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This paper offers the first available overview of progress in the field of quantum 
computer simulation. As research effort in quantum computation grows, together with 
the number of field researchers, it seems certain that quantum computer simulators will 
play a major role in this research. 

Quantum computer simulators are discussed together with their role in the study of 
quantum computation. Currently available simulators are described and compared, and 
recommendations are given for the most appropriate simulators to use for specified 
purposes. In addition, a generalised, extensible framework of metrics for comparing 
quantum computer simulators is introduced and demonstrated. 

An awareness of the functions and features of existing simulators is essential for 
researchers in the field , to avoid duplication of effort and to build on the foundations of 
previous work. 
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1 Introduction 

This paper details the results of an investigation into quantum computer simulators. 
These are defined as computer programs executed on a classical machine to simulate the 
actions of a quantum computer. The simulations effectively involve the use of machines 
that work according to the laws of classical Newtonian physics to simulate machines that 
work according to the laws of quantum mechanics. 
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As quantum computer hardware is not available outside research laboratories at present, 
it is very useful to be able to create and develop quantum algorithms and test these via 
simulation on current, classical, computer hardware. Currently, a variety of quantum 
computer simulators exist, these vary in the complexity of simulations possible, in the 
representations used for quantum data structures, in the implementations of the quantum 
algorithms used by the simulators and in the accuracy of the simulators themselves. 
There is now a need for a comparative review of quantum computer simulators, which 
prompted this paper giving the first available overview of progress in the field of 
quantum computer simulation. 

The paper begins discussing why there is a need for quantum computer simulators, 
explaining the problems that are inherent in attempting to simulate a quantum system by 
classical means and introducing a variety of quantum computer simulators. The paper 
will also briefly describe Shor's polynomial time quantum factoring algorithm (Shor, 
1994), the most commonly simulated quantum algorithm. It aims to provide a general 
comparison of the quantum computer simulators and offer recommendations as to the 
most appropriate simulators to use for specific purposes and those simulators that seem 
suited to further development. 

To assist in the assessment and comparison of quantum computer simulators, it would be 
useful to have a framework of simulator metrics in addition to a general review. Metrics 
would allow quick comparisons to be made between simulators, provide an easy 
framework to express results and allow comparison of simulators that have yet to be 
developed against those that have already been assessed. The paper discusses the 
identification and development of a framework of suitable metrics for comparing 
quantum computer simulators, provides descriptions of the metrics themselves and 
discusses how they can be used to assess simulators. 

This paper describes the development of a generalised assessment methodology using the 
metrics. This was developed because it is possible to use quantum computer simulators 
for a variety of purposes. The framework of metrics developed and described in this 
paper can be adapted and extended to suit any comparison between simulators. The 
methodology is demonstrated by assessing a selection of simulators. Finally, the 
limitations of the simulator review work are discussed; this is followed by suggestions for 
further work. 

2 The need for Quantum Computer Simulators 

Feynman ( 1982) observed that classical systems cannot effectively model quantum 
mechanical systems. He proposed that the only way to effectively model a quantum 
mechanical system would be by the use of another quantum mechanical system. 
Feynman's observation suggests that it should be possible to use computers based on the 
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laws of quantum mechanics instead of the laws of classical physics to model quantum 
mechanical systems. 

As research into quantum computation has progressed, significant progress has been 
made in developing the techniques necessary to produce quantum computer hardware. 
However, this hardware is not currently available outside research laboratories, and is 
inadequate in any case. The systems that have been constructed are insufficient for 
detailed exploration of some of the quantum algorithms that have been proposed. It is 
therefore useful to explore quantum algorithms by means of a quantum computer 
simulator which enables investigations to take place which would otherwise be 
impossible given the current state of quantum computer hardware. 

3 Problems with Quantum Computer Simulators 

A quantum computer simulator is an attempt to model a quantum mechanical system on 
a classical system and the quantum computer simulator must keep track of exponentially 
many computations in order to model the quantum mechanical machine accurately. The 
exponential increase in the number of computations increases with each additional 
simulated qubit and results in an exponential slowdown that is noticeable even in 
simulations of systems involving a relatively small number of qubits. 

