Proofs of Nonconsequence as Abstract Design
in Hyperproof

Ichiro Nagasaka ’ Yuzuru Kakuda
Faculty of Letter, Dept. of Computer & Systems Eng.
Kobe University Kobe University
1-1 Rokkodai, Nada, 1-1 Rokkodai, Nada,
Kobe 657-8501, Japan Kobe 657-8501, Japan
nagasaka@kobe-u.ac.jp kakuda@kobe-u.ac.jp

Abstract

Design process is a series of activities in which designers try to find or invent entities
that satisfy specifications, the specification usually they take as given. The process
could be seen as a kind of proof of nonconsequence since the entities must satisfy
the specification since they usually invent entities and check if the entities satisfy
given specifications, rather than they deduce the entities from the specifications. In
this paper, we argue that this similarities between the proof of nonconsequence and
the design process are essential, and they makes it possible to formulate the design
process in an abstract way. Addition to the above argument, we formulate the
logical relation between heterogeneous specifications as heterogeneous logic based on
a mathematical theory of design called Abstract Design Theory (ADT), and discuss
about such logic in a reasoning system called Hyperproof.

Keywords: Abstract design theory, Hyperproof, proof of nonconsequence, hetero-
geneous logic, information path.

1 Introduction

When mathematicians prove a theorem, they are showing that a particular claim
follows from certain accepted information, the information they take as given. This
kind of proof is what we call a proof of consequence, a proof that a particular piece
of information must be true if the given information is correct. A very different, but
equally important kind of proof is a proof of nonconsequence, where mathematicians
show that it would be possible for a claim in given information not to be true, even
if the other information is true. To show this, it is enough to give a single sentence,
i.e. counterexample, that is not a consistent with the claim and consistent with the
other information. However, it is not always easy to find such sentence since it does
not follow from the claim in question. Mathematicians have to invent such sentence
somehow or other in a non-deductive way.

Design process is a series of activities in which designers try to find or invent
entities that satisfy specifications, the specification usually they take as also given.

International Journal of Computing Anticipatory Systems, Volume 11, 2002
Edited by D. M. Dubois, CHAOS, Liége, Belgium, ISSN 1373-5411 ISBN 2-9600262-5-X

The process could be seen as a kind of proof of consequence since the entities must
satisfy the specification. However, if we closely look at the design process, especially
in the case of creative design, they usually invent entities and check if the entities
satisfy given specifications, rather than they deduce the entities from the specifi-
cations. Here, we could find important common activities between the process of
design and proofs of nonconsequence, that is, they try to invent entities or sentences
that satisfy their goals, i.e. the entities for designers and the counterexamples for
mathematicians, in non-deductive way. In this paper, we argue that this common
activities are essential, and they makes it possible to formulate the design process in
an abstract way. Following these remarks, we investigate these common activities
based on a mathematical theory of design called Abstract Design Theory (ADT)[1].

Addition to the above argument, we focus on the heterogeneous nature of spec-
ification. - The specification usually have a multiple form of representation, such
as drawings and sentential specifications, and they are often closely interrelated to
give information that should be satisfied by the entities. To be able to find the
entities, there must be a logical relation between these specifications with different
representation. Thus, in this paper, we formulate the logical relation between het-
erogeneous specifications as heterogeneous logic by using a reasoning system called
Hyperproof{4]. Hyperproof is a system for constructing proofs where the information
is given in two different forms: graphical and sentential. With these information,
the system allows users to solve simple reasoning problem. In Hyperproof, to con-
struct proofs of nonconsequence, users are asked to invent a situation, — graphical
information — that follows from given information but it neglects claim in question.
We will focus on this process of proofs in Hyperproof, explain it in the framework
of ADT, and finally, show that the creative design process is essentially the same as
the process of proofs of nonconsequence.

2 Abstract Design Theory

2.1 Historical Background

In 1981, Yoshikawa proposed an axiomatic theory of design called General Design
Theory (GDT)[5], where possibility of design is discussed in terms of topological
spaces defined on a set of abstract concepts called a set of entity concepts. In
the theory, a concept of function and attribute are defined as subsets of the set of
the entity concepts, and the possibility of the design is discussed in terms of the
continuity of the identity map from a set of the attribute concepts to a set of the
function concepts.

