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Abstract

A lot of research for anticipatory systems have been reported, where the chaotic equa-
tion including the hyper incursion equation plays an important role. The neural network
model is also included in such a category and will continue to be discussed. From the
viewpoint of computer systems, however, we have proposed a hybrid system architec-
ture mixed with neural network and artificial intelligence, where the two-level structure
is introduced; the flrst layer: a neural network, and the second layer: an automaton
system. On the two-layered system, the automaton part is dominant for anticipation, be-
cause the state transition is made by an automaton behavior although the selection among
transitions is made by a neural network. In this paper, we discuss an automaton-based
anticipation, since it is appropriate to discuss anticipation together with learnability.
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1 Introduction

A lot of research for anticipatory systems have been reported, where the chaotic equa-
tion including the hyper incursion plays an important role [Duboisl997]. The neural
network model which we are focusing on is also included in such a category, and will
continue to be discussed, since the original model of neural networks [McCulloch 1957]is
not enough anticipatory. From the viewpoint of computer systems, however, we have pro-
posed a hybrid system architectwe mixed wittr the neural network and the artificial intel-
ligence lKawada et al.l995), where the two-level structure is introduced; the first layer:
a neural network, and the second layer: an automaton system. We have also proposed
a new learning algorithm AST (Abstract State Transition algorithm) for the two-layered
system, where the AST is a hybrid learning mixed with a neural network learning and an
automaton learning lAe et at.l998a, Ae et al.l998bl.
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On the two-layered system, however, the automaton part is dominant for anticipation,
because the state transition is made by an automaton behavior, although the selection
among transitions is made by a neural network. In other words, the global behavior is
represented by an automaton, and the local behavior is done by a neural network.

In this paper, we introduce first an automaton learning, and discuss the learning mech-
anism which affects the anticipatory ability. Next, we refer to a system realization for
such a direction.

2 Learnability

In general, systern S is defined as
O :  S ( I )  ,

where l and O are the input and the output, respectively. Both I and O are assumed to be
a language each. More precisely, a language is defined as a set of words, where a word u;
is an element in tlre set of concatenated alphabets il/* (where I,7 is the set of alphabets).
(Note that asetW is extended to a larger set than a set ofconventional alphabets, e.g., a
set of bit maps of 512x512.)

i) State-less System; O = SQ).
The feedforward neural network conesponds to this case. Vy'e have known several

excellent models for learnability (e.9., AIC, PAC, .. . ). For the anticipation on rhe time-
axis, however, we focus on the next case.

ii) State Transition System; O : S(I,Q), where Q is the set of srates.
When using the conventional model of state transition system, we have

8(t + 1) : ^9r(/(r), Q(t))' and
O(t)  :  SzQ(t) ,Q(t)) ,

where the discrete time is introduced and.9 is divided into 51 and 52.

We focus on 51, since the essential behavior is represented by ,S1. An instance of
input sequence w:iriz ' ' .i1 is regarded as a word in .L(S), where ,L(,9) is the language
that system,9 (i.e., automaton,S) accepts. Angluin inuoduced MAT (Minimal Adequate
Teacher) Learning [Angluinl987], one of which is represented as follows;

Question Typel : w in L(T) ?
TyW2:.0(S) equivalentto L(T) ? ,

where ̂ 9 andT are an automaton that the learner is constructing and an automaton that the
teacher provides, respectively. In this case (really, a typical case) the leamer is allowed
to ask two types of questions to the teacher, and must construct automaton S that is
equivalent to T.

In MAT learning,
Strong Condition : Tëacher knows T

is introduced. Therefore, only the classes where the equivalence problem is decidable are
applied to MAT learning (DFA, Counter Automata, Linear Language Automata, . .. etc.,
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where DFA means Deterministic Finite Automata). As is well-known, the equivalence
problem of pushdown automata is undecidable (although the deterministic case is still
open), and therefore, we focus on a proper subclass of pushdown automata on MAI
Learning. Learnability on MAT learning is steady, but is not creative. For anticipatory
system we need to exclude Strong Condition: Teacher knows 7 , and can introduce a
class of automata where the equivalence problem not necessarily decidable.

3 Anticipation

An anticipatory system is a system which contains a model of itself and/or its en-
vironment in view of computing its present state as a function of the prediction of the
model [Duboisl997]. For the anticipatory system in this paper, however, an equational
model is not provided, because the computing model is only procedurally defined. The
learning mechanism provides a function of the prediction of the model, and we continue
to discuss the learnability.