A simulation of a quantum computation is exponential in both space and time. If it were 
possible to construct an efficient quantum computer simulator then it would no longer be 
necessary to construct a quantum computer via production of quantum computer 
hardware. The quantum computer simulator itself would effectively be a quantum 
computer. 

4 Quantum Computer Simulators 

Details of the quantum computer simulators investigated for this review are given in 
Table 1. Although the primary aim of each simulator is to model the operation of a 
quantum computer, several simulators have been developed with secondary aims. For 
example, Qubiter aims to show the use of Quantum Bayesian Nets, QDD aims to show 
how Binary Decision Diagrams (BDDs) can be used to represent the quantum state, and 
both QCL and OpenQubit use a complex-number representation of the quantum state. 
In addition, QCL is an attempt to develop a high level, architecture independent 
programming language for quantum computers 1• OpenQubit is a project which aims to 
write a quantum computer simulator to demonstrate Shor's algorithm and its efficiency 
on a quantum computer, and then to extend this code to a more general API that will 
allow the implementation of other quantum algorithms. 

1 I.e. the language has been developed with the idea that it will run on quantum hardware 
as well as being a simulation language. 
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Table 1: Quantum Computer Simulators 

Simulator Brief Description 
Quasi QuaSi is a quantum computer simulator that simulates Deutsch's algorithm, 
(Jun 2000) Shor's algorithm and Grover's algorithm. Source code is not available but the 

author is currently working on an applet version for use over the Web. 
http://iaks-www.ira.uka.de/home/matteck/QuaSi/ 

OpenQUACS OpenQUACS is an OpenSource general-purpose Quantum Computer 
(May 2000) Simulator written in the Maple Programming language. It comes as a pre-

compiled Maple library or Maple source and has a full tutorial included. 
http://www.gl.umbc.edu/~cmccubl/quacs/quacs.html 

Universal The Quantum Computer Simulator enables simulation of a not-yet-realised 
Quantum quantum computer on a classical computer. It incorporates a sophisticated, 
Computation easy-to-operate graphical user interface (GUI), enabling easy simulation of 
Simulator quantum algorithms by exchanging unitary elements with Mathematica. 
Jui 1999*) http://www.qc-simulator.com/ 

Quantum The Quantum Turing Machine Simulator (QTS) contains Mathematica 
Turing Machine software, ready-to-use Quantum Turing Machine Models, skeleton code to 
Simulator vl.2 construct Quantum Turing Machines (QTMs) and performance measurements 
(Jui 1999) to estimate run times of QTMs. http://www.h-star.com/conresearch.html 
Hayward's Program which simulates the operation of a quantum computer performing 
Shor's Shor's algorithm. Consists of four files which contain a simple complex number 
Algorithm class for storing state information, a generic quantum register class which can 
Simulation be made to simulate any quantum memory register, Shor's algorithm itself and 
(Jui 1999) a library of useful functions used by Shor's algorithm. 

http://www.imsa.edu/-matth/cs299/ 
QDD v0.2 C++ library for quantum computer simulation demonstrating the use of binary 
(Mar 1999*) decision diagrams, includes an implementation of Shor's algorithm. Version 0.2 

released September 1999, version 0.3 in development. 
http://home.plutonium.net/-dagreve/qdd.html 

Eqcs-0.0.5 Eqcs is a library allowing clients to simulate a quantum computer. Includes a 
(Mar 1999*) test driver for the library. Still very much under development but includes a 

program showing the creation of a controlled NOT gate. 
http://home.snafu.de/pbelkner/eacs/index.html 

Quantum QCE is a software tool that emulates various hardware designs of quantum 
Computer computers. QCE provides an environment to debug and execute quantum 
Emulator algorithms under realistic conditions. It consists of a GUI and the simulator 
(QCE) (1999) itself, is available for Windows '98/NT4 and is distributed with 

implementations of the Deutsch-Josza algorithm and Grover's algorithm. QCE 
is no longer considered to be under development, however, changes are made to 
the GUI at intermittent periods. http://rugth30.phys.rug.nl/comoohys/qce.htm 

