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Abstract. Notions of anticipatory systems for discrete-time and continuous-time 1D linear systems
and 2D discrete linear systems are introduced. A discrete-time system is called anticipatory if its
state vector and output vector depend on the future values of inputs. A continuous-time system is
called anticipatory if its state vector and output vector depend on the derivatives of inputs.
Necessary and sufficient conditions for the anticipation of singular discrete-time and continuous-
time 1-D linear systems are established. It is shown that the discrete-time system obtained by
discretization from continuous-time one is anticipatory for any value of the discretization step if
and only if the continuous-time system is anticipatory. Necessary and sufficient conditions for the
anticipation of the singular 2D Fornasini — Marchesini model and the singular 2D Roesser model
are established.
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INTRODUCTION

In recent vears a dynamic development of the theory of anticipatory systems especially the theory of
anticipatory discrete-time linear systems has been observed [26.4.5]. The definitions of anticipatory
systems are different and usually not very precise [26]. Dubois in [4.5] has introduced the concepts
of incursion and hyperincursion for dvnamical systems. In this paper precise definitions of
anticipatory continuous-time and discrete-time linear systems will be proposed. A discrete-time
system will be called anticipatory if its state vector and output vector depend on the future values of
inputs. A continuous-time system will be called anticipatory if its state vector and output vector
depend on the derivatives of inputs [3]. In [8-11] it has been shown that in singular discrete-time
systems the state vectors may depend on the future values of inputs and in singular continuous-time
systems the state vectors may depend on the derivatives of inputs. The electrical circuits are
examples of singular systems [9]. Therefore, the following question arises. Can an electrical circuit
be an anticipatory system? Let a singular continuous-time linear system be an anticipatory system.
By discretization of this singular continuous-time system we obtain a suitable singular discrete-time
system. Will be the obtained discrete-time system also anticipatory?

The main purpose of this paper is just to give answers to these questions. Necessary and sufficient
conditions for the anticipation of singular discrete-time and continuous-time linear systems will be
established. It will be shown that:

International Journal of Computing Anticipatory Systems, Volume 8, 2001
Edited by D. M. Dubois, CHAOS, Liége, Belgium, ISSN 1373-5411 ISBN 2-9600262-1-7




1) the singular electrical circuits are not anticipatory systems,

2) the discrete-time system obtained by discretization from continuous-time one is anticipatory for
any value of the discretization step if and only if the continuous-time system is also anticipatory.

Necessary and sufficient conditions for the anticipation of the singular 2D Fornasini-Marchesini

model and the singular 2D Roesser model will be established.

DISCRETE-TIME SYSTEMS

Let R”" be the set of real p xn matrices and R”:= R”"'. Consider the discrete-time linear
system

Ex, = Fx, +Gu, (la)
Y, =Cx, +Du, . ieZ‘::{O,l,Z,...} (1b)

where x, eR". u; € R™ . y, € R” are the state vector. input vector and output vector at the point
i, respectivelyand £, FF eR"" . GeR"™. CeR”".DeR""™.
If detE # 0 then the system (1) is called standard and if det~ =0 then the system is called

singular.
It is assumed that the pencil (%£,F) is regular. i.e.

det[ £z — F]#0 forsome zeC Q@)

where C is the field of complex numbers
If the condition (2) is satisfied then

[Ez-F]'= Y@z )

i=—u

where  is the nilpotence index and @, is the fundamental matrix defined by

(I for i=0
E®, -FO = FE-®D _F={" / i C)]
0 for i#0
where /, isthe #x# identity matrix
The solution of (1a) has the form [12.11.22-24]
i+ u-1
x, =® Ex,+ >0, Gu, o)

k=0

From (5) it follows that if 42> 1 then the solution X, depends on the future values of inputs u,
for k>i.
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Definition 1. The system (1) is called anticipatory if the state vector X; and output vector ), at the

point i depends on the future values of u, for k>i.
Theorem 1. The standard system (1) is not anticipatory.

