
Abstract

Quantum Computer Simulators

Julia Wallace•

Department of Computer Science, Old Library,
University of Exeter,

EX4 4PT, United Kingdom

Fax: +44 1392 264067
E-mail: J.Wallace@exeter.ac.uk

http://www.dcs.ex.ac.uk/-jwallace

This paper offers the first available overview of progress in the field of quantum
computer simulation. As research effort in quantum computation grows, together with
the number of field researchers, it seems certain that quantum computer simulators will
play a major role in this research.

Quantum computer simulators are discussed together with their role in the study of
quantum computation. Currently available simulators are described and compared, and
recommendations are given for the most appropriate simulators to use for specified
purposes. In addition, a generalised, extensible framework of metrics for comparing
quantum computer simulators is introduced and demonstrated.

An awareness of the functions and features of existing simulators is essential for
researchers in the field , to avoid duplication of effort and to build on the foundations of
previous work.

Keywords: quantum computer simulators, simulator metrics

1 Introduction

This paper details the results of an investigation into quantum computer simulators.
These are defined as computer programs executed on a classical machine to simulate the
actions of a quantum computer. The simulations effectively involve the use of machines
that work according to the laws of classical Newtonian physics to simulate machines that
work according to the laws of quantum mechanics.

• Julia Wallace is supported by Engineering and Physical Sciences Research Council
(EPSRC) award no. 98318343

International Journal of Computing Anticipatory Systems, Volume 10, 2001
Edited by D. M. Dubois, CHAOS, Liege, Belgium, ISSN 1373-5411 ISBN 2-9600262-3-3

As quantum computer hardware is not available outside research laboratories at present,
it is very useful to be able to create and develop quantum algorithms and test these via
simulation on current, classical, computer hardware. Currently, a variety of quantum
computer simulators exist, these vary in the complexity of simulations possible, in the
representations used for quantum data structures, in the implementations of the quantum
algorithms used by the simulators and in the accuracy of the simulators themselves.
There is now a need for a comparative review of quantum computer simulators, which
prompted this paper giving the first available overview of progress in the field of
quantum computer simulation.

The paper begins discussing why there is a need for quantum computer simulators,
explaining the problems that are inherent in attempting to simulate a quantum system by
classical means and introducing a variety of quantum computer simulators. The paper
will also briefly describe Shor's polynomial time quantum factoring algorithm (Shor,
1994), the most commonly simulated quantum algorithm. It aims to provide a general
comparison of the quantum computer simulators and offer recommendations as to the
most appropriate simulators to use for specific purposes and those simulators that seem
suited to further development.

To assist in the assessment and comparison of quantum computer simulators, it would be
useful to have a framework of simulator metrics in addition to a general review. Metrics
would allow quick comparisons to be made between simulators, provide an easy
framework to express results and allow comparison of simulators that have yet to be
developed against those that have already been assessed. The paper discusses the
identification and development of a framework of suitable metrics for comparing
quantum computer simulators, provides descriptions of the metrics themselves and
discusses how they can be used to assess simulators.

This paper describes the development of a generalised assessment methodology using the
metrics. This was developed because it is possible to use quantum computer simulators
for a variety of purposes. The framework of metrics developed and described in this
paper can be adapted and extended to suit any comparison between simulators. The
methodology is demonstrated by assessing a selection of simulators. Finally, the
limitations of the simulator review work are discussed; this is followed by suggestions for
further work.

2 The need for Quantum Computer Simulators

Feynman (1982) observed that classical systems cannot effectively model quantum
mechanical systems. He proposed that the only way to effectively model a quantum
mechanical system would be by the use of another quantum mechanical system.
Feynman's observation suggests that it should be possible to use computers based on the

231

laws of quantum mechanics instead of the laws of classical physics to model quantum
mechanical systems.

As research into quantum computation has progressed, significant progress has been
made in developing the techniques necessary to produce quantum computer hardware.
However, this hardware is not currently available outside research laboratories, and is
inadequate in any case. The systems that have been constructed are insufficient for
detailed exploration of some of the quantum algorithms that have been proposed. It is
therefore useful to explore quantum algorithms by means of a quantum computer
simulator which enables investigations to take place which would otherwise be
impossible given the current state of quantum computer hardware.

3 Problems with Quantum Computer Simulators

A quantum computer simulator is an attempt to model a quantum mechanical system on
a classical system and the quantum computer simulator must keep track of exponentially
many computations in order to model the quantum mechanical machine accurately. The
exponential increase in the number of computations increases with each additional
simulated qubit and results in an exponential slowdown that is noticeable even in
simulations of systems involving a relatively small number of qubits.

