the metric tensor in Special Relativity (for a.= a.'= 1, and c is the speed of the 
light), and can be used in General Relativity by identification of parameters a. and a.' in a 
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gravitational field ( see the next sections). This tensor can probably be employed in the 
others potential fields requiring the corresponding identification of parameters a. and a.' . 

4. A General Line Element and a Metric Tensor of the Full Form of 
GL T-Model in Spherical Polar Coordinates 

In order to identify two free parameters a. and a.' , of GLT -model in a gravitational field, 
the general line element (eq. 11} should be transformed into spherical polar coordinates, 
which are appropriate to the problem. For this purpose one can use the corresponding 
coordinate transformations: 

x = r sin 0cosrp, y = rsin 0sin rp , z = rcos0, (22) 

where r is a radius vector, 0 is an angle between radius vector r and z-axis, and cl> is an 
angle between projection of a radius vector r on (x-y) plane and x-axis. The 
corresponding derivations of x, y, and z coordinates give the following equations: 

dx = drsin 0cosrp + r [cos0cosrpd0 - sin 0sin rpdrp 1 
dy = drsin 0sin rp + r [cos0sin rpd0 + sin 0cosrpdrp 1 
dz = drcos0 - r sin 0d0. 

(23) 

The projections of the term o(a - a'), which is collinear with the radius vector r, on x, 

y, and z axes have the form : 

o(a - a't = 8(a - a ')sin 0cosrp, 8(a - a')Y = o(a - a')sin 0sin rp , 

o (a - al = 8(a - a')cos0 
(24) 

The substitutions of eqs. 23 and 24 into the general line element (eq. 11) give the 
corresponding general line element in spherical polar coordinates: 

ds 2 = -aa'c2dt 2 - 8 ( a - a') cdtdr + dr 2 + r 2d0 2 + r 2 sin 2 0 drp 2
. (25) 

This line element contains the usual two-dimensional spherical surface element as we 
expected. If the displacement four-vector of spherical polar coordinates is determined by 
the form: 

dx ➔ O(cdt , dr , d0, dt/J) = {dx; }, i = 0,1,2,3., (26) 

then the covariant metric tensor of the line element (eq. 25) can be described by the 
expression: 
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-aa' 
-o(a- a') 

0 0 
2 

[gij] = 
-o(a -a') 

0 0 (27) 
2 

0 0 r2 0 

L 
0 0 0 r

2 sin 2 0 

where there are six non-zero elements as it is expected. The determinant and the trace of 
this covariant metric tensor (eq. 27) can be calculated by the relations: 

det[g .]= - (a +a')2 r 4 sin 2 0 
lj 4 ' (28) 

The contra-variant metric tensor, gii, of the line element (eq. 25) can be obtained by 
inversion of the covariant one, using eq. 27 : 

goo gOI 0 0 

[gij] = 
g!O gll 0 0 

0 0 g22 0 
(29) 

0 0 0 g33 

where the non-zero elements of eq. 29 are given as follows : 

OU -4 
g = (a +a')2 ' 

11 4aa' 
g = (a +a'Y ' 

g o1 = 1r, - 28(a - a') 
g = (a + a')2 ' 

33 1 
g = ' . ) . 

r - sm - 0 

(30) 

The determinant and the trace of this contra-variant metric tensor (eq. 29) have the 
forms: 

T, [ 
;1 ]= 4(aa'-1) l+sin

2
0 

R g ( )2 + ' > . a+a' r sin- 0 
(31) 

In the case a = a' = l, r = l, 0 = 1r I 2, the both metric tensor ( eqs. 27 and 29) have 

the same determinants and the same traces: 

det[g if ]= det[g;1 ] = -1, (32) 

what is equal to the corresponding determinants and traces of the metric tensors in S.R. 
If the displacement four-vector of spherical polar coordinates is given by the expression: 
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dx ➔ 0 (& cdt, dr, d0, d,p )= {ixi} i = 0,l,2,3 . (33) 

then, the line element (eq. 25) can be transformed into the form: 

ds 2 = - (dx 0 }2 + 2hdx0 dx 1 + (c1x1 }2 + r 2 (c1x 2 )2 + r 2 sin 2 0 (dx 3
}, (34) 

where the element b is given by the equation: 

h= - S(a - a') 
2-Jaa ' · 

(35) 