Proof. If det E # O then there exists £~ and

©

[Ez-F] =[Elz-E°F)] =,z E"F) E" =X (E'F)E'z90 )

i=0

since

5]

(1z-E'F) =Y (E"F) 2

i=0

(E‘IF)'E" for i20

) and £~=0. From (5) it follows that in this
0 for i<0

From (6) we have @, =
case X, (and also ;) does not depend on the future values of inputs. o

Theorem 2. The singular system (1) is anticipatory if and only if
rankF~>deg.det[£z-F] @)

where deg.det[Ez-F] denotes the degree of the polynomial det[Fz-F].

Proof. Using the Weierstrass decomposition of the regular pencil (£,F) [12] we shall show that the
nilpotence index z>1 if and only if (7) holds. If the condition (2) is satisfied then there exists

nonsingular matrix P,Q € R™" such that [12]

I,z- 4, 0
Pl[Ez-F]0= 0 Nz, (®)
where n, =deg.det[Ez—F], n,=n—-n. A €R"™ and N eR™™ is the nilpotent

matrix with index 2. N*' #0, N* = 0. The index u is equal to maximal dimension of the
Jordan block cerresponding to the zero eigenvalue of the pairs (£,F) [12]. From (8) it follows that
rank £ = n, if and only if N=0 and z=1. The condition (7) is satisfied if and only if z>1. From (5)

it follows that in this case x; dependson , for k>i. g

CONTINUOUS-TIME SYSTEMS



Consider the continuous-time linear system
Ex = Ax + Bu,, x(0) = x, (9a)
y=Cx+Du (9b)

where X =%, x =x(t) eR". u=u(t) eR", y = y(t) € R” are the state vector, input vector

and output vector, respectively and £, 4 € R"". BeR"", C eR”", D e R"™.

If det £ # O the system (9) is called standard and if det £ = O the system is called singular.
It is assumed that the pencil (£,4) is regular, i.e.

det[Es— A] # O for some s € C (10)

If the condition (10) is satisfied then

[Es—A]" = Y @, a1

i=—p

where 4 is the nilpotence index and @, is the fundamental matrix defined by [17,23,24]

1 or i=0
FD, -AD, :CD,E—dDHA:J . S ) (12)
_ (0 for i%0
The solution x(f) of the equation (9a) has the form [17.9]

1 ) u ) )
x(t) = ™" ® Ex, + j e™ P Bu(r)dr+> D (Bu("” + Ex05<f“>) (13)

0 J=1

, u .
2 e &Y denotes the derivative of the j-th order of the Dirac impulse J(#) . From

(13) it follows that if z>1 then the solution x() depends on the derivatives of u(f).

where u

Definition 2. The system (9) is called anticipatory if the state vector x and the output vector y
depend on the derivatives of u.

Theorem 3. The standard system (9) is not anticipatory.

Proof. If det £ # O then in a similar way as for the system (1) it can be shown that
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4N E r 120
D, = ()£ Sor I. (14)
0 Jor i<O0

and £~0.
In this case from (13) it follows that x does not depend on the derivatives of . g
Theorem 4. The singular system (9) is anticipatory if and only if
rank/>deg.det[£s-4] (15)

Proof. In a similar way as for the system (1) it can be shown that the condition (15) is satisfied if
and only if the nilpotence index g>1. From (13) it follows that in this case x depends on the
derivatives of u. -

ELECTRICAL CIRCUITS

It is well-known [17.9] that electrical circuits are examples of singular continuous-time linear
systems. The following question arises. Are the electrical circuits also examples of anticipatory
systems? To answer the question let us consider an electrical circuit with 7 meshes consisting of
resistors. inductances L,.L-.....L, and m voltage sources. Let iy.i-.....i, be the mesh currents. Using
the mesh method we may write the equation (9a) in which

g Rt T
x:[ll L, e l"] .uz[el e, ... em] (T — denotes the transpose)
Ry R, Ry,
{*? T I
LA R e P e Ao A
“lo of?7|4, 4| P | A= L :
R, Ry _&
L L L
RL‘ % {VR,A_U Rﬁ,;_,. _Rr'Al_rw—] Rr+1f+2 Rr+1,n_1
Rou R R . -R_., . ... R,
A= I.‘ L . A1I= RI'TZ.l Rrj:_r R AV‘::_ r=2r+1 I-‘*._J*_ : I-(:..JI (16)
BL_l ;Z— {‘Rnl Rm' | Rn.r 1 RH.I'Y: "er
and the resistance R,; satisfy the conditions
>0 for i=j «
R,=R, % T md R 2R =l an
120 for i#j =1