A simulation of a quantum computation is exponential in both space and time. If it were
possible to construct an efficient quantum computer simulator then it would no longer be
necessary to construct a quantum computer via production of quantum computer
hardware. The quantum computer simulator itself would effectively be a quantum
computer.

4 Quantum Computer Simulators

Details of the quantum computer simulators investigated for this review are given in
Table 1. Although the primary aim of each simulator is to model the operation of a
quantum computer, several simulators have been developed with secondary aims. For
example, Qubiter aims to show the use of Quantum Bayesian Nets, QDD aims to show
how Binary Decision Diagrams (BDDs) can be used to represent the quantum state, and
both QCL and OpenQubit use a complex-number representation of the quantum state.
In addition, QCL is an attempt to develop a high level, architecture independent
programming language for quantum computers 1• OpenQubit is a project which aims to
write a quantum computer simulator to demonstrate Shor's algorithm and its efficiency
on a quantum computer, and then to extend this code to a more general API that will
allow the implementation of other quantum algorithms.

1 I.e. the language has been developed with the idea that it will run on quantum hardware
as well as being a simulation language.

232

Table 1: Quantum Computer Simulators

Simulator Brief Description
Quasi QuaSi is a quantum computer simulator that simulates Deutsch's algorithm,
(Jun 2000) Shor's algorithm and Grover's algorithm. Source code is not available but the

author is currently working on an applet version for use over the Web.
http://iaks-www.ira.uka.de/home/matteck/QuaSi/

OpenQUACS OpenQUACS is an OpenSource general-purpose Quantum Computer
(May 2000) Simulator written in the Maple Programming language. It comes as a pre-

compiled Maple library or Maple source and has a full tutorial included.
http://www.gl.umbc.edu/~cmccubl/quacs/quacs.html

Universal The Quantum Computer Simulator enables simulation of a not-yet-realised
Quantum quantum computer on a classical computer. It incorporates a sophisticated,
Computation easy-to-operate graphical user interface (GUI), enabling easy simulation of
Simulator quantum algorithms by exchanging unitary elements with Mathematica.
Jui 1999*) http://www.qc-simulator.com/

Quantum The Quantum Turing Machine Simulator (QTS) contains Mathematica
Turing Machine software, ready-to-use Quantum Turing Machine Models, skeleton code to
Simulator vl.2 construct Quantum Turing Machines (QTMs) and performance measurements
(Jui 1999) to estimate run times of QTMs. http://www.h-star.com/conresearch.html
Hayward's Program which simulates the operation of a quantum computer performing
Shor's Shor's algorithm. Consists of four files which contain a simple complex number
Algorithm class for storing state information, a generic quantum register class which can
Simulation be made to simulate any quantum memory register, Shor's algorithm itself and
(Jui 1999) a library of useful functions used by Shor's algorithm.

http://www.imsa.edu/-matth/cs299/
QDD v0.2 C++ library for quantum computer simulation demonstrating the use of binary
(Mar 1999*) decision diagrams, includes an implementation of Shor's algorithm. Version 0.2

released September 1999, version 0.3 in development.
http://home.plutonium.net/-dagreve/qdd.html

Eqcs-0.0.5 Eqcs is a library allowing clients to simulate a quantum computer. Includes a
(Mar 1999*) test driver for the library. Still very much under development but includes a

program showing the creation of a controlled NOT gate.
http://home.snafu.de/pbelkner/eacs/index.html

Quantum QCE is a software tool that emulates various hardware designs of quantum
Computer computers. QCE provides an environment to debug and execute quantum
Emulator algorithms under realistic conditions. It consists of a GUI and the simulator
(QCE) (1999) itself, is available for Windows '98/NT4 and is distributed with

implementations of the Deutsch-Josza algorithm and Grover's algorithm. QCE
is no longer considered to be under development, however, changes are made to
the GUI at intermittent periods. http://rugth30.phys.rug.nl/comoohys/qce.htm

OpenQubit C++ quantum computer simulator which aims to demonstrate Shor's algorithm,
0.2.0 and its efficiency on a quantum computer. The aim of the project is to extend
(Dec 1998*) this code to a more general application program interface (API). The project

also . aims to simulate Grover's algorithm on the same simulator. Current
development version is NewSpin 0.3.3a. http://www.openqubit.org/