OpenQubit C++ quantum computer simulator which aims to demonstrate Shor's algorithm, 
0.2.0 and its efficiency on a quantum computer. The aim of the project is to extend 
(Dec 1998*) this code to a more general application program interface (API). The project 

also . aims to simulate Grover's algorithm on the same simulator. Current 
development version is NewSpin 0.3.3a. http://www.openqubit.org/ 
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QCLv0.3 QCL (Quantum Computation Language) is a high level, architecture 
(Jul 1998) independent programming language for quantum computers, includes program 

files for simulation of an implementation of Shor's algorithm and files for 
simulating other aspects of quantum computation. 
http://tph.tuwien.ac.at/-oemer/qcl.html 

Finite State The aim of this simulator is to show the simulation of any deterministic FSM 
Machine (FSM) (the FSM is made reversible) on a quantum computer in a space-efficient 
Simulation manner. By constructing a superposition of input strings of length k or less, it is 
(Jui 1998) possible to ask questions about the FSM (such as which inputs reach particular 

nodes). The answers can be found using a search algorithm (e.g. Grover's 
algorithm). 
http://xxx.soton.ac.uk/abs/quant-ph/?9807026 

CS20c Java library for simulation of a quantum computer, includes an implementation 
(Jun 1998) of Shor's algorithm. http://www.cs.caltech.edu/-amchilds/ 
AST Quantum Java simulation of the algorithmic steps of a model of Shor's algorithm. The 
Algorithm simulator can be used to investigate Shor's method of factoring for numbers up 
Simulator to 10 digits in length (Crick, 1998). 
(Jun 1998) 
Qubiter 1.0 Qubiter demonstrates the use of quantum Bayesian nets. It takes as input an 
(May 1998*) arbitrary unitary matrix and returns as output an equivalent sequence of 

elementary operations (these are quantum computer operations like controlled 
NOTs and qubit rotations). These sequences can be represented graphically by 
lqubit circuits. http ://www.ar-tiste.com/qubiter.html 

Be++ Be++ is a quantum computer simulator that runs under BeOS. Still very much 
(Feb 1998*) under development, the first release of the software simulates the controlled 

NOT gate. http://home.worldnet.fr/-kubernan/ 
Shor's algorithm Mathematica notebook simulation showing the steps taken by a quantum 
(Mathematica computer factoring an integer using Shor's algorithm. Shows graphically what 
Notebook happens in each quantum register for each stage of the algorithm and obtains 
Simulation) multiple samples of the discrete Fourier transform of register 1 by repeating 
(1998) Shor's algorithm O(log(q)) times to deduce the period, r. 

http://www.telospub.com/catalog/PHYSICS/Explorations.html 
Mathematica Mathematica notebooks to show: animations of quantum systems, basic tools 
Notebook for Dirac notation, simulation of quantum error correction, simulation of 
Simulations Feynman's quantum computer, analysis of interference effects, one time pad 
(1998) cryptosystem, simulating bugs in quantum computers, simulation of quantum 

cryptography, RSA-public key cryptosystem and simulation of quantum 
teleportation. These notebooks are generally not quantum computer simulators 
but illustrate issues that are relevant to quantum computation and the 
construction of quantum computer simulators. 
http://www.telospub.com/cataJog/PHYSICS/Explorations.html 

Quantum Quantum circuit simulator for simulating quantum circuits on a parallel 
(Jun 1997) machine. Simulates more complex circuits than expected will be built within 

the next few years. Takes input in the form of a mathematical description of a 
circuit and then simulates the action of the circuit, includes an implementation 
of Shor's algorithm. http://www.thernilkyway.com/quantum/ 
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LGP2 and QC Quantum computer simulator and a specialised genetic programming system 
Simulator (LGP/LGP2) which can be used to discover better-than-classical quantum 
(1997*) algorithms. The quantum computer simulator is used to evaluate the fitness of 

evolving quantum algorithms. The composite system demonstrates the 
development of quantum algorithms by genetic programming. Development of 
quantum algorithms is non-trivial and this research aims to address this 
problem by using automatic programming techniques to automatically generate 
new algorithms. http://hampshire.edu/lspector/code.html 

Quantum Fog A tool for investigating and discussing quantum measurement problems 
(1997) graphically in terms of quantum network diagrams called Bayesian nets (like 