=i
It can be easily shown [17.9] that the matrix A, is nonsingular. det A, # 0. We shall show that for

this electrical circuit the matrix N in Weierstrass decomposition of the pencil (£,4) is zero matrix
and the nilpotence index z~=1. In this case we choose



and we obtain

a7 -
_ [s— _ I 5 —
P[Es—A]Q=[]’ A4, {,,s A A_}{ ; 0}{1,; 4 0 } -

Lo 1 —4 -4 44 4] o I,

n-r

where Z1 =4 - AZAJIAS. From (18) it follows that N=0. n,=r, n,=n—r and

rankZ=deg.det[£s-4]. Dual results can be obtained for the electrical circuits consisting of resistors.
capacitors and

v

)

P

Gy G? Gs
G’ ~
|
L
N,
Fig. 1

voltage sources. The considerations can be extended for R.L.C type electrical circuits. Therefore the
following theorem has been proved.

Theorem 5. Electrical circuits are not anticipatory systems.
Example 1. Consider the electrical circuit shown in Fig. 1 with given conductances G;, k=1.....5.

capacity C and source voltage e.
Using the Kirchoff's node low for this circuit we may write the equations
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Ci, =G, (v, —u.)+G,(v, —u)
Gye-v) =G (v, —v,)+G,(v,—u.) (19)
G (v =v,) =G, (v, —uc )+ Gy,

Choosing as the state variables X, = #.. X, =V,. X; =V, we obtain the equation (9a) in which

ool fu L 9 0
E={0 0 0|.x= v A= G:l = GZ: (;:3 . B= GS Lu=e (20)
O 0 0 ]_:2 G31 G’ _ G33 O

G, =G, +G,, G, =G, =G,. G, =G,;, =G,. G, =G, +G, +G,, G, =G,, =G,,
G,;, =G, +G, +G,.

In this case r=1. n=3. m=1 and

4=-[-%] 4-=[% % AS{G”J. A4:[—G33 G”J. B, =[0].

\ G5
» B2 — 0

The matrix 44 is nonsingular since G23 G33 > GBG32 . and the inverse matrix

A,l _ 1 GSS GB
. G::G32 “G::Gw G32 G::

has negative entries.
From (20) it follows that

(21

where

— e G 1 -
/41 = A’I " A2A41A3 = |:— —2% - C[G23G32 —G17G33 ]((GIZGSS +(;13G3'_’ le +(G12G23 + G13G22 31 )]

B =B - A,A'B {GS(GIzGas +G]3G32)}
1~ = 241y Dy =

Gzz G33 - st G32

The solution %, (?) of (21) has the form



U (1) = e™u, (0)+ J.e‘qi(”’)Ee(r)dr
0

and it does not depend on the derivatives of e.
Knowing () we may find v,(¢) and v,(¢) from the equation

w] )
\)2([) = —AJ« AE"L‘(’)—A4 Bze(t)

Note that v,(#) and v,(#) also do not depend on the derivatives of e. Therefore, the electrical
circuit is a singular system but it is not an anticipatory system.

INFLUENCE OF THE VALUE OF THE STEP DISCRETISATION ON THE
ANTICIPATION

xi+l -

Substituting the derivative X in (9a) by we obtain the equation (1a) in which

F=E+At4A. G=AB (22)

Let the continuous-time system (9) be anticipatoryv. The following question arises. Can the discrete-
time system (1) obtained by the discretization from the continuous-time system (9) be anticipatory
system for any value of the discretization step At ?

We shall show that the discrete-time system (1) is anticipatory for any Af >0 if and only if the
continuous-time system (9) is anticipatory. The proof of this hypothesis is based on the following

Lemma. Let s, i=1.2....n be the ecigenvalues of the pair (£,A4) € R"™", i.e. the roots of the
equation det[£s— A]=0.Then z, = 1+ Afs,, i=1,2,....n are the eigenvalues of the pair (E,F).