233

QCLv0.3 QCL (Quantum Computation Language) is a high level, architecture
(Jul 1998) independent programming language for quantum computers, includes program

files for simulation of an implementation of Shor's algorithm and files for
simulating other aspects of quantum computation.
http://tph.tuwien.ac.at/-oemer/qcl.html

Finite State The aim of this simulator is to show the simulation of any deterministic FSM
Machine (FSM) (the FSM is made reversible) on a quantum computer in a space-efficient
Simulation manner. By constructing a superposition of input strings of length k or less, it is
(Jui 1998) possible to ask questions about the FSM (such as which inputs reach particular

nodes). The answers can be found using a search algorithm (e.g. Grover's
algorithm).
http://xxx.soton.ac.uk/abs/quant-ph/?9807026

CS20c Java library for simulation of a quantum computer, includes an implementation
(Jun 1998) of Shor's algorithm. http://www.cs.caltech.edu/-amchilds/
AST Quantum Java simulation of the algorithmic steps of a model of Shor's algorithm. The
Algorithm simulator can be used to investigate Shor's method of factoring for numbers up
Simulator to 10 digits in length (Crick, 1998).
(Jun 1998)
Qubiter 1.0 Qubiter demonstrates the use of quantum Bayesian nets. It takes as input an
(May 1998*) arbitrary unitary matrix and returns as output an equivalent sequence of

elementary operations (these are quantum computer operations like controlled
NOTs and qubit rotations). These sequences can be represented graphically by
lqubit circuits. http ://www.ar-tiste.com/qubiter.html

Be++ Be++ is a quantum computer simulator that runs under BeOS. Still very much
(Feb 1998*) under development, the first release of the software simulates the controlled

NOT gate. http://home.worldnet.fr/-kubernan/
Shor's algorithm Mathematica notebook simulation showing the steps taken by a quantum
(Mathematica computer factoring an integer using Shor's algorithm. Shows graphically what
Notebook happens in each quantum register for each stage of the algorithm and obtains
Simulation) multiple samples of the discrete Fourier transform of register 1 by repeating
(1998) Shor's algorithm O(log(q)) times to deduce the period, r.

http://www.telospub.com/catalog/PHYSICS/Explorations.html
Mathematica Mathematica notebooks to show: animations of quantum systems, basic tools
Notebook for Dirac notation, simulation of quantum error correction, simulation of
Simulations Feynman's quantum computer, analysis of interference effects, one time pad
(1998) cryptosystem, simulating bugs in quantum computers, simulation of quantum

cryptography, RSA-public key cryptosystem and simulation of quantum
teleportation. These notebooks are generally not quantum computer simulators
but illustrate issues that are relevant to quantum computation and the
construction of quantum computer simulators.
http://www.telospub.com/cataJog/PHYSICS/Explorations.html

Quantum Quantum circuit simulator for simulating quantum circuits on a parallel
(Jun 1997) machine. Simulates more complex circuits than expected will be built within

the next few years. Takes input in the form of a mathematical description of a
circuit and then simulates the action of the circuit, includes an implementation
of Shor's algorithm. http://www.thernilkyway.com/quantum/

234

LGP2 and QC Quantum computer simulator and a specialised genetic programming system
Simulator (LGP/LGP2) which can be used to discover better-than-classical quantum
(1997*) algorithms. The quantum computer simulator is used to evaluate the fitness of

evolving quantum algorithms. The composite system demonstrates the
development of quantum algorithms by genetic programming. Development of
quantum algorithms is non-trivial and this research aims to address this
problem by using automatic programming techniques to automatically generate
new algorithms. http://hampshire.edu/lspector/code.html

Quantum Fog A tool for investigating and discussing quantum measurement problems
(1997) graphically in terms of quantum network diagrams called Bayesian nets (like

Qubiter). It can calculate one- and two-variable conditional probability
distributions, and draw a picture of every Feynman path that contributes to a
physical situation. http://www.ar-tiste.com/

QULIB C++ library for the simulation of quantum computers on an abstract functional
(shor.gz) level, includes simulation of Shor's algorithm (this library is used within QCL).
(Oct 1996) http://tph.tuwien.ac.at/-oemer/
Q-gol 3 (1996*) An attempt to write a high-level programming language to allow researchers to

describe algorithms designed to run on quantum computers, includes an
implementation of Shor's algorithm as well as allowing visual quantum circuit