Qubiter). It can calculate one- and two-variable conditional probability 
distributions, and draw a picture of every Feynman path that contributes to a 
physical situation. http://www.ar-tiste.com/ 

QULIB C++ library for the simulation of quantum computers on an abstract functional 
(shor.gz) level, includes simulation of Shor's algorithm (this library is used within QCL). 
(Oct 1996) http://tph.tuwien.ac.at/-oemer/ 
Q-gol 3 ( 1996*) An attempt to write a high-level programming language to allow researchers to 

describe algorithms designed to run on quantum computers, includes an 
implementation of Shor's algorithm as well as allowing visual quantum circuit 

· desiim. http://www.ics.mo.edu.au/-gregb/q-goVindex.htmI 
Factor 15 An HTML form linked to a cgi-bin script (which uses the parallel quantum 
Circuit ( 1996) computer simulator) that performs a sample simulation of a factor 15 circuit 

(an implementation of Shor's algorithm where n = 15) showing the results of 
adding inaccuracies to the operation of the quantum computer. The user can 
select the error model as well as the magnitude of the error angle/variance and 
the initial random seed for the positive/negative and gaussian error models. 
http://www.isi.edu/acaVquantum/simulate.htmJ 

Parallel The parallel quantum computer simulator allows the simulation of circuits that 
Quantum are three to four orders of magnitude larger than any current proposed 
Computer experimental realisations of a quantum computer. The simulator is modelled 
Simulator directly on the cold trapped ion quantum computer scheme proposed by Cirac 
(1996) and Zoller. The simulator takes as input the description of a quantum circuit 

specified in terms of logic gates. The simulator implements one, two and three 
bit controlled NOT gates as well as rotation gates . Circuits have been created 
to allow simulation of both Shor's and Grover's algorithms. 
http://www.isi.edu/acal/quantum/quantum intro.html 

*indicates that the simulator is still under development 

A large number of quantum computer simulators provide implementations of Shor' s 
algorithm. As a result of this, Shor's algorithm therefore became a natural point of 
comparison between quantum computer simulators in this research. It was used as a 
basis for exploring and comparing many of those simulators that it was possible to 
observe in operation. In view of the importance of this algorithm to the quantum 
computer simulator investigation, it will be helpful to describe its basic features. 
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5 Shor's Quantum Factoring Algorithm 

Shor's quantum factoring algorithm is based on Simon's work (Simon, 1994) and a 
result from number theory (Miller, 1976). Simon described the construction of an oracle 
problem that takes polynomial time on a quantum computer but requires exponential 
time on a classical computer. Miller showed that factorisation can be reduced to the 
problem of finding the order of an element (i.e., given x and n, find r, such that x' = 1 
(mod n). r is called the order of the element x). Finding the order of an element is also 
known as finding the period, r , of the function fx,n(a) = x0 mod n. Shor' s algorithm 
replaces the call to the oracle in Miller's reduction by a call to an efficient quantum 
algorithm that finds the order of an element. 

Shor's algorithm is the most commonly implemented quantum algorithm for quantum 
computer simulators. As a result of this, there may be several elements of this algorithm 
that differ from Shor's original description, depending on the implementation. 
Differences can result from minor variations in interpretation or a stronger adherence to 
a particular description of Shor's algorithm. Specific examples include whether non­
coprirne values of x are allowed as random numbers and differences in the methods used 
to calculate the factors themselves once the value of the period, r, has been calculated. 

6 Simulating Shor's Algorithm 

Detailed investigations of Shor' s algorithm were carried out using QCL, QULIB, QDD, 
OpenQubit CS20c and Hayward' s Shor's Algorithm Simulation2

• The investigations 
involved executing multiple simulations of each simulator' s implementation of the 
algorithm, using a range of values for n (the number to be factored). An investigation 
also took place into the effects of varying the value ofthe random number, x , when n = 
33 . The motivation behind this part of the investigation resulted from the observation 
that although calculations which use a particular value of x may produce the desired 
prime factors of n (i.e. factors which are both correct and non trivial), this may not be by 
the most efficient means. Detailed results from these investigations can be found in 
(Wallace, 2000) which also provides more extensive information about the simulators 
than is possible to present in this paper. 