Proof. Using (22) we may write

def{Ez-Fl=de{Ez— E - A= de{E(z-1) - AtA]de{Az(E%l - Aﬂ =(a) dc{Ez—A_t—l - A:I = o
=(A) de{Es- 4]

Zz. -
i

At

1
From (23) it follows that §, = orz, = 1+Ats, for i=1,2,....n. g

Theorem 6. The discrete-time system (1) obtained by discretization from the continuous-time
system (9) is anticipatory for any value of discretization step Af > O if and only if the continuous-
time system is anticipatory.
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Proof. By theorems 2 and 4 it is enough to shown that
deg.det[£z — F]=deg.det[Es — 4] (24)

From Lemma it follows that the number of eigenvalues of both pairs (£.4) and (£,F) is the same and
the equality (24) holds. -

2D LINEAR SYSTEMS

Singular Fornasini-Marchesini model.
Consider the 2D linear system described by the equations
Ex_ . =Ax,+4x.,,+Ax +Bu, i,jeZ. (25a)

07 11

Yy = Cxu - 1)11,/ (25b)

where x, € R" is the state vector at the point (7, j) . U, € R™ is the input vector, y, € R” is

the output vector and E€ R"", A, e R"". k=0]12. BeR"". CeR?". De R”™.
The system (model) (25) is called the singular first Fornasini-Marchesini model if det £ =0 and
standard if det £ # 0. It is assumed that

noona

det|Ez,z, - A, - Az, - Az, )= ZZd/z{z’ (26)
i=0 j»_z‘)

and d,,# O for some positive integers #,,#, (1, <1, n, < 7).

mhy

If the assumption is satisfied then [12]

I e
1 =(i+1) ,~(j+1
[Ez,z, -4, - 4z, ~A,z] = Z » Taz ) (27)
I:‘vul J==is

where the pair (g, 4,) is the nilpotence index of (25) and the transition matrices ij are defined
by
AT, +AT,  +AT,  +1, fori=j=0
ET =< AT +AT, .+ AT, for i=0 (28)

ij 07 =1, =1 ij-1

orland j#0

and T; =0 for i <—p, or/and j<-pu,.




The solution X,; of (25) with the boundary conditions
X, for ieZ, and x,, for jeZ, 29
and input sequence u; isgivenby [12]

Iy Tty i+ Xy
Xy = Z sy Buy + Z (]:—k—l.jlvl [Ao, B{ } +1 a4 xko] + (30)
=

k=1 I= kO

il X, Xoo G
+ 2[]:-1 jl—l[AmB{ ‘l:]+];~l _/-x'A”xnIJ"_]:-l -1 [AO’B{ O:I for 7,720
! . g1 .

I= al 00

From (30) it follows that if 44 21 or/and pu, >1 then the solution x, depends on the future

values of inputs #,, for k>i,[> j.

Definition 3. The system (model) (25) is called anticipatory if the state vector X, . and output vector

[}

Y, depend on the future values of inputs. ,, for k >i,/> j.

Theorem 7. The singular 2D system (235) is anticipatory if and only if
deg . adj[Ez .z, — A, - Az, - A,z.]> deg - det[Ez,z, — 4, - Az, - 4,2,] (31

for at least one of 7 =12
where deg. denotes the degree of the polynomial matrix (or polynomial) with respect to Z. .

i

i=1,2 and adj A(z,, z, ) stands for the adjoin matrix of Alz,,z,).

Proof. Let deg . ad/{Ez,z: ~-A,-Az - A:z:]= g, and deg, de:t[Ezl z,—A, - Az - A:z:] =n, for
i=12.

Then using the procedure of the division of polyvnomials from the formula

[Ezz A Az — Az ]71 :ad/[Ezlzz -A, -Az -4z,
R o det[Ezlzz-An—A\z, —A:z:]

(32)

we obtain (27) where 4, =¢, —n; +1 for / =1,2 . Therefore, if (31) holds then g, >1 and from
(30) it follows that the solution X, depends on the future values of inputs. In this case from (23b) it

follows that Y, depends also on the future values of inputs. By definition 3 the system (25) is

anticipatory if and only if (31) holds. O

Remark: Let rank E = rank[E,Al , A, ] Then (31) is satisfied only if
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rank E > deg . det[Ez,z, - 4, /—A,zl ~Ayz,] for i=12.