On the other hand, Barwise and Seligman proposed a theory of information
flow called Channel Theory in 1997(6]. As briefly introduced in later section, it
is a mathematical theory which is intended to formulate flow of information in
distributed systems with the notions of information channel and local logic.

82

Inspired by the idea of the GDT, the ADT was proposed to formulate design in
more mathematically aciculate way on the basis of Channel Theory. While design
was formulated in terms of the map from the attribute concepts to function concepts
in the GDT, in the ADT, design is formulated in terms of an existence of information
channel between the abstract concepts and the physical world. In other words, when
design is possible, there is an information channel between our conceptual space
and the world around us. Mathematically, this can be viewed as an application of
Channel Theory to a theory of design. The development of ADT is still in progress
and a further work has been done especially in the notion of information flow(cf.

2D)-

2.2 Channel Theory
2.2.1 Classification

Since the notion of classification and infomorphisms are fundamental to the notion
of information channel in Channel Theory, it is also true in the ADT. Most parts of
following definitions are from [6].

Definition 2.1. A classification A = (tok(A),typ(A), =a) consists of a set tok(A)
of objects to be classified, called tokens of A, a set typ(A) of objects used to classify
the tokens, called the types of A, and a binary relation =4 between tok(A) and

typ(A).

A classification is depicted by means of a diagram as follows.

typ(A)
Fa

tok(A)

The binary relation =4 tells that which tokens of A is classified as being of
which types of A. These tokens and types are not restricted to the mathematical
objects. They can be any theoretical vocabularies such as terminologies used in
mechanical engineering or cognitive science.

Next, when we have two classifications at hand, the information flow between
them can be modeled by the notion called infomorphism.

Definition 2.2. If A = (tok(A), typ(A),=a) and C = (tok(C), typ(C), =c) are
classifications then an infomorphism is a pair f = (f", f7) of functions satisfying the
analogous biconditional:

fe)Faa<+=ckc f(a)
for all tokens c of C and all types a of A.

83

With two classification diagrams, infomorphisms can be depicted as follows. The
notion of an infomorphism f : A 2 C gives a mathematical model of the whole-part
relationship, i.e., a whole modeled by a classification C and that of a part modeled
by a classification A.

typ(A) —— typ(B)

Ea EB

tok(A) ~—— tok(B)

2.2.2 Theory

In mathematical logic, theory is considered to be a set of sentences with some kind of
notion of entailment between theories and sentence. Here, this notion is generalized
to work with more general setting, such as a certain scientific theory. In this section,
a definition of the notion of theory and related topics those are needed to be defined
for the ADT are introduced.

Given a set X, a sequent of I is a pair (I', A) of subsets of Z. A sequent (I, A)
is a partition of a set X' if TUA =% and TN A = (. We say that (I",A’) is an
extension of the sequent (I', A) if [CT” and A C A’ and write (I', A) < (I, A').

Definition 2.3. A theory is a pair T = (typ(T'),Fr) of a set typ(T) and a binary
relation k7 on subset of typ(T). A sequent (I', A) of subset of typ(T') is said to be
constraint of T if T 7 A, and T-consistent if T' Yy A. T is inconsistent if there is
no T-consistent sequent in .

A theory T is regular iff T satisfies the following for all types o and all sets
I, T, A, A’ of types:

1. Weakening: if ' 7 A then TUT" Fp AU A/,

2. Partition: if ' bz A then there is a partition (I', A’) with (I, A) < (I", A')
such that I t/p A,

Definition 2.4. Let 77 and T3 be regular theories. A regular theory interpretation
f: Ty — T5 is a function from typ(T4) to typ(T2) such that for each T', A C typ(T})

'k, A= f[[] kg, fIA]L

Let A be a classification and let (I'; A) be a sequent of types of A. A token a of
A satisfies (T, A} provided that if a is of type o for every a € T then a is of type a
for some a € A, that is, for a € tok(A)

VaeT(ala a) = Ja € Ala [Fa a).