7 Comparison of Simulators 

One distinguishing characteristic of the different quantum computer simulators is the 
representation of the quantum state. QDD uses a Binary Decision Diagram (BDD) 
representation of the quantum state. This contrasts with the complex-number 

2 These simulators all provided implementations of Shor's algorithm that could be used to 
obtain a reasonably sized set of results over a variety of inputs. 
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representation used by QCL, QULIB, OpenQubit and Hayward's Shor's Algorithm 
Simulation. Using complex numbers to represent probability amplitudes is currently the 
most common choice of quantum state representation. QCL is unique among the 
simulators in that, as a programming language, it is designed to work with any qubit­
based quantum computer architecture as well as being a quantum computer simulation 
language. However, OpenQUACS is a recent attempt at a general-purpose Quantum 
Computer Simulator. 

The Quantum Fog and Qubiter simulators are similar to QCL and OpenQubit as they 
provide an exact simulation of quantum behaviour, but these use quantum Bayesian Nets 
to represent the quantum state. Bayesian Nets are used in Quantum Fog and Qubiter 
because they are appropriate for working with the conditional probabilities encountered 
in entangled quantum states. However, Quantum Fog is a tool for writing quantum 
computer programs in a high level visual language, rather than a "bit level'' quantum 
computer simulator like other simulators e.g. QCL and OpenQubit. A tool such as 
Qubiter is then used to translate this high-level language to qubit-level instructions. 

BDDs, which are used by QDD to represent the quantum state, are suited to describing 
Boolean functions. The use of BDDs to model the underlying quantum state allows 
QDD to model relatively large quantum states (hence the large range of values of n 
which QDD can factor). However, use of the BDD representation restricts QDD to 
operating as a "digital" quantum computer, QCL and OpenQubit for example, support an 
"analogue" quantum computer model. 

The FSM simulator aims to address the question of using quantum parallelism to 
simulate the execution of a program over a variety of inputs. This might imply that 
quantum computers could be useful tools for software validation. The Quantum Turing 
Machine (QTM) Simulator was designed to allow QTMs to be built that follow the step 
operator approach and perform model calculations. It is also hoped that it might serve to 
help demonstrate mathematical and physical principles involved in the machine model of 
quantum information theory. 

The Parallel Quantum Computer Simulator was designed for a detailed investigation into 
the effects of errors that may occur in quantum computations. The Parallel Quantum 
Computer Simulator is the only simulator described in this review that is based on an 
actual physical experimental realisation of a quantum computer (Cirac & Zoller, 1995). 
Because the Parallel Quantum Computer simulator is based on a model of a quantum 
computer that has been experimentally realised, it was possible for its developers to 
compare experimental results with those generated by the simulator. 

LGP2 and its quantum computer simulator is the only simulator system described within 
this review which, instead of aiming to simulate existing algorithms, aims to evolve new 
quantum algorithms by using automatic programming techniques. It enables quantum 
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algorithms to be produced by genetic programming and uses a quantum computer 
simulator and a specialised genetic programming system to discover better-than-classical 
quantum algorithms. 

The majority of the quantum computer simulators only simulate a single quantum 
algorithm, often Shor's quantum factoring algorithm together with associated algorithms 
that are needed within Shor's algorithm such as the quantum Fourier transform3

• Bing­
Parks (1999) has developed a simulator which simulates and provides a visualisation of 
the abstract representations and mathematical derivations of Grover's algorithm (Grover, 
1997). The exceptions to this "one algorithm per simulator" rule are the Parallel 
Quantum Computer Simulator (which provides circuits to simulate both Shor's and 
Grover's algorithms), the Universal Quantum Computation Simulation by Senko 
Corporation, Quantum Computer Emulator (QCE), and QuaSi. Simulating more than 
one algorithm using the same simulator is a significant step forward and has become 
more common in simulators that have been developed recently in 1999 and 2000. 

The results of the simulator comparison, and the investigation into simulations of 
implementations of Shor's algorithm, show that there are several simulators that appear 
to provide a good basis for further development4, these are QCL, OpenQubit, QDD and 
the CS20c Java simulator. In addition, the Parallel Quantum Computer Simulator is 
particularly appropriate for investigating the effects of errors in quantum computations 
and algorithms. It could also be used for designing circuits to run on a physical version 
of the model used by the simulator, as well as for general purpose quantum circuit and 
quantum algorithm design. This simulator is unique as it is possible to verify the results 
generated by the simulator using results obtained experimentally using cold trapped ion 
quantum computers. 