Example 2. Consider the model (25a) with

010 1 00 0 00 010 1
E=|0 0 1/,4,=|0 0 0/,4=/0 1 0,4,=1 0 0,B=|0 (33)
0 00 010 0 00 0 0 0] 1]
In thiscase n=3,m =1
-1 zz,-z, 0
det[Ezlzz*A(,—A,z] ~A4,z,|=|-2, —2, z,2,|=~z.2,
0 -1 0
and d, =-1Ln =n,=1.
Using (32) we obtain
-zz, 2,7; — 2 2;
1
[EZIZE—AO_AIZI _A:Z:T = 0 — 28y =
o -z, 1 —z]z;Jrzzz—z1

-1 0 HTan T, ,22,+T, 2. +T, ,2]'z,+T, | +
=l 0 0 -1 = © 7 T ) .
Bl -1 2 W
2z 4ziz -z +T, 02y + 10,20 +T20 2,
where
0 0 -1 0 0 1] 0 0 O -1 0 O
7,,=|0 0 0\L7,,=/0 0 O I, .=10 0 0 7T»1,71 0 -1
0 0 O 0 0 -1 0 0 1 0 0
0 0 O 0 0 O 0 0 O
T,,=/0 0 07,,={0 0 O0L7,=/0 0 O
0 0 -1 -1 0 0 01 0
Hence ¢, =q, =2 and 4, =q,—hn,+1=2fori=12.
Using (30) we obtain
i+2 j+2 i+2 b
Xy = 7:’—k—1,‘/~171Bukl +Z []—;k],jl[AO’B{ k0:|+7:'k,j—1A1xk0j+
k=1 I=1 k=1 k0O
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(B4
Jt2

X,
+Z 1,11[’403 101 +1; 1,1A Xo +Y;-1,jl[AO’Bf

o1 L %o
and
= un + uu = u”
X, = —uy
—Uu, + uoz = um — Uy

Ay Uy U

_—u2,j+l
X ;= -u,; for j>1

1,j+1
—Uy g T Uy g Uy U T U

1+l 2 +”

X, = —u,, for i>1
=iy U, Uy U — U0 T X0~ X0
r+| JJ+l +u:]+l :,]

X, = -, for i>1 and j>1

~ Uy =

u; g+ +u i,j-1

i1, j+1

Singular Roesser model

Consider the 2D linear system described by the equations
h h

xi+l,j xq
.= A +Bu, (35a)

iJ+l if

E
X

h

x!
y

y; =C| ! |+Du, (35b)
Xy

where x,.:f € R™ is the horizontal state vector, x) € R™ is the vertical state vector, U, € R™ is

the input vector, y; € R? is the output vector and

’

po[Bn B Eger™™ | [4 Ay 4 eR™ o [B] B eR™ Cig R74*)
E, E,| E,eR"™’ A, A, [A,eR™™ B,[ B,eR™’ DeR"™
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The system (model ) (35) is called the singular Roesser model if det £ =0 and standard Roesser
model if det £ = 0.

It is assumed that

E,z -4, E.z,-4
E,z -4, E,z,-4,

ZZd z 7} (36)

d(z;,2,)= de{
i=0 j=0

and d . # 0 for some positive integers 7;,7, (r, <n,r<h,).

If the assumption is satisfied then [12]

{EV]]ZI —A” El:zw e 1‘\} Z Z —u 1; (GA2)Y)] (37)

E,z,-A, E,z.-A., oy Wy |

where the pair (4, 4,) is the nilpotence index of (35) and the transition matrices T,] are defined

by [12]

I, for i=j=0

EOfr  +[0.E., -AT. = ' : 38
[] et [ ‘]Tl” e {O for i#0 or/and j#0 S

and 7, =0 for i <—p, orfand j<—fs,

The solution X, of (35a) with the boundary conditions

UJ ]EZ,., x;m ieZ

is given by [12]

Jr -1 i+ -1

-1
' h y
T; ket ot Bty + z aEaxg + Z S 2% 1 (40)

1=0 k=0

From (40) it follows that if £ >1 or/and g, >1 then the solution X, depends on the future

values of inputs u,, for Kk >1,/> j.