84

For a set ¥ of functions, a sequent (I', A) of ¥ with TN A = () will be called a
specification on X, in the sense that (I', A) specifies an object having any function
in I" and no function in A. It is said to be a complete specificationif T UA = X.

Let A be a classification such that typ(A) = 3. A specification (I',A) on ¥ is
realized by a token a of A if a =4 « for every a € T and a f£4 a for every a € A.
It is also said a is counterezample for (', A) if a realizes (T, A).

Definition 2.5. Given a classification A, the theory Th(A) generated by A is the
theory whose

1. types are the types of A, i.e., typ(A), and

2. constraints are the set of sequent satisfied by every token in A, i.e., Frya
satisfy the followings for all sets I', A C typ(A):

I'Frha) A <= Va € tok(A)(Va € T'(a =4 @) — Ja € Aa =4 a)).

Definition 2.6.

1. Given a regular theory T, the classification Cla(T) generated by T is the clas-
sification whose

(a) tokens are the T-consistent partitions (I, A) of typ(T'),
(b) types are the types of T, such that
(C) <F,A> i:Cla(T) aiffa €T.
2. Given an interpretation f : T'— T, we define an infomorphism
Cla(f) : Cla(T) = Cla(T")
by

(a) Cla(f)(a) = f(a) for a € typ(T), and
(b) Cla(f) ((T',A)) = (f[[], f7HA]) for any token (T, A) of Cla(T").

2.3 Functional Schemes

Now, we shall provide a mathematical framework for design, called functional scheme.
First, we give a notion called a information path, then give a definition of functional
scheme based on it. We may note, in passing, that since ADT is in progress, the
notion of information path in this paper is still in premature stage. We have been
working on the general form of the definition of the information path|[2][3].

'For detailed arguments for this development, please refer to http://kurt.cla.kobe-
u.ac.jp/ "kikuchi/adt.html.

85

Definition 2.7. A scheme of information flow is 3-tuple & = (Age, Bg, Rs) where
As and Bg are classifications, and Rg is a binary relation between typ(A) and

typ(B). We say that there is an information path from a to be cloven by Rg if the
condition

Va € typ(As)(a Fae @ <= 36 € typ(Bs)(aRsf A b e 6))
holds. A binary relation Rg between tok(Bg) and tok(Asg) is defined so that bRsa
iff there exists an information path from a to b cloven by Rg.
Re
typ(Ae) — typ(Bs)

'=AG Fnﬁ

tok(Ag) = tok(Bs)

With the notion laid above, we come to the central notion of the ADT, called a
functional scheme. Let T be a theory of requirements, that represents our mental
world, and B is a classification given by classifying entities in physical world by their
behavior, that is, let tok(B) be a set of the entities and typ(B) be a set of behaviors
and b =g [is defined by “an entities b has a behavior 3”. Mathematically speaking,
it is no more than a notion between a regular theory T and a classification B.

Definition 2.8. A functional scheme is 3-tuple & = (Cla(Ts), Bs, Rs) for which
Cla(T) is a classification generated by a regular theory T and B is a classification.
Ts and Bg are called the theory of requirement and the functional classification of
G, respectively.

A functional scheme is depicted by means of a diagram as follows.

typ(Cla(Ts)) —= typ(Bs)

Ecla(tg) EBg

tok(Cla(Ts)) ~°— tok(Be)

2.4 Medium Classification

It is often not enough to realize an entity, even if we have a classification of require-
ments Cla(Ts) and a classification of physical entities Bg, since we sometime do
not know how to obtain a relation Rg which make it possible to classify entities by
requirements through their behaviors. Therefore, we introduce a classification called
a medium classification that connects two classifications, i.e., Cla(Tg) and Bg. A

86

medium classification can be seen as a kind of drawings in design activity, since they
are supposed to depict a way to realize entities indicated by requirements.