Comparing eq. 34 with Riemann's line element (eq. 15) one can derive a general 
covariant metric tensor of the GL T-model in spherical polar coordinates, related to the 
line element (eq. 34): 

-1 h 0 0 

(gij] = 
h 0 0 

0 0 ,.2 0 
(36) 

0 0 0 r 2 sin 2 0 

which is symmetric and has six non-zero elements as we expected. 
As we can see from eqs. 35 and 36, the parameters a= a'= I , transform the metric 
tensor (eq. 36) into diagonal form, which corresponds to the metric tensor in non­
gravitational field with spherical polar coordinates: 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 r 2 sin 2 0 

(37) 

This metric tensor has also the usual two-dimensional spherical surface element. The 
trace of this tensor can be calculate by the equation : 

TR [11,J= TR[g;J=r 2(l+sin 2 0} (38) 

which is the same as the trace of the metric tensor from eq. 36. 
The contra-variant metric tensor gii, of the line element (eq. 34) of the GL T-model in 
spherical polar coordinates, can be derived by inversion of the covariant one using 
eq. 36: 
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g'Xl g OI 0 0 

[ij] = 
glO gll 0 0 

0 0 g22 0 
(39) 

0 0 0 g33 

where the non-zero elements in eq. 39 are given as follows: 

b 
g OJ = g JO = --, ' 

1 +b-

22 I 33 I 
g = 2 ' g = 2 • '0' r r sm-

(40) 

Here parameter bis given by eq. 35. The determinants of the metric tensor (eqs. 36 and 
39) are given by the equations: 

(41) 

For 0 =n I 2 and r = I the determinants of the tensors (eqs. 36 and 39) are equal to the 
determinants of the tensors (eqs. 16 and 18) given by eq. 20. The traces of the metric 
tensors (eqs. 36 and 39) can be calculated by the equations: 

TR (g iJ ] = r 2 (1 + sin 2 0) (42) 

For 0 =n I 2 and r = I , the traces of the tensors (eqs. 36 and 39) are identical : 

(43) 

what we expected that should be. 

Remarks. The non-diagonal line element in eq. 25 has got a very important property: 
non-singularity in a strong gravitational field. It has been proved in the next section. In 
the case a = a' = 1, r = 1, 0 = ff I 2, the both metric tensor ( eqs. 27 and 29), as well 

as the metric tensors (eqs. 36 and 39) are transformed into the corresponding tensors in 
Special Relativity. 

5. Identification of Free Parameters of the Full Form of GL T-Model in 
a Gravitational Field 

In this section it is presented the process of the identification of the free parameters a 
and a' in a gravitational field . It has been done by using the comparison of the line 
element (eq. 25) with the well-known spherically symmetric vacuum solution of the line 
element for non-rotating body, first found by Schwartzschild in 1916. In order to 
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compare the line element of the GLT-model given by eq. 25 with the Schwartzschild 
form of the line element: 

(44) 

the line element (eq. 25) should be diagonalized. As we can see from eq. 25 the non­
diagonal term is: 

- S( a - a')cdt dr , (45) 

which interacts between cdt and ds2 and dr and ds2 in the equation of the line element 
(eq. 25). In the process of diagonalization of the line element (eq. 25 ) the term (eq. 45) 
should be eliminated, and its influence to the ds2 must be added to the corresponding 
diagonal elements in the diagonalized line element ds2 of eq. 25 . In order to transform 
the line element of GLT-model (eq. 25) into the corresponding diagonal one, we can 
start with the equation: 

o ds 2 o ds 2 /aa' . 
ds 2 = __,..,_____,___ c 2dt 2 + ___,___,.._.---,. dr 2 + r 2d0 2 + r 2 sm 2 0d(i (46) - o c2dt 2 o dr 2 ' 