· desiim. http://www.ics.mo.edu.au/-gregb/q-goVindex.htmI
Factor 15 An HTML form linked to a cgi-bin script (which uses the parallel quantum
Circuit (1996) computer simulator) that performs a sample simulation of a factor 15 circuit

(an implementation of Shor's algorithm where n = 15) showing the results of
adding inaccuracies to the operation of the quantum computer. The user can
select the error model as well as the magnitude of the error angle/variance and
the initial random seed for the positive/negative and gaussian error models.
http://www.isi.edu/acaVquantum/simulate.htmJ

Parallel The parallel quantum computer simulator allows the simulation of circuits that
Quantum are three to four orders of magnitude larger than any current proposed
Computer experimental realisations of a quantum computer. The simulator is modelled
Simulator directly on the cold trapped ion quantum computer scheme proposed by Cirac
(1996) and Zoller. The simulator takes as input the description of a quantum circuit

specified in terms of logic gates. The simulator implements one, two and three
bit controlled NOT gates as well as rotation gates . Circuits have been created
to allow simulation of both Shor's and Grover's algorithms.
http://www.isi.edu/acal/quantum/quantum intro.html

*indicates that the simulator is still under development

A large number of quantum computer simulators provide implementations of Shor' s
algorithm. As a result of this, Shor's algorithm therefore became a natural point of
comparison between quantum computer simulators in this research. It was used as a
basis for exploring and comparing many of those simulators that it was possible to
observe in operation. In view of the importance of this algorithm to the quantum
computer simulator investigation, it will be helpful to describe its basic features.

235

5 Shor's Quantum Factoring Algorithm

Shor's quantum factoring algorithm is based on Simon's work (Simon, 1994) and a
result from number theory (Miller, 1976). Simon described the construction of an oracle
problem that takes polynomial time on a quantum computer but requires exponential
time on a classical computer. Miller showed that factorisation can be reduced to the
problem of finding the order of an element (i.e., given x and n, find r, such that x' = 1
(mod n). r is called the order of the element x). Finding the order of an element is also
known as finding the period, r , of the function fx,n(a) = x0 mod n. Shor' s algorithm
replaces the call to the oracle in Miller's reduction by a call to an efficient quantum
algorithm that finds the order of an element.

Shor's algorithm is the most commonly implemented quantum algorithm for quantum
computer simulators. As a result of this, there may be several elements of this algorithm
that differ from Shor's original description, depending on the implementation.
Differences can result from minor variations in interpretation or a stronger adherence to
a particular description of Shor's algorithm. Specific examples include whether non­
coprirne values of x are allowed as random numbers and differences in the methods used
to calculate the factors themselves once the value of the period, r, has been calculated.

6 Simulating Shor's Algorithm

Detailed investigations of Shor' s algorithm were carried out using QCL, QULIB, QDD,
OpenQubit CS20c and Hayward' s Shor's Algorithm Simulation2

• The investigations
involved executing multiple simulations of each simulator' s implementation of the
algorithm, using a range of values for n (the number to be factored). An investigation
also took place into the effects of varying the value ofthe random number, x , when n =
33 . The motivation behind this part of the investigation resulted from the observation
that although calculations which use a particular value of x may produce the desired
prime factors of n (i.e. factors which are both correct and non trivial), this may not be by
the most efficient means. Detailed results from these investigations can be found in
(Wallace, 2000) which also provides more extensive information about the simulators
than is possible to present in this paper.

7 Comparison of Simulators

One distinguishing characteristic of the different quantum computer simulators is the
representation of the quantum state. QDD uses a Binary Decision Diagram (BDD)
representation of the quantum state. This contrasts with the complex-number

2 These simulators all provided implementations of Shor's algorithm that could be used to
obtain a reasonably sized set of results over a variety of inputs.

236

representation used by QCL, QULIB, OpenQubit and Hayward's Shor's Algorithm
Simulation. Using complex numbers to represent probability amplitudes is currently the
most common choice of quantum state representation. QCL is unique among the
simulators in that, as a programming language, it is designed to work with any qubit­
based quantum computer architecture as well as being a quantum computer simulation
language. However, OpenQUACS is a recent attempt at a general-purpose Quantum
Computer Simulator.