Let T be a regular theory and D, B be classifications. Let E be a binary relation
between typ(T') and typ(D), and let P be a binary relation between typ(B) and
typ(D). When € = (Cla(T'), D, E) and B = (B, D, P) are schemes of information,
we call D a medium classification between Cla(T") and typ(B).

typ(D)
typ(T') - | typ(B)
Ep

Ecla(T) tOk(D)

/\

typ(Cla(T)) tok(B)

3 Heterogeneous Logic

A specification usually has multiple forms of representations, such as drawings and
sentential specifications, and they are often closely interrelated to give information
that should be satisfied by the entities. To be able to find the entities, there must be a
logical relation between these specifications with different representations. Thus, in
this section, we formulate the logical relation between heterogeneous specifications as
heterogeneous logic by using a reasoning system called Hyperproof4] as an example.

3.1 Background

Heterogeneous logic is a heterogeneous reasoning system where inference proceeds
from information represented in more than one form. In mathematics, representa-
tions other than sentential representations, especially visual one, still remain second-
class citizens, and at best, they have been regarded as teaching tools or heuristics
for mathematical discoveries. In this context, Barwise emphasized in [7] that effi-
cient reasoning is inescapably heterogeneous (or “hybrid”) in nature, and gave some
examples such as Venn diagrams and proof of Pythagorean theorem with diagrams
where visual information can be integral to the reasoning itself. As mentioned ear-
lier, design activities are certainly among them.

Mathematically, these notions are expressed by relations between a classification
(core) and multiple theories. Suppose there are several systems of concepts modeled

87

by means of theories T; for ¢ in some index set I, a heterogeneous logic is a classifica-
tion H with an binary relation E; between the element of typ(Cla(7;)) and typ(H),

one for each i € I.
a

Cla(Ty) Cla(Ty) Cla(Ts)

H
E3
E

3.2 Hyperproof

Hyperproof is a system for constructing proofs where the information is given in
two different forms: graphical and sentential. With these information, the system
allows users to solve simple reasoning problem. In Hyperproof, to construct proofs

" & File Edit Situstion Proaf Goal Window 27 3 &

= Dodec(d) V Cube(d)
= 3x FrontOf(x, d) - —3x LeftOf(x, d) v Given

i# = (3x Lert0r(x,d)
| Case Closed 9 Determine which block is named “d”.
o @ \ i
&)

Fig. 1: Screen image of Hyperproof

of nonconsequence, users are asked to invent a situation, i.e., graphical information,
that follows from given information but it neglects claim in question. We will focus
on this type of proofs in Hyperproof and explain it in the framework of ADT.

3.2.1 Proof System in Hyperproof

In Hyperproof, a proof typically begins with some initial information in the form of
a diagram depicting a blocks world and some sentences expressed in the language
of first-order logic. The diagrams in Hyperproof are more or less information about

88

the blocks world such as depicted in Fig. 1. From this initial information, users are

asked to demonstrate that requested characteristics hold with the given informa-

tion. The proof system in Hyperproof is an extension of the Fitch-style deductive
‘ system(Fig.2).

’ @ Given
| » Dodec{c) - Dodec(d) Given
= Small{c) Given
& Apply
= Dodec{c)
= Dodec(d) - Elim

Assume

Exhaustive
= SameShape(c, d)

Exhaust
Inspect

LA N SN SS S ASSS
=]
&
3

| Fig. 2: Example of extended Fitch-style deductive system in Hyperproof

Following the definitions of syntax, semantics, logical notions, and the rule called
L Observe and Apply of Hyperproof in [7], the proof is defined much as the same
| way as the Fitch-style system of deduction. Main differences between the Fitch sys-
tem and the proofs in Hyperproof is the introduction of the diagrams and inference
rule, i.e., Observe and Apply?. The rule Observe allows users to extract senten-
tial information from diagrammatic information and Apply allows them to extract
information in the opposite way.

Fig. 3: A diagram

2 Actually, there are more additional rules in the proof of Hyperproof. Because of the limited
space here, we focus on these two rules.