The simulators discussed within this review will be of use to different groups of people. 
A student studying quantum computing, for example, may find it helpful to examine QCL 
(a generic Quantum Computation Language that is not tied to a specific architecture). 
Conversely, researchers who are involved with practical experimentation as well as 
simulation may find simulators based on a particular experimental model useful for 
verifying, extending and enhancing their investigations. 

Finally, inconsistencies between the results obtained by some simulators highlight the 
need to compare results between simulators and, where possible, to compare simulator 
results with results obtained experimentally. Errors can be made in software 
development, these will affect simulator results. Errors may also occur in experimental 

3 However, some simulations of Shor's algorithm do not simulate the quantum Fourier 
transform. 
4 These recommendations relate only to those simulators that could be observed in 
operation. Simulators such as Qubiter, Q-gol, QuaSi, QCE etc. were not considered. 
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design, these will affect the results obtained from physical realisations of quantum 
computers. 

8 Identification of Simulator Metrics 

To assist in the assessment and comparison of quantum computer simulators, this paper 
will now discuss the development of a framework of simulator metrics. An extensive 
amount of research has taken place into identifying the type of factors that can be used 
for effective software metrics. Using general guidelines e.g. Mills in (Ashrafuzzaman, 
1995) and (Lively, 1998), a large number of metrics have been identified and attempts 
have been made to classify these metrics into groups for assessing software, e.g. 
McCall' s Software Quality Factors in (Zin & Foxley, 1996) and Hewlett Packard's 
FURPS in (Lively, 1998). 

The simulator metrics were devised after analysing the factors it was felt necessary to 
consider while reviewing and comparing the quantum computer simulators. This 
required involved identifying factors that played a significant part in the simulator testing 
process. In addition it was necessary to consider a general evaluation of usability 
characteristics together with factors that might be relevant when selecting one simulator 
in preference to another. The metrics that were identified are as follows: 
• performance - assessing the simulators in action, etc. 
• size - size of the simulator and memory requirements, etc. · 
• quality - failure rates, bugs found, output produced for test cases, etc. 
• functionality - range of problems handled, limitations, customisability without re­

coding, etc. 
• ease of use - ease of set-up, error messages, help provided, etc. 
• portability - number of platforms supported, source code, software development 

tools needed, extensibility, etc. 
• currency - age of simulator, whether used in reaVactual quantum computing research, 

etc. 

The investigation concentrated solely on features that can be compared on a "marks out 
of 10" basis, e.g. ease of use. General simulator features that should be recorded but 
cannot be compared on this basis, e.g. the programming languages that the simulators are 
coded in, are not considered within this paper. 

9 Simulator Metrics 

Comparative index measures will be applied to each of the quantum computer simulators 
with a view to assessing the metrics which follow . The items following each metric are 
examples of the factors measured by the metric . 
• performance 
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• speed of execution for a benchmark set of problems 
• size 

• source code lines 
• size of compiled executable 
• memory requirements while running 

• quality 
• rate of failure in benchmark tests 
• count of bugs uncovered during tests 
• inability to handle specific exceptions 
• verifiable, consistent and correct output for all test cases 

• functionality 
• ability to handle increasingly large problems 
• limitations on the size of simulation 
• range of problems that can be handled 
• number of quantum algorithms simulated 
• quantum computer constructs simulated 
• customisability without re-coding 
• method of generating output 
• display of output in an understandable form 
• extent to which it simulates an "actual'' general purpose quantum computer 
• results obtained for the amount of time spent 

• ease of use 
• preparation for simulation 
• settings for a run saved in a file for re-use later 
• error messages meaningful/helpful 
• help/manual 
• author support 
• ease of understanding 

• portability 
• availability of source code ( or availability of executable for a variety of platforms) 
• number of platforms supported 
• availability of software development tools (editor/compiler/libraries etc.) 
• ease of customising/extending the simulator 
• compatibility with other simulators 

• currency 
• currency of model of quantum operations 
• representation of "state of the art" thinking in its underlying algorithms 
• previous application to real/actual quantum research work 
• comparison with experimental results 
• prediction of experimental results 
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10 Scoring and Weighting the Metrics 

Each metric was given a score ranging from O to 10 for each of the simulators. The 
importance of any particular metric depends on the purpose for which the simulator will 
be used, so to account for this, a weighting of 0.0 to 1.0 was applied to each score to 
reflect its overall importance, taking into account the intended use of the simulator. The 
overall score for each metric is given by: score * rating. The overall rating for a 
simulator is calculated by adding the overall scores for each metric, i.e. : :t overall metric 
score= overall rating. 