Definition 4. The system (model) (35) is called anticipatory if the state vector X, and output vector

Y, depend on the future values of inputs, #,, for k >i,/> j.
Theorem 8. The singular system (35) is anticipatory if and only if

rank E, > deg . d(z,,z,) for i=12 41)
where d(z,,z,) is defined by (36).

Proof. It is easy to show that

1 Enzi=4n Eazs=4; )
deg _adj - “|=rank E, for i=12 42)
B E,z, -4, E,z,-4,

Using the well-known procedure of the division of polynomials from the formula

]
Enz] —An El:z:_Alz
E,z -4, E,z,-4,

1 adj[E”zl—A“ Euzz—j\:} @3)

d(z,z,) LEzlzl -4, E,:z,

we obtain g, =rank E, —r, +1 for i=12. Therefore. if (41) holds then 4, >1 and from (40)
it follows that the solution X, depends on the future values of inputs. =

Example 3. Consider the model (35a) with

[1000 ‘Fo -1:0 —ﬂ‘
g0 100l o 10 1), o »
’o 01 0f -1 -2.0 1| |-1
0 000 o 1.0 0] 1]
In this case 7, =n, =2, m =1
z 1 0 1
d(zl,z,)zde{E”z’ -4, Enz _AI:}: 0 z-1 0 -1 =2z,
i E,z, -4, Enz,-4, ] 2 z, -1 )
0 -1 0 0

and , =1, =1.
Using (43) we obtain
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E,z,—A, Epz,~4,]" |0 z-1 =
E,z -4, Eynz,—-4,

Z, 7 O 2z | ;! z 0 1
— 0 0 0 —iZy2 3 0 0 0 1 B
—zz,|-1 -z-1 z -z +2z AP B A Y S o
0 —-zz O —zfzz+zlzz 0 -1 0 S ki
=T,z +T7:n7-'1:.:-] ahiliy “LT-m"-':_1 +T4_)lzl-l *‘Too"-'l_]"-'g1
where
000 O 0 00 ) 0 0 0 1
000 O 000 0 0 0 -1
T42—1 = > TJU > Tl—l =
000 O 0 0 0 -1 0 0 0 0
00 0 <1 000 O 0 -1 @
| 0 0 0O 1 1 0 0] 0 0 0O
| 0 0 00 00 0 0 0 00
T,l 0= ,T(,__] -:Tun =
0 -1 1 2 0 0 0 ' 1 -1 00
| 0 0 00 000 0] 0 0 00

Hence , =rank E, —r, +1=2 and u, =rank £, -1, +1=1

Using (40) we obtain
U+,
it J J ; irl _"”
— 1 v . . .
X = Zﬂ—k»l, _/’—I—lBukl e Z];,jfl—]Elxl)I +Z Tx-k-LJE:xko = for 7,7 >0
k=0 1=0 1=0 =0 — Uy T U 0

= IlM_j + llU-

CONCLUDING REMARKS

The standard linear continuous-time and discrete-time systems are not anticipatory systems
(theorems 1 and 3). The singular linear continuous-time systems are anticipatory systems if and only
if the condition (15) is satisfied (theorem 4) and the singular linear discrete-time systems are
anticipatory systems if and only if the condition (7) is satisfied (theorem 2). It has been shown that
the singular electrical circuits are not anticipatory systems (theorem 5) and that the discrete-time
system obtained by discretization from continuous-time one is anticipatory for any value of the



discretization step Af > O if and only if the continuous-time is also anticipatory (theorem 6).
Necessary and sufficient conditions for the anticipation of singular 2D discrete linear systems have
been established (theorem 7 and 8). In [18] an analysis of the influence of value of the discretization
step on internal and external positivities and asymptotic stability of discrete-time system obtained by
discretization from continuous-time one has been presented. An open problem is an analysis of the
influence of value of the discretization step on the reachability, controllability and observability of a
positive discrete-time system obtained by discretization from continuous-time one [12,20]. An other
open problem is also an extension of the considerations for singular 2D continuous-discrete linear
systems [19].
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