89

@

i v Given

i» Dodec(c) - Dodec(d) v Given

jﬂ"gﬁ*w J BGiven

’ KA v Apply
i» Dodec(c) v Observe

Fig. 4: A proof

For example, if you have a diagram such as Fig.3 at a certain step of inference
indicated by > in Fig.4, you can use the rule Apply to assert a dodecahedron in
the diagram is ¢, then use Observe to extract the information from the diagram
that c is a dodecahedron. Note that M in the proof indicate a current diagram at a
step, that is, Fig.3 at the step indicated by >. A current subproof is the subproof
that has the last sentence or diagram in a proof.

3.2.2 Theory on Hyperproof Representations

Let W, S and D be a set of block worlds, diagrams and sentences in Hyperproof,
respectively. Let P C DU S and q be a single Hyperproof representation, then g is
logical consequence of P, written P k= ¢ iff

Ywe WVre Plwkr— wkq),

and P is consistent iff
Jw e WVr € Plw).

Based on this logical consequence relation, theories on a set S of sentences and a
set D of diagrams is defined. Let Ts = (S,tr,) and Tp be theories on S and D,
respectively, and if ', A C S then

Frrs A<= YweW(MMrel(wkr) - 3re A(w 1)),
and similarly if [, A C D then
Pty A<= VweW(Vrel(wkr) - 3re A(w =1)).

On diagram, there is a important notion called eztension. One diagram is an
extension of another if it can be obtained by assigning definite values for attributes
that were not determined by the original situation. For example, in Fig.5, (a) is an
extension of (b).

90

(b) Extension

Fig. 5: Extension of an diagram

3.2.3 Hyperproof as Heterogeneous Logic

| Let H g, be a Hyperproof classification such that the types of H g, are the disjoint
union of the types of Ts and Tp, and the tokens of H g, are the extended Fitch-
style proofs as explained above. A binary relation = Hy,, between typ(H gy,) and
tok(H pyp) is defined by

1. if n is of types Tk,

h l=ry,, n iff “n is consistent with all sentences in a current subproof of A”, and

2. if n is of types Tp,

h =y, 7 iff “the last diagram in a current subproof of A is a extension of 7"

By above definitin, the classification H g, is a heterogeneous logic where there
are binary relations between typ(T’s) and typ(H), i.e., Es, and between typ(7p)
and typ(H i), i.e., Ep. Here, Eg is defined as an identity map from typ(Ts) to
typ(H pyp). Let s € tok(Cla(Ts)) and h € tok(H g,,) then there is an information
path from s to h cloven by Eg if condition

} for each h € typ(H pp) and 7 € tok(H g,yp).
Vo € typ(Ts)(s Fanams) 0 <= In € typ(Huy)(c =nAh Ery,, 7))
|

91

holds. On the other hand, Ep is also defined as an identity map from typ(7p) to
typ(H pyp). Let d € tok(Cla(Tp)) and h € tok(H g,,) then there is an information
path from d to h cloven by Ep if condition

V6 € typ(Tp)(d Faiamp) 6 <= In € typ(H) (0 =nAh f=m,,,, 1))

holds.
P is a classification |=p such that

w E=p n < “y is satisfied in w”

for each w € W and 1 € typ(H gyp)-

Cla(Tp)

s

Hy,, ~Z— Evt(Sw)

e

Cla(Ts)

3.3 Proofs of Nonconsequence as Abstract Design

In this section, we explain the construction of a proof of nonconsequence in Hyper-
proof based on the functional schemes in ADT.

When you constructs this type of proof in Hyperproof, you must create an ex-
tension of the given diagram, in which the given sentences and the diagram are all
true but the goal sentence is false. This task can be described in the form of a
specification. Let S’ be a set of the given sentences and I be a singleton that has
the given diagram as an element, then the specification (I', A) is such that I is a
disjoint union of S’ and D’ and A is a set that has the goal sentence as the only
element so that TN A = 0 and TUA C typ(Hgyp). And the task is to find an
extension &’ of 6 € D' such that

JweW(neT(wl=n) AVy e Alw e n) Aw k= &),

Let us consider this type of proof in the functional schemes. Since typical users
have limited knowledge about proofs of Hyperproof, let N C tok(H gy,) be a set of
proof which they are already familiar with. Then, their knowledge about sentences
about h can be represented by the pair (' , Ap,) of disjoint subsets of typ(Ts) for
each proof h € N such that

Vo € Thy(h Eny,, 0) AVo € Ang(h eny,,, o).