where ds2 is from eq. 25 , and ds2 is the diagonalized form of ds2. In the process of 
diagonalization we suppose that parameters a and a' are constants in the infinite small 
space-time differential elements (dt, dr, d0, d~ ). The line element (eq. 25) can be 

diagonalised for a weak and a strong gravitational field . In the case of a week 
gravitational field (like in our Solar System), and for the case where the observation 
signal is the light, one can use the following substitution in the non-diagonal element 
(eq. 45): 

dr = cdt , or cdt = dr , (47) 

where the first term is employed in o (ds 2
) / o (c 2dt 2

) and the second one in 

o (ds 2 I aa') ! o (ctr 2
) Thus, employing the equations (45) to (47) and using eq. 25 one 

can derive the unknown coefficients of the diagonal line element (eq. 46): 

o ds
2 

_ [ , ,:( ')l o ds
2 

I aa' _ I I S[a - a']]- [I s:( ')]/ , --~------- - - aa + u a - a ~-----~ - - - ~-~ - - u a - a aa . o c 2dt 2 o dr 2 Laa' aa' 
(48) 

Finally, the diagonalized line element of the GL T-model in a weak gravitational field has 
the form : 

ds 2 = -[aa' +t5(a-a')] c 2dt 2 + [I-S(a,-a')] dr 2 +r 2d0 2 +r 2 sin 2 0d; 2 . (49) 
aa 

Comparing this line element with the Schwartzschield's one, (eq. 44), we can identify the 
following parameters: 
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ev = [aa' +b'(a -a')l (50) 

Employing the well-known gravitational red-shift experiment and the energy equation, it 
has been shown in the reference (Novakovic, 2000) that the parameters a and a' in a 
gravitational field can be replaced by the quantities: 

where (j) is a gravitational potential, G is a gravitational constant, M is a total 
gravitational mass and r is a gravitational radius from a center of gravity to a general 
space point of interest. 

The parameters a and a' from eq. 51 should satisfy the well-known Schwartzshield's 
solution for coefficients ev and e;., . Applying (51) to (50) we obtain (in both cases, cS=l 
and 8= -1) the solution: 

GM 
l+ - -

rc2 

1
_ GM 

rc 2 

(52) 

Now, for r < x , one can define a weak gravitational field by the property 
(GM / r c2

) 
2

,., 0, while a strong gravitational field has the property (GM/ r c2 )2>> 0. It 
means that, for the same G, r and c, a mass of a source of a strong gravitational field is 
much greater then a mass of a source of a weak gravitational field . For an example, the 
gravitational field of our Sun can be taken as the weak gravitational field. while objects 
like black holes have got strong gravitational fields, both in a limited radius r . Of course, 
a gravitational field of a particular gravitational source is not present in the region 
r ➔ oo . On the other hand, if a gravitational radius r of a mass M goes to zero ( r ➔ 0), 
then the condition of a strong gravitational field is always satisfied. Meanwhile, we do 
not expect r = 0 , because a mass M of a gravitational source must have a minimal 
volume different from zero, and consequently r > 0. Following the definition of the 
weak gravitational field, equation (52) can be transformed in the form valid in a weak 
gravitational field : 
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0 ➔ 2GM . 
l--­

rc 2 

(53) 

This solution of the line element of the GL T -model , eq. 25, in a weak gravitational field 
is equal in ev and approximately equal in e'/.. to the spherically symmetric vacuum solution 
of non-rotating body, first found by Schwartzschild in 19 I 6: 

ds2 = -(1- 2GMJ c2dt2 +(1- 2GMr l dr2 +r2d02 +r2 sin 2 d</)2 
rc 2 rc 2 J 

(54) 