Iæt us exclude simply Strong Condition : Teacher knows ?. Then, one cannot evaluate
,S that the leamer constructs, if no condition for system equivalence is assumed. There-
fore, we introduce the following;

Weak Condition: Teacher knows partially T.
Actually we intoduce the following learning mechanism.

l) Elementary Learning
T; (i:I,2,. . . ,p,frL,. . , ,p*e) is a class of automata. The teacher knows each 4 for

i:I,2,. . . ,p , where MAT learning is applied. The teacher , however, does not know I
f612:pfl; ...,p*q (Thelatærmaybeempty.). Theclassof language, -L([)represents
the language which each I accepts.

2) Anticipatory System
Essentially the new words will be born by combination of a lot of languages, to some

of which MAI learning is already applied and to some of which it is not. How to com-
bine them is not described here, but shuffling ( including modulated shuffling ) plays
an important role of operation for combination. These operation is represented by the
composition of automata, and seyeral types are given by the operation on the language.

The total system ? is constructed by a subset of {4} , where i = !,2,...,p,p*
7,. . . ,p*e. The class of language, .L(?) represents the language which ? accepts. The
composition of automata is more complex than that of languages l&el977j, and there-
fore, we explain here the case of language composition.

I-et us assume that I(7) be represented by a logical (Booleanlike) formula of L(Ti).

Examplel.
L(T) : L(Tù U L(72) U -L(4), where U is the union of sets and r is the negation.

The teacher knows L(T) nd L(Tr) , but does not know -L(Tù.
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Example2.
L(T) : L(Tù n L(72) n L(Ts), where o is the inærsection of sets. Not€ that L(T)

may become an outer class even iÎ L(Tù(i:1,2,3) is in the same class, all of which
the teacher knows. ( This means the case where the language is not closed for such a set
operation. )

For practice we focus on the type of Example2, i.e., the case where the total language,
L(T), may create new words, although all elementary languages are trained by MAf,
learning. Namely, the composition of automata plays an important role in anticipation.

4 System Realization

The composite system is fundamentally represented as in two types, i.e., the parallel
composition (in short, PC) as in Figure 1, and the cascade composition (in short, CC) as
in Figure 2 [Ael977).

In the language expression, PC corresponds to the intersection of languages, but CC
does not. For both cases the concept of language is used for anticipation.

The anticipation in a language means a creation of "New W'ords", where the set of
words corresponds to the set of automata (Figure 3).

Figure 1. Example of PC (Parallel Composition)

to

Figure 2. Example of CC (Cascade Composition)

Creation Procedure of "New lilords" :
0) Setting Initial Pool; {Set of ,(7i) is after MAT learning is used}

repeat l) Pool Re-Setting; {Pool revised}
2) Generation hocedure; {GP-like procedure using Weak composite sysæm}
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Set of
Automata

L(ï)r('d.:fl1:1.tL(r))

Figure 3. Words vs. Set of Automata

3) Filtering using Structural Condition; {Composite system condition}
4) Evaluation using Neural Network; {Special evaluation equation}

until "New W'ords" are born.

2) is used for generating Hypothesis, and 3) and 4) are for Verification or Evaluation,
where 4) may be omitted sometimes. The global flow is represented as in Figure 4, which
is similar to the GP (Genetic Programming) procedure [Kozal992, Aler et a1.1998] and
also to the induction cycle in ART (Adaptive Resonance Theory) [Carpenter and Gross-
berg 19881. The anticipation (birth of "New Words") is made in 2), but it will be com-
pleted after a lot of cycles have been repeated, and it is determined by the evaluation.

Generation

BEGIN

\

Figure 4. Induction Cycle
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5 Evolution

5.1 Birth of New Words

Suppose that the elementary sets of words are L(T), L(Tr),. . . , L(Tr), where all sers
are trained each and that the generation procedures are intersection and shuffling (as
operation g in Figure 4). Both cases (intersection and shuffling) can produce the new
words, since both operations are not closed in the context-free language. The new words
are expected to be beyond the context-free language, although the elementary language
is supposed to be at most the context-free language.

5.2 Evolution

Suppose that we obtain several new words after the induction cycle in Figure 4 was
repeated. If the i+h stage is terminated, then the stage goes into the i+l-th stage, where
'i :1,2,. . . . Figure 5 shows the evolution step of induction cycles. How to determine
the end of each stage? This is important and the most difficutt problem. The structural
assumption will be required in practice, and depends on the application. First, a stage
of induction cycle is regarded as an automaton, which belongs to the class of pushdown
automata, since the language is supposed to be at most context-free. Then, the inter-
connection between two stages is regarded as that of two pushdown automata. More
precisely, the interconnection between two automata (i.e., languages), L(T) and, L(T),
is represented as in Figure 6, but the control mechanism is unknown. If the mechanism is
created after a stage of induction cycle, then the stage can go to the next sæp (Note that
the intersection or the simple shuffling is a known control mechanism and, therefore, it is
prepared for the initial condition.). One of unknown control mechanisms should be born
(Figure 7). :