There are several ways in which the .framework of metrics that have been described could 
be scored and weighted, the simplest of these is to score each metric and then apply a 
weighting. In order to establish the weightings for each metric, it was necessary to 
decide the primary use for the quantum computer simulator. Examples of possible 
primary uses include using simulators to develop general quantum algorithms, to test a 
particular quantum algorithm or to look in detail at the operation of a quantum 
computer. It may also be necessary to take into account the target user group. 

Once the primary use of the simulator has been establishcl:l, the list of metrics need to be 
ranked in order of their importance and relevance to this purpose. Weightings from 0.0 
to 1.0 are then allocated to each metric in the ranked list. The overall score for each 
metric (and hence the overall rating of the simulator with respect to that particular use) 
can then be calculated. 

Scores given for each particular metric are subjective, they depend on the person using 
the framework of metrics to assess the simulators and the purpose for which they are 
doing the assessment. The exception to this are scores for those items that are solely 
based on performance measures for test cases that can be duplicated. 

The metric scoring method that has been detailed is extensible and is a generalised 
approach, as it allows easy assessment of simulators for purposes other than that for 
which the original metric scorings were given. This is possible because the relative 
weightings for a metric can be changed as necessary to reflect the importance of that 
metric to the new purpose. These new weightings can then be applied to the original 
scores to give a new overall rating for that simulator with respect to the new use, 
without the need to re-score the metrics. 

11 Methodology and Design 

The methodology for assessing the simulators is to allocate scores to each metric for 
every simulator (this will only need to be done once for each simulator unless new 
metrics are added or the structure of the scoring system is changed significantly), then: 
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• decide on the primary use of the simulator (may need to determine target user group 
if this is considered an important factor) 

• make ranked list of metrics with respect to their importance to the primary use of the 
simulator 

• allocate weightings to the ranked metrics 
• calculate overall score for each metric 
• calculate overall rating for each simulator 
• compare overall ratings 

Recommendations can then be made having used a comparative assessment method to 
determine the best simulator for the job. In order to demonstrate the methodology that 
has been developed, this paper describes the assessment of a variety of simulators using 
this scheme. For our example, the primary use for the simulators was selected to be the 
development of general quantum algorithms. 

To demonstrate the methodology, it was decided to "estimate" the mark for every metric 
for each of the simulators (based on the knowledge obtained about each simulator from 
previous research). The metrics will then be prioritised with respect to the intended use 
of the simulator and appropriate weightings will be set for the ranked metrics. Weighted 
scores for each metric will be calculated. The weighted scores will be totalled to give the 
overall rating for each simulator. 

Only those simulators that could be observed in operation were assessed, these were 
QCL, QDD v0.2, QULIB, OpenQubit 0.2.0, CS20c, AST, Mathematica Simulations 
(Shor's algorithm), Eqcs-0.0.5 and Hayward's Shor's Algorithm Simulation. Although it 
was possible to observe the Universal Quantum Computation Simulator and the 
Quantum Computer Emulator in action, these simulators were not assessed using the 
metrics due to problems installing and running the software. 