This solution has been derived from the well-known Einstein field equations in General 
Relativity, for the static vacuum field, where the energy-momentum tensor vanishes, i.e. 
Tµp = 0. Thus, the Cristoffel symbols and the Riemann and Ricci tensors of diagonalised 
line element of GL T-model ( eq. 49) are equal to the corresponding ones of the 
Schwartzschild line element (eq. 54). Following the previous considerations one can 
conclude that the GL T-model is verified in General Relativity for a weak static vacuum 
gravitational field of a spherically symmetric non-rotating body. 
In the case of a strong gravitational field , (GM / r c2 )2>> 0, and if we use the light as an 
observation signal. one can employ the following substitutions in the non-diagonal 
element (eq. 45): 

dr = a c dt , or cdt = dr I a , (55) 

where the term dr == a cdt is employed in o (d\' 2
) I o (c 2dt 2

} while the term 

cdt = dr I a is used in o (c.is·2 
/ aa')! o (dr 2

) Repeating the previous procedure one 

can derive the coefficients ev and e'/.. of the line element (eq. 25) in diagonalized form, 
valid for a strong gravitational field and 8 = I : 

eA. == [1- t5(a -a')]/ aa' = -1. (56) 
a a2 

Applying the substitution of parameter a from eq. 51 into the equations (56), for the 
case 8 = 1, we obtain the solution: 
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J 1 e = =------ (57) 

(
l _ _ GM_y ]- 2G~+(GMl 2

. 

rc 2
) re rc 2 

J 

Thus, the diagonalized line element of the GL T-model in a strong gravitational field, for 
8=1, has the form: 

(58) 

where a= ( 1 - GM/ r c2 
) . In the case of a weak gravitational field, (GM / r c2 

) 
2 ~ 0, 

the quadratic term (GM/rc2)2 can be neglected, and the strong field solution (eq . 57) is 
transformed into the weak field solution given by eq.53 . 
In the case 8 = -1 , the equations (55) and (56) have the forms : 

dr = a'cdt, or cdt = dr I a ' , (59) 

8 = -1, ev = [aa' +8(a -a')a']= a'2 , 

what leads to the solution ofa strong gravitational field for 8 = 1 ,eq.57. 

Remarks. The line element of GL T-model, given in spherical polar coordinates and 
diagonalized in a weak gravitational field corresponds to the Schwartzschild spherically 
symmetric vacuum solution of the line element for non-rotating body. The quadratic term 
(GM/rc2)2 in the strong field solution (eq. 57) can be neglected in a weak gravitational 
field . In that case the strong field solution (eq. 57) is transformed into the weak field 
solution given by eq. 53 . The Cristotfel symbols and the Riemann and Ricci tensors of 
diagonalised line element ofGLT-model (eq. 49) in a weak gravitational field are equal 
to the coresponding ones of the Schwartzschild line element ( eq. 54). These elements 
for a strong gravitational field will be presented in the next paper. 
From eq. 54 one can see the well-known fact that the Schwartzschild's line element is 
singular when r = 2GM/c2

, because the coefficient of dr2 becomes an infinite number. 
This corresponds to the equation (2GM/rc2

) = 1, or (GM/rc2
) = 0.5, or (GM/rc2)2 = 0.25 . 

Thus, the singularity of the Schwartzschild's line element appears in a strong gravitational 
field. As it is well-known, this singularity makes a big problem in an analysis of strong 
gravitational fields of objects like black holes. The same singularity problem, at the same 
singularity radius, has the line element of GL T -model diagonalised in a weak 
gravitational field (eq. 53). The line element of GLT-model diagonalised in a strong 
gravitational field (eq. 57 and 58) has the singularity when r = GM/c2

, that corresponds 
to the equation (GM/rc2

) = 1, or (GM/rc2)2 = I. 
It is very important to point out that the line element of GL T-model given in a non­
diagonal form ( eq. 25) has got a very iµiportant property: non-singularity in a very 
strong gravitational field. This can be proved by substituting the solution of free 
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parameters a and a' in a gravitational field ( eq. 5 I) into the non-diagonal line element 
ofGLT-model (eq. 25). As the result we obtain the following non-diagonal form of the 
line element: 

(60) 

It is easy to see that the line element (60) has no singularity, except for r = 0, what we 
expect that can not be happen, because a mass M of a gravitational source must have a 
minimal volume different from zero, and consequently r > 0. If the gravitational radius 
satisfies the equation r =GM / c2

, then eq. 60 is transformed into the new relation: 

ds 2 = c dtdr + dr 2 + r 2d0 2 + r 2 sin 2 dtp 2
, (61) 

which also has got non-singularity property. Thus, the non-diagonal form of the line 
element of GL T-model ( eq . 60) can be used for analysis of very strong gravitational 
fields of objects like black holes, because in eq. 60 the singularity problem does not 
exist . 
Following the previous considerations one can conclude that the GL T -model is verified 
in G .R. for a static vacuum gravitational field of a spherically symmetric non-rotating 
body. 