The Quantum Fog and Qubiter simulators are similar to QCL and OpenQubit as they
provide an exact simulation of quantum behaviour, but these use quantum Bayesian Nets
to represent the quantum state. Bayesian Nets are used in Quantum Fog and Qubiter
because they are appropriate for working with the conditional probabilities encountered
in entangled quantum states. However, Quantum Fog is a tool for writing quantum
computer programs in a high level visual language, rather than a "bit level'' quantum
computer simulator like other simulators e.g. QCL and OpenQubit. A tool such as
Qubiter is then used to translate this high-level language to qubit-level instructions.

BDDs, which are used by QDD to represent the quantum state, are suited to describing
Boolean functions. The use of BDDs to model the underlying quantum state allows
QDD to model relatively large quantum states (hence the large range of values of n
which QDD can factor). However, use of the BDD representation restricts QDD to
operating as a "digital" quantum computer, QCL and OpenQubit for example, support an
"analogue" quantum computer model.

The FSM simulator aims to address the question of using quantum parallelism to
simulate the execution of a program over a variety of inputs. This might imply that
quantum computers could be useful tools for software validation. The Quantum Turing
Machine (QTM) Simulator was designed to allow QTMs to be built that follow the step
operator approach and perform model calculations. It is also hoped that it might serve to
help demonstrate mathematical and physical principles involved in the machine model of
quantum information theory.

The Parallel Quantum Computer Simulator was designed for a detailed investigation into
the effects of errors that may occur in quantum computations. The Parallel Quantum
Computer Simulator is the only simulator described in this review that is based on an
actual physical experimental realisation of a quantum computer (Cirac & Zoller, 1995).
Because the Parallel Quantum Computer simulator is based on a model of a quantum
computer that has been experimentally realised, it was possible for its developers to
compare experimental results with those generated by the simulator.

LGP2 and its quantum computer simulator is the only simulator system described within
this review which, instead of aiming to simulate existing algorithms, aims to evolve new
quantum algorithms by using automatic programming techniques. It enables quantum

237

algorithms to be produced by genetic programming and uses a quantum computer
simulator and a specialised genetic programming system to discover better-than-classical
quantum algorithms.

The majority of the quantum computer simulators only simulate a single quantum
algorithm, often Shor's quantum factoring algorithm together with associated algorithms
that are needed within Shor's algorithm such as the quantum Fourier transform3

• Bing­
Parks (1999) has developed a simulator which simulates and provides a visualisation of
the abstract representations and mathematical derivations of Grover's algorithm (Grover,
1997). The exceptions to this "one algorithm per simulator" rule are the Parallel
Quantum Computer Simulator (which provides circuits to simulate both Shor's and
Grover's algorithms), the Universal Quantum Computation Simulation by Senko
Corporation, Quantum Computer Emulator (QCE), and QuaSi. Simulating more than
one algorithm using the same simulator is a significant step forward and has become
more common in simulators that have been developed recently in 1999 and 2000.

The results of the simulator comparison, and the investigation into simulations of
implementations of Shor's algorithm, show that there are several simulators that appear
to provide a good basis for further development4, these are QCL, OpenQubit, QDD and
the CS20c Java simulator. In addition, the Parallel Quantum Computer Simulator is
particularly appropriate for investigating the effects of errors in quantum computations
and algorithms. It could also be used for designing circuits to run on a physical version
of the model used by the simulator, as well as for general purpose quantum circuit and
quantum algorithm design. This simulator is unique as it is possible to verify the results
generated by the simulator using results obtained experimentally using cold trapped ion
quantum computers.

The simulators discussed within this review will be of use to different groups of people.
A student studying quantum computing, for example, may find it helpful to examine QCL
(a generic Quantum Computation Language that is not tied to a specific architecture).
Conversely, researchers who are involved with practical experimentation as well as
simulation may find simulators based on a particular experimental model useful for
verifying, extending and enhancing their investigations.

Finally, inconsistencies between the results obtained by some simulators highlight the
need to compare results between simulators and, where possible, to compare simulator
results with results obtained experimentally. Errors can be made in software
development, these will affect simulator results. Errors may also occur in experimental

3 However, some simulations of Shor's algorithm do not simulate the quantum Fourier
transform.
4 These recommendations relate only to those simulators that could be observed in
operation. Simulators such as Qubiter, Q-gol, QuaSi, QCE etc. were not considered.

238

design, these will affect the results obtained from physical realisations of quantum
computers.