Figure 5. Evolutional Step of Induction Cycles

53 Automata View for Evolution

On the evolution step, the i + l-th stage must be higher than the i-th stage, and the
evolution sæp in Figure 5 is from i-th to i + l-th, that is, one-directional.Then, the di-
rection of interconnection in Figure 6 is also one-directional, The present cannot look

i+l
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Control

Figure 6. Control from L(T;) to L(Ti+r)

Figure 7. Control Mechanism for Evolution on Induction Cycles

at the future in the world of determinism. The automata theory, however, includes non-
determinism, which is also important in the class of pushdown automata. If the non-
determinism is allowed in the i-th stage (I(4)), the interconnection becomes equivalent
to be two-directional, because the automaton of L(T) can guess the behavior of L(71)
and the automaton of L(71) can verify its guess [Ael977l. On the evolution step, the z-th
stage guesses the behavior ofhigher (i+l-th) stage, and its report is sent to the i+l-th
stage. The i+l-th stage will judge whether the report is really "evolutional" or not. The
i+1-th stage is a teacher for the i-th stage, and the i-th stage cannot ask the equivalence
question (i.e., Question Tlpe2: Z(S) equivalent to .L(?) ?). More precisely, the z-th stage
cannot receive the answer, even if it sends the question. This is not essential for Question
Typel, since the elementary system are already trained.

For the Question TyW2, however, this is the essential defect, and therefore, the non-
determinism plays an important role of direction. The problem for the interconnection of
pushdown automata remains still open for the case of the determinism, i.e., the problem
whether or not the one-direction is properly less strong than two-direction.

6 Conclusion

This paper is summarized as follows; From the viewpoint of computer systems, we
are constructing a hybrid system architecture mixed with neural network and artificial
inælligence lAe et al.l998bl, where the two-level structure is introduced; the first layer:
a neural network, and the second layer: an automaton system. On the two-layered system,
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however, the automaton part is dominant for anticipation, because the state transition is
made by an automaton behavior although the selection among transitions is made by
a neural network. In this paper, we discuss an automaton-based anticipation, since it
is appropriaæ to discuss anticipation together with learnability. The evolutional sæp is
controlled by a parameter as in the conventional constructive inductive learning, but it
remains to be discussed.

References

[Duboisl997] D.M.Dubois, "Computing Anticipatory Systems with Incursion and Hy-
perincursion", Computing Anticipatory Systems: CASYS'g7-First International Con-
ference, edited by Daniel M. Dubois, American Institute of Physics, Conference Pro-
ceedings 437,pp.3-29, Woodbury, New York (1998).

[McCullochlgsT] W.S.MuCulloch, "Biological Computers", IRE Trans. Electronic
Computer, Vol.EC-6, pp. 190-192 (1957).

[Kawada et al.l995] M.Kawada, X.Wu, T.Ae, 'A Construction of Neural-Net Based AI
Systems", Proceedings lst IEEE ICECCS, edited by Alex Stoyenko, pp.424427,Ft.
Lauderdale (Nov. 1995).

lAe et al.l998al T.Ae, H.Amki, K.Sakai, "Learning Algorithm for Structured Brain
Computer", Proceedings CISST'98, editedby Hamid R. Arabnia, pp.l1-24,Las Vegas
(June 1998).

lAe et aLl998bl T.Ae, H.Amki, K.Sakai, "Structured Brain Computer and its Learn-
ing", Computing Anticipatory Systems: CASYS'98-Second Inærnational Confer-
ence, edited by Daniel M. Dubois, American Instituæ of Physics, Conference Pro-
ceedings 465, pp.l ll-120, Woodbury New York (1998).

[Angluinl987] D.Angluin, "Learning Regular Ses from Queries and Counterexarnples",
Information and Computation, Vol.75, pp.87-106 (1987).

[Ael977] T.Ae, "Direct or Cascade Product of Pushdown Automata", J. Compuær and
System Sciences, Vol.14, pp.257-263 (1977).

[Kozal992l J.R.Koza, "Genetic Programming: On the Programming of Compuærs by
Natural Selection", MIT Press (1992).

fAler et a1.19981 R.Aler, D.Borrajo, P.Isasi, "Genetic hogramming and Deductive-
Inductive Learning: a Multistrategy Approach", hoceedings ICML'98, ediæd by
Jude Shavlik, pp.10-18, Madison (1998).

[Carpenter and Grossbergl98S] G.A.Carpenter, S.Grossberg, '"The ART of Adaptive
Pattem Recognition by a Self-Organizing Neural NetworK', IEEE Comput€r, Vol.2l,
No.3, pp.77-88 (1988).

74