Clearly, 'y, N Apg = 0 and T'p, U Apg C typ(H gryp). The set Kg = {(Thg, Ang)lh €
N} represents their knowledge about sentences in Hyperproof. By this knowledge
K, a theory T(Ks) is defined such that

92

1. typ(T'(Ks)) is a set of sentences concerning N,

2. Let Ks be the set of partitions of typ(T(Ks)) such that (T,A) € Ks iff
(I'",A") < (I',A) for some (I",A’) € Kg, and for each I'; A C typ(T(K5s)),
I'Fge Aiff (T, A) £ (I", A') for each (I", A’) € Ks .

In the same way, a theory T'(Kp) is defined based on their concept Kp about
diagrams.

Then, the users realize that for each sentence o and diagram §, since Eg and
Ep are identity functions, there might be a proof h € N such that h =m, o
and h ’ZHH.J,, d, respectively. From the functional scheme, in the case of sentences,
this leads to a function gg, such that ggg(h) = ({0 € typ(Ts) | 0 Fn,,, h}, {0 €
typ(Ts) | o ¥my,, h}) for a proof h, and (Txg, Ang) < ggg(h). In the case of
diagrams, (s, Appy) < gep(h). On the specification (T, A) mentioned above, this
h is a proof such that (I',A) < g(h)g, and (I';A) < g(h)g,. At the same time,
Jw € W(w = h). This makes H gy, a medium classification between Cla(Ts) and
Evt(Sw), and between Cla(TD) and Evt(Sy) such that in the case of sentences,

oRsw <= Vh € N(3n € typ(Hpuy)(0Esn A h |=HHW n)
— 3n € typ(H myp)(wPR A h ':Hyyp n))
for each o € typ(Ts) and w € W.

Cla(TD)

Rp
i

HHyp .S EVt(Sw)
/

4 Conclusion

Thus, in this paper, we formulate the logical relation between heterogeneous specifi-
cations by using a reasoning system called Hyperproof as an example. We focus on
the proof on nonconsequence in Hyperproof, explain it in the framework of ADT,
and finally, show that the creative design process is essentially the same as the
process of proofs of nonconsequence.

Acknowledgments

This research is partly supported by Grant-in-Aid for Scientific Research (C) 13650068
of Japan Society for the Promotion of Science (JSPS). The authors would like to
thank Makoto Kikuchi and Hirofumi Miki for their valuable comments on the het-
erogeneous logic and design.

References

(1] Yuzuru Kakuda and Makoto Kikuchi (2001) Abstract Design Theory, Annals of
the Japan Association for Philosophy of Science, vol. 10, no. 3.

(2] Yuzuru Kakuda (2002) On Directions of Flow of Information -INFORMATION
PATHS, AGENTS, INFORMATION CHANNELS-, Proceedings of 4th Interna-
tional Workshop on Emergent Synthesis, to appear.

(3] Y. Kakuda, M. Kikuchi, I. Nagasaka Information paths and Agents, To appear.

[4] Jon Barwise and John Etchemendy (1994) Hyperproof, CSLI Lecture Notes No.
42, CSLI Publication.

[5] Yoshikawa, H. (1981) General design theory and a CAD system, Man-machine
Communication in CAD/CAM, T. Sata, E. Warman (editors), pp 35 - 57, North-
Holland.

(6] Jon Barwise and Jerry Seligman (1997) Information Follow, Cambridge Tracts
in Theoretical Computer Science 44, Cambridge University Press.

[7] Jon Barwise and John Etchemendy (1995) Heterogeneous Logic, in Diagram-
matic Reasoning: Cognitive and Computational Perspectives, Janice Glasgow,
N. Hari Narayanan and B. Chandrasekaran, eds., Cambridge, Mass: The MIT
Press, and Menlo Park, CA: AAAI Press, 211-234.