8 Identification of Simulator Metrics

To assist in the assessment and comparison of quantum computer simulators, this paper
will now discuss the development of a framework of simulator metrics. An extensive
amount of research has taken place into identifying the type of factors that can be used
for effective software metrics. Using general guidelines e.g. Mills in (Ashrafuzzaman,
1995) and (Lively, 1998), a large number of metrics have been identified and attempts
have been made to classify these metrics into groups for assessing software, e.g.
McCall' s Software Quality Factors in (Zin & Foxley, 1996) and Hewlett Packard's
FURPS in (Lively, 1998).

The simulator metrics were devised after analysing the factors it was felt necessary to
consider while reviewing and comparing the quantum computer simulators. This
required involved identifying factors that played a significant part in the simulator testing
process. In addition it was necessary to consider a general evaluation of usability
characteristics together with factors that might be relevant when selecting one simulator
in preference to another. The metrics that were identified are as follows:
• performance - assessing the simulators in action, etc.
• size - size of the simulator and memory requirements, etc. ·
• quality - failure rates, bugs found, output produced for test cases, etc.
• functionality - range of problems handled, limitations, customisability without re­

coding, etc.
• ease of use - ease of set-up, error messages, help provided, etc.
• portability - number of platforms supported, source code, software development

tools needed, extensibility, etc.
• currency - age of simulator, whether used in reaVactual quantum computing research,

etc.

The investigation concentrated solely on features that can be compared on a "marks out
of 10" basis, e.g. ease of use. General simulator features that should be recorded but
cannot be compared on this basis, e.g. the programming languages that the simulators are
coded in, are not considered within this paper.

9 Simulator Metrics

Comparative index measures will be applied to each of the quantum computer simulators
with a view to assessing the metrics which follow . The items following each metric are
examples of the factors measured by the metric .
• performance

239

• speed of execution for a benchmark set of problems
• size

• source code lines
• size of compiled executable
• memory requirements while running

• quality
• rate of failure in benchmark tests
• count of bugs uncovered during tests
• inability to handle specific exceptions
• verifiable, consistent and correct output for all test cases

• functionality
• ability to handle increasingly large problems
• limitations on the size of simulation
• range of problems that can be handled
• number of quantum algorithms simulated
• quantum computer constructs simulated
• customisability without re-coding
• method of generating output
• display of output in an understandable form
• extent to which it simulates an "actual'' general purpose quantum computer
• results obtained for the amount of time spent

• ease of use
• preparation for simulation
• settings for a run saved in a file for re-use later
• error messages meaningful/helpful
• help/manual
• author support
• ease of understanding

• portability
• availability of source code (or availability of executable for a variety of platforms)
• number of platforms supported
• availability of software development tools (editor/compiler/libraries etc.)
• ease of customising/extending the simulator
• compatibility with other simulators

• currency
• currency of model of quantum operations
• representation of "state of the art" thinking in its underlying algorithms
• previous application to real/actual quantum research work
• comparison with experimental results
• prediction of experimental results

240

10 Scoring and Weighting the Metrics

Each metric was given a score ranging from O to 10 for each of the simulators. The
importance of any particular metric depends on the purpose for which the simulator will
be used, so to account for this, a weighting of 0.0 to 1.0 was applied to each score to
reflect its overall importance, taking into account the intended use of the simulator. The
overall score for each metric is given by: score * rating. The overall rating for a
simulator is calculated by adding the overall scores for each metric, i.e. : :t overall metric
score= overall rating.

There are several ways in which the .framework of metrics that have been described could
be scored and weighted, the simplest of these is to score each metric and then apply a
weighting. In order to establish the weightings for each metric, it was necessary to
decide the primary use for the quantum computer simulator. Examples of possible
primary uses include using simulators to develop general quantum algorithms, to test a
particular quantum algorithm or to look in detail at the operation of a quantum
computer. It may also be necessary to take into account the target user group.

Once the primary use of the simulator has been establishcl:l, the list of metrics need to be
ranked in order of their importance and relevance to this purpose. Weightings from 0.0
to 1.0 are then allocated to each metric in the ranked list. The overall score for each
metric (and hence the overall rating of the simulator with respect to that particular use)
can then be calculated.

Scores given for each particular metric are subjective, they depend on the person using
the framework of metrics to assess the simulators and the purpose for which they are
doing the assessment. The exception to this are scores for those items that are solely
based on performance measures for test cases that can be duplicated.

The metric scoring method that has been detailed is extensible and is a generalised
approach, as it allows easy assessment of simulators for purposes other than that for
which the original metric scorings were given. This is possible because the relative
weightings for a metric can be changed as necessary to reflect the importance of that
metric to the new purpose. These new weightings can then be applied to the original
scores to give a new overall rating for that simulator with respect to the new use,
without the need to re-score the metrics.