6. Derivation of a General Diagonal Form of a Line Element and a 
Metric Tensor of the GL T-Model 

In order to derive a general line element in a diagonal form, with metric components 
(-1 , 1, 1, I) as we have in Special Relativity, one can apply the following coordinate 
transformation procedure to the equation (13): 

dz 0 = adx0 = ~ dx 0
, dz 1 = b dx0 +dx1 

X , 

dz
3 =b=dx 0 +dx3, b2 =b/ +b/ +b/ , 

dz 2 = b dx0 +dx2 
y , 

(62) 

where bx, by, and bz are given by eq. 14. The contra-variant coordinates dx;, i = 0, I , 2, 
3, are generate by the equations: 

dx0 = .Jaa' cdt, dx1 =dx, dx 2 = dy, dx 3 =dz. (63) 

The quadratic terms of the components in eq. 62 can be presented by the equations: 

(dzo j = {1 +b2 xd\-o )2. ~I r = b/~O r + 2bxd\-Od\-l +{d\-1 j , (64) 

{dz 2 j = b/ (dx 0 j + 2bydx 0dx 2 
+ (dx2 J, {dz3 J = b/ (dx0 J + 2bzdx 0dx 3 + ~ 3 J. 

Thus, a general diagonal line element of GL T-model can be derived by employing the 
transformations (eqs. 62 and 64): 
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(65) 

This can be proved by substituting eq. 64 into eq. 65. As the result we obtain the line 
element in the following form : 

This line element is exactly equal to eq. 13 , what confirms the coordinate transformations 
given by eq . 62. The new coordinates dz; can be calculated from the coordinates dxi, 1 = 
0, 1, 2, 3, by using the tensor equations: 

dz; = A;p dxp, . /3 01 2 3 l , = , , , , (67) 

where A'p is the element in the i-th line and P-th column of the transformation matrix A: 

[" 
0 0 0 

bx 1 0 0 
detA=a=~, b

2 =b/ +b/ +b/ . A- (68) 
- by 0 O ' 

b_ 0 0 

If one want to calculate the coordinates dx; from dz;, then it can be employed the inverse 
procedure: 

(69) 

where Bis the inverse matrix of the matrix A from eq. 68 : 

[ 

1/a 0 

-I - bx I a I 
B=A = 

-by I a 0 

-b
2 

Ja o 

0 

0 

1 

0 

0 

~, detB=¾, a=~, b 2 =b/ +b/ +b/. (70) 

Remarks. The coordinate transformations (eq. 62), transforms the Riemann's metrics 
(eq. 66) into the de Cartesian or Minkowski metrics (eq. 65). It includes the possibility 
that in the first step some problems can be solved in the coordinate system dz;, i = 0, 1, 
2, 3, because of the simple metric tensor. The second step should be the calculation of 
the coordinates dx;, i = 0, 1, 2, 3 by employing the equations (69) and (70). 
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7. Conclusion 

The proposed GL T -model is general in the sense that it satisfies both Lorentz - Einstein 
and Galilean coordinate transformations, and can also be used for coordinate 
transformation in General Relativity. If GL T-model is correct, then one can observe in a 
gravitational field a length, a time and a mass neutrality, contraction and dilation 
(Novakovic, 2000). The metric tensor of GLT-model is general in the sense that it 
contains the metric tensors of Special and General Relativity. This tensor can probably be 
employed in the others potential fields requiring the corresponding identification of free 
parameters a. and a.' . The line element of GL T-model, given in spherical polar 
coordinates and diagonalized in a weak gravitational field corresponds to the 
Schwartzschild spherically symmetric vacuum solution of the line element for non­
rotating body. 