The prioritised list of metrics for the purpose of general quantum algorithm simulation is 
detailed below. The user group selected for our demonstration is quantum algorithm 
developers. Weightings were applied to the seven metrics based on their relative 
importance to this user group. The list follows and is ordered with the metrics in 
descending order of importance. The name of the metric is followed by its weighting (in 
brackets) and then by the abbreviation used for the metric: 
1. functionality, (1.0), FUNC 
2. quality, (0.9), QUAL 
3. performance, (0.8), PERF 
4. currency, (0.7), CURR 
5. ease ofuse, (0.6), EASE 
6. size (0.5), SIZE (This is the only metric scored inversely, i.e. a high score indicates a 

small, fast simulator and a lower score indicates a larger, slower simulator.) 
7. portability, (0.4), PORT 
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12 Results 

The results of applying the framework of metrics to the simulators are presented in Table 
2. Tables 3 and 4 show the initial scores for the simulators and the scores with the 
weightings applied. It can be seen that QCL has the highest overall rating when the 
primary use of the simulator will be to develop general-purpose quantum algorithms and 
that Eqcs-0.0.5 has the lowest rating. 

a e : lil T bl 2 F al R atmg (M . axunum R ' atmg= 49) 
Simulator Ratilll! 
QCL 35.7 
,QDD v0.2 35.4 
QULIB 34.9 
OpenOubit 0.2.0 33.9 
CS20c 33.4 
Hayward's Shor' s Algorithm Simulation 33 .2 
AST 33.0 
Mathematica (Shor's algorithm) 31.1 
Eqcs-0.0.5 29.2 

Table 3: Initial Scores 
Simulator PERF SIZE QUAL FUNC EASE PORT CURR 
CS20c 6 4 8 7 6 8 8 
QDD v0.2 9 2 8 7 7 8 8 
QCL 7 1 9 9 8 7 7 
QULIB 8 5 9 6 7 7 7 
OpenQubit 0.2.0 8 3 6 7 8 8 8 
Mathematica (Shor' s algorithm) 5 8 9 5 7 4 6 
AST 8 6 7 6 6 7 7 
Eqcs-0.0.5 6 5 7 5 6 7 6 
Hayward' s Shor's Algorithm 8 5 6 7 7 7 7 
Simulation 

a e : T bi 4 S cores wit e1g tmgs DP e ' hW'h• A lid 

Simulator PERF SIZE iQUAL FUNC EASE PORT CURR Ratine 
CS20c 4.8 2.0 7.2 7.0 3.6 3.2 5.6 33.4 
QDDv0.2 7.2 1.0 7.2 7.0 4.2 3.2 5.6 35.4 
QCL 5.6 0.5 8.1 9.0 4.8 2.8 4.9 35.7 
QULIB 6.4 2.5 8.1 6.0 4.2 2.8 4.9 34.9 
OoenQubit 0.2.0 6.4 1.5 5.4 7.0 4.8 3.2 5.6 33.9 
Mathematica (Shor' s algorithm) 4.0 4.0 8.1 5.0 4.2 1.6 4.2 31.1 
AST 6.4 3.0 6.3 6.0 3.6 2.8 4.9 33 .0 
Eqcs-0.0.5 4.8 2.5 6.3 5.0 3.6 2.8 4.2 29.2 
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Hayward' s Shor' s Algorithm 6.4 2.5 5.4 7.0 4.2 2.8 4.9 33.2 
Simulation 
Weie:htim: 0.8 0.5 0.9 1.0 0.6 0.4 0.7 

13 Conclusions 

Quantum computer simulators are a necessity because, at present, appropriate quantum 
computer hardware is not available outside research laboratories so it is very difficult to 
test and analyse quantum algorithms. These simulators are therefore extremely useful 
tools as they enable exploration and simulation of known quantum algorithms. 

Designing and developing implementations of known quantum algorithms for quantum 
computer simulators has several benefits. Firstly, it increases our knowledge of the 
quantum algorithms themselves. Secondly, implementing algorithms for simulation may 
help us to make improvements to these algorithms, to find and fix errors, and aid the 
design and development of new algorithms. The design and development of new 
quantum algorithms can also be aided by the use of automatic programming techniques. 

The aim of this paper was to provide a comprehensive overview of the quantum 
computer simulators that are available at the present time. The review also presented a 
generalised, extensible framework of metrics for comparing quantum computer 
simulators. A proper assessment of the. simulators using the framework of metrics that 
has been developed should now be conducted, rather than an "estimate" assessment. In 
addition, a series of common uses for quantum computer simulators can be identified and 
ranked lists of metrics could be developed for each of these uses. Finally, there is also 
scope for extending and improving existing simulators and developing new simulators. 
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