11 Methodology and Design

The methodology for assessing the simulators is to allocate scores to each metric for
every simulator (this will only need to be done once for each simulator unless new
metrics are added or the structure of the scoring system is changed significantly), then:

241

• decide on the primary use of the simulator (may need to determine target user group
if this is considered an important factor)

• make ranked list of metrics with respect to their importance to the primary use of the
simulator

• allocate weightings to the ranked metrics
• calculate overall score for each metric
• calculate overall rating for each simulator
• compare overall ratings

Recommendations can then be made having used a comparative assessment method to
determine the best simulator for the job. In order to demonstrate the methodology that
has been developed, this paper describes the assessment of a variety of simulators using
this scheme. For our example, the primary use for the simulators was selected to be the
development of general quantum algorithms.

To demonstrate the methodology, it was decided to "estimate" the mark for every metric
for each of the simulators (based on the knowledge obtained about each simulator from
previous research). The metrics will then be prioritised with respect to the intended use
of the simulator and appropriate weightings will be set for the ranked metrics. Weighted
scores for each metric will be calculated. The weighted scores will be totalled to give the
overall rating for each simulator.

Only those simulators that could be observed in operation were assessed, these were
QCL, QDD v0.2, QULIB, OpenQubit 0.2.0, CS20c, AST, Mathematica Simulations
(Shor's algorithm), Eqcs-0.0.5 and Hayward's Shor's Algorithm Simulation. Although it
was possible to observe the Universal Quantum Computation Simulator and the
Quantum Computer Emulator in action, these simulators were not assessed using the
metrics due to problems installing and running the software.

The prioritised list of metrics for the purpose of general quantum algorithm simulation is
detailed below. The user group selected for our demonstration is quantum algorithm
developers. Weightings were applied to the seven metrics based on their relative
importance to this user group. The list follows and is ordered with the metrics in
descending order of importance. The name of the metric is followed by its weighting (in
brackets) and then by the abbreviation used for the metric:
1. functionality, (1.0), FUNC
2. quality, (0.9), QUAL
3. performance, (0.8), PERF
4. currency, (0.7), CURR
5. ease ofuse, (0.6), EASE
6. size (0.5), SIZE (This is the only metric scored inversely, i.e. a high score indicates a

small, fast simulator and a lower score indicates a larger, slower simulator.)
7. portability, (0.4), PORT

242

12 Results

The results of applying the framework of metrics to the simulators are presented in Table
2. Tables 3 and 4 show the initial scores for the simulators and the scores with the
weightings applied. It can be seen that QCL has the highest overall rating when the
primary use of the simulator will be to develop general-purpose quantum algorithms and
that Eqcs-0.0.5 has the lowest rating.

a e : lil T bl 2 F al R atmg (M . axunum R ' atmg= 49)
Simulator Ratilll!
QCL 35.7
,QDD v0.2 35.4
QULIB 34.9
OpenOubit 0.2.0 33.9
CS20c 33.4
Hayward's Shor' s Algorithm Simulation 33 .2
AST 33.0
Mathematica (Shor's algorithm) 31.1
Eqcs-0.0.5 29.2

Table 3: Initial Scores
Simulator PERF SIZE QUAL FUNC EASE PORT CURR
CS20c 6 4 8 7 6 8 8
QDD v0.2 9 2 8 7 7 8 8
QCL 7 1 9 9 8 7 7
QULIB 8 5 9 6 7 7 7
OpenQubit 0.2.0 8 3 6 7 8 8 8
Mathematica (Shor' s algorithm) 5 8 9 5 7 4 6
AST 8 6 7 6 6 7 7
Eqcs-0.0.5 6 5 7 5 6 7 6
Hayward' s Shor's Algorithm 8 5 6 7 7 7 7
Simulation

a e : T bi 4 S cores wit e1g tmgs DP e ' hW'h• A lid

Simulator PERF SIZE iQUAL FUNC EASE PORT CURR Ratine
CS20c 4.8 2.0 7.2 7.0 3.6 3.2 5.6 33.4
QDDv0.2 7.2 1.0 7.2 7.0 4.2 3.2 5.6 35.4
QCL 5.6 0.5 8.1 9.0 4.8 2.8 4.9 35.7
QULIB 6.4 2.5 8.1 6.0 4.2 2.8 4.9 34.9
OoenQubit 0.2.0 6.4 1.5 5.4 7.0 4.8 3.2 5.6 33.9
Mathematica (Shor' s algorithm) 4.0 4.0 8.1 5.0 4.2 1.6 4.2 31.1
AST 6.4 3.0 6.3 6.0 3.6 2.8 4.9 33 .0
Eqcs-0.0.5 4.8 2.5 6.3 5.0 3.6 2.8 4.2 29.2