The quadratic term (GM/rc2
) 

2 in a strong field solution of the line element can be 
neglected in a weak gravitational field . In that case the strong field solution is 
transformed into the weak field solution. It is very important to point out that the line 
element of GL T -model, given by a non-diagonal form, has got a very important property: 
non-singularity in a very strong gravitational field . Finally, it is shown that there exists a 
simple coordinate transformation procedure that transforms a general line element into 
diagonal one with metric components (-1, 1, 1, 1). This is equal to the metrics of the line 
element in Special Relativity. If this transformation is correct, then the transformation of 
Riemann's metrics into de Cartesian or Minkowski one is possible. 

Following the previous considerations one can conclude that the GL T -model is verified 
in Special Relativity (Novakovic, 2000) and in General Relativity for a static vacuum 
gravitational field of a spherically symmetric non-rotating body. The next goal is the 
investigation of the possibility of an unification of Einstein's Special and General 
Theories of Relativity, as well as the possibility of an unification of electromagnetic and 
gravitational fields, applying GL T-model. The previous investigation results give the 
hope that GLT-model can help in solution of the mentioned problems. 

Acknowledgments 

This work was supported by grants from the National Scientific Foundation of Republic 
of Croatia. The authors wishes to thank the anonymous reviewers for a variety of helpful 
comments and suggestions. 

216 



References 

Einstein Albert ( 1909). The Collected Papers of Albert Einstein. Vol. 2 The Swiss years: 
writings, 1900-1909. Princeton, NJ, (1989). 

Einstein Albert (1916). Die Grundlagen der allgemeinen Relativitatstheorie. Ann. Physik. 
Vol. 49, pp. 769-822. 

Einstein Albert (1955). The Meaning of Relativity. 5th ed. Princeton University Press, 
Princeton, N.J. 

Miller, A. I. (1981). Albert Einstein's Special Theory of Relativity: Emergence (1905) 
and early interpretation ( 1905-1911 ). Reading, Mass. 

Supek Ivan (1992). Theoretical physics and structure of matter. Zagreb: Skolska 
knjiga, eh. 7, pp. 419-439. 

Novak:ovic Branko, Novakovic Dario and Novakovic Alen (1998). New Observation 
Phenomena in Special Theory of Relativity. In http://www.geocities.com1 
SiliconValley!Lab/4429/bnovakl.html. 

Novakovic Branko, Novakovic Dario and Novakovic Alen (2000). A New General 
Lorentz Transformation model. Computing Anticipatory Systems: CASYS' 99-
Third International Conference. Edited by Daniel M. Dubois. Published by The 
American Institute of Physics, AIP-CP517, pp. 437-450. 

Dubois Daniel (2000). Computational Derivation of Quantum Relativist 
Electromagnetic Systems with Forward-Backward Space-Time Shifts. CASYS'99-
Third International Conference. Edited by Daniel M. Dubois. Published by The 
American Institute of Physics, AIP-CP517, pp 417-429 

Dubois Daniel, and Nihart Gilles (2000). Toward a Computational Derivation of a Dual 
Relativity with Forward-Backward Space-Time Shifts. CASYS International 
Journal of Computing Anticipatory Systems. Edited by Daniel M. Dubois. 
Published by CHAOS, Liege, Belgium, Volume 5, pp. 25-37 . 

Nibart Gilles (2000). Do Tachyions Violate the Causality Principle? Computing 
Anticipatory Systems: CASYS '99-Third International Conference. Edited by 
Daniel M. Dubois. Published by The American Institute of Physics, AIP-CP5 l 7, 
pp. 383-390. 

Nihart Gilles (2000). A Relativistic Model of a Particle - Antiparticle Pair may Break up 
the E.P.R. Paradox. CASYS International Journal of Computing Anticipatory 
Systems. Edited by Daniel M Dubois. Published by CHAOS, Liege, Belgium, 
Volume 5, pp. 95-115. 

,217 