243

Hayward' s Shor' s Algorithm 6.4 2.5 5.4 7.0 4.2 2.8 4.9 33.2
Simulation
Weie:htim: 0.8 0.5 0.9 1.0 0.6 0.4 0.7

13 Conclusions

Quantum computer simulators are a necessity because, at present, appropriate quantum
computer hardware is not available outside research laboratories so it is very difficult to
test and analyse quantum algorithms. These simulators are therefore extremely useful
tools as they enable exploration and simulation of known quantum algorithms.

Designing and developing implementations of known quantum algorithms for quantum
computer simulators has several benefits. Firstly, it increases our knowledge of the
quantum algorithms themselves. Secondly, implementing algorithms for simulation may
help us to make improvements to these algorithms, to find and fix errors, and aid the
design and development of new algorithms. The design and development of new
quantum algorithms can also be aided by the use of automatic programming techniques.

The aim of this paper was to provide a comprehensive overview of the quantum
computer simulators that are available at the present time. The review also presented a
generalised, extensible framework of metrics for comparing quantum computer
simulators. A proper assessment of the. simulators using the framework of metrics that
has been developed should now be conducted, rather than an "estimate" assessment. In
addition, a series of common uses for quantum computer simulators can be identified and
ranked lists of metrics could be developed for each of these uses. Finally, there is also
scope for extending and improving existing simulators and developing new simulators.

Acknowledgements

Thanks to Professor Greve, Dr Spector, Dr Tucci and Mr Omer for answering questions
about their simulators and to all the researchers and institutions that provided me with
source code and executables. I would also like to acknowledge the advice of my
supervisor Dr Narayanan and thank all those who have contacted me regarding my work.

References

Ashrafuzzaman Mohammad (1995). Putting Metrics into Software Perspectives,
Department of Computer Science, University of Saskatchewan,
http://www.cs.usask.ca/homepages/ grads/moa 135/856/metrics/metrics.html

Bing-Parks Terrance D. (1999). A Visualization of a Quantum Mechanical Search
Algorithm, MS Thesis, San Jose State University.

244

Cirac J. I. & Zoller P. (1995). Quantum Computations with Cold Trapped Ions, Physical
Review Letters, 74, Number 20, pp. 4091-4094.

Crick David A (1998). Quantum Computing, Department of Computer Science,
University of Exeter, UK, Project III Stage III Report [Unpublished].

Feynman Richard P. (1982). Simulating Physics with Computers, International Journal
of Theoretical Physics, Vol. 21, pp. 467-488.

Grover Lov K. (1997). Quantum Mechanics Helps in Searching for a Needle in a
Haystack, Physical Review Letters, Vol. 78, Number 2, pp. 325-328, quant-ph/9605043 .

Lively Mac (1998). Technical Metrics for Software Chapter 18, Department of
Computer Science, Texas A&M University,
http://www.cs.tamu.edu/course-info/cpsc689/summer98/lively/volz_ 43 l_html/chap-18/

Miller Gary L. (1976). Riemann's Hypothesis and Tests for Primality, Journal of
Computer and System Sciences, Vol. 13, pp. 300-317.

Shor Peter W. (1994). Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer, quant-ph/9508027 v2. (Proceedings of
the 35th Annual Symposium on Foundations of. Computer Science, IEEE Computer
Society Press, Editor Shafi Goldwasser, pp. 124-134, 1994).

Simon Daniel (1994). On the Power of Quantum Computation, Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, IEEE Computer Society
Press, Editor Shafi Goldwasser, pp. 116-123.

Wallace Julia (2000). Quantum Computer Simulators -A Review, Version 2.1,
http://www.dcs.ex.ac.uk/-jwallace/simrevab.htm

Zin Abdullah Mohd & Foxley Eric (1996). Automatic Program Assessment System,
Department of Computer Science, University of Nottingham,
http://www.cs.nott.ac. uk/Department/Staff/ ef/ceilidh/papers/ ASQA. html

245

