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Abstract The discrete path approach has recently been use to obtain a closed form
solution for two simultaneous difference equations with variable coefficients. We
apply this result to the solution of the discretized harmonic oscillator and recover
the well known traditional solutions. In the process we learn how the enumerative
discrete path solution transforms into a more convenient compact analytic closed
| form. The discrete path approach is specially adapted to problems with mixed
boundary conditions like those arising in the modeling of anticipatory systems.
| Keywords : discrete path, closed form solution, difference equations, harmonic
‘ oscillator, anticipatory systemnis.

1 Introduction

This is the first of a series of papers dealing with analytic solutions of difference
equations arising in the modeling of anticipatory systems [4]. In this first paper, the
simple harmonic oscillator is used as a mathematical model for gaining familiarity
with the discrete path approach, as it applies to coupled difference equations, and
in building up a compendium of related characteristics.

Every potential function, can in the neighborhood of its local minima be approx-
imated by a parabolic potential. Furthermore, in Newton’s second law of motion
as in Schrodinger’s non-relativistic wave equation, the harmonic potential has an
exact, analytic and simple solution, which serves as starting point for perturbations
that realistically model the physical system.

The usefulness of the harmonic oscillator as a physical model [8], combined with
the simplicity of its mathematical solutions, has made it one of the favored proving
grounds for mathematical methods, and one of the most frequently used models in
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physics, from mechanical springs, to Planck’s photons, to the interactions of atoms
in solids, to quantum field theory, to string theory.

The one-dimensional classical harmonic oscillator problem can be formulated
| in terms of difference equations by discretizing time. This leads to a three term
| recursion relation with constant coefficients, or equivalently to two coupled first
| order difference equations. The three term recursion relation has a solution in terms

of powers of the roots of the corresponding characteristic equation. The coupled
| difference equations can be solved by the discrete path formalism (2].
| The discrete path approach to the solution of difference equations is specially
‘ suited to anticipatory problems because it allows an arbitrary specification of the
‘ boundary conditions. Specifically it allows for the specification of mixed boundary

conditions (partly initial and partly final) which are an inherent part of anticipatory
‘ problems. Furthermore, this approach can provide analytic solutions for anticipatory
‘ problems even when their complexity leads to difference equations with variable
‘ coefficients.

In this paper we apply the recently obtained (via the discrete path approach)
closed form solution for two simultaneous difference equations with variable coeffi-
cients [1], to the problem of the discretized harmonic oscillator and recover the well
known traditional solution. In the process we learn how the rather complex, and

‘ general, enumerative discrete path solution, compacts, in the case of a harmonic os-

’ cillator into a power solution (an exponential in the differential limit). The different

‘ mathematical results obtained along the way are useful as guides (as well as limiting
test cases), in deriving analytic solutions for more complex anticipatory harmonic

‘ oscillator systems. Since every detail of the discrete path solution, as applied to

‘ the simple harmonic oscillator, will, in the case of more complex problems, inflate

into an elaborate mathematical development proportional to the complexity of the

problem to be solved, the usefulness of the present work resides, to a large extent,

in the careful development of every detail in the derivation.

‘ One important class of complex harmonic oscillators is that modeling anticipa-

‘ tory systems. As pointed out by one of us (D. Dubois) (5], anticipatory formulations

‘ of the discrete harmonic oscillator are crucial in solving the problem of energy non-

‘ conservation which is characteristic of the discrete harmonic oscillator. If this turns
out to be the only way to solve the energy non-conservation problem, the result will

‘ have tremendous impact on the fundamental role of anticipation in the formulation

of the laws of physics.

|

|

|

|

2 The Harmonic Oscillator

2.1 Continuum formulation

Newton’s second law of motion for an invariant mass in a parabolic potential U (z) =
| 3kz? (the one-dimensional non-relativistic harmonic oscillator) leads to the second
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order differential equation:

&z \/?
W-{—wx-o w= E (1)

who’s general solution is

z(t) = Ae™* + Be™*  w(t)= d_xd_it) = iw (Ae"‘“t - Be"""‘) (2)
or in terms of the initial conditions 2o = z (0) = A+ B and vy = v (0) = iw (A — B)

z (t) = zocoswt + % sin wt v (t) = vpcoswt — Towsinwt (3)
or, alternatively

z (t) = Csin (wt + @) v (t) = Cw cos (wt + @) _ (4)
where C = /72 + (vo/w)® and ¢ = tan~" (wzo/vo)

2.2 Discrete Formulation

The finite difference equivalent of equation (1) is obtained via the transformations
d—->A=(E-1I) and dt — At (5)

where I is the identity operator and E (explicitly AE ) is Boole’s displacement oper-
t

ator [7] defined by Ef (z) = f (z + At). If we define E® = I, then Boole’s displace-
ment satisfies E"f (z) = f (z + nAt) for all integer n, positive, zero or negative.
For n nonnegative

d"—-)A":(E—I)":zn:(n)E" (6)

k=0 \K
and equation (1) transforms to:
(E*-2E + 1)z (t) + (WAt 2 (t) =0 (7)

Applying the displacement operators and making the change of variable ¢t — ¢ — 2At,
the above equation reduces to

z(t) - 22 (t — At) + [1+ (WAL z (¢t — 248) =0 (8)
The time variable is discretized according to
t—1o
t = t, = tg + nAt where n={ X J (9)
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and we use the notation z, = x (,) and v, = v (t,), so the above difference equation
(8) becomes

Ty~ 2Tp_1 + [1 + (wAt)Q] Tno=0 (10)

Since the above difference equation has constant coefficients, it can be solved by
the method of roots [6]. Setting z, = 2™ leads to the characteristic equation

=2+ 1+ wAt’] =0 11)
with roots,
2 =1+ (iwAt) (12)

So the solution of equation (10) is given by

zn = Al + (WwA)]" + B[1 - (iwAt)]" (13)
The discretized velocity is given by
s ($"+1 i zﬂ)
Un = (14)
leading to
P Al + (wA8)]* — B[1 — (iwAt)]" (15)

The coeffiients A and B are obtained from the initial conditions zo = A+ B and
vp = W (A B)

oned) mda-B)on =
hence

&= % (20 + ) L+ (A" + % (20— ) 11 - wart” (17)

o % (20 + %) [1+ (iwAt)] % (20 - L—") 1+ (wAd)® (18)

144




2.3 Interrelation
We define S, (¢, to) by i
Sn (tny to) = [1 + (iwAD)]" S (tn,to) = [1 — (iwAD)]" (19)

then
Tn = ASp (tn, to) + A*S? (tn, o) (20)
'L‘ — v
2 = AS, (t,, to) — A*S? (t,,
= = AS (tn, to) = A*S;, (tn, o) (21)

Since At = (t, — to)/n, then in the limit n — oo, At — dt , and ¢, can be brought as
near as desired to any specific value of t . Hence, in the continous limit, S, (t,, ) —
S (t,t), where S (¢, to) = lim Sy (¢, to) |¢,=t, hence

| o o f B = BN 1Y L withte)

S (t,to) = lim [1+zw( . )] il (22)
| leading to
\ % (ta) = & (1) = lim & (tn) leu=e = A7) 4 BeT () (23)
| v (ta) = v (t) = im v (tn) [rn=e = iw [Ae 4 Bemi(t~t0)] (24)

’ and we recover the continuous case solution with A = Ae*% and B = Be ™! .

We can alternatively formulate the problem of the harmonic oscillator as two coupled
first order differential equations,

dz (t)
dt

The corresponding discrete equations are, as before, obtained by the transformations
d— A= (E-1I) and dt — At, leading to the two coupled difference equations

_ dv(t) o |k
—v(t)=0 and o +wz=0 w= - (25)

z(t+ At) = z(t) + At v(t) vt + At) = v(t) — At W z(?) (26)

Making the change of variable t — ¢t — At, descritising time as before according to
t = t, = to +nAt , and again setting z, = z (t,) and v, = v (t,) leads to

Tn = Tn1 + AtUn_1 and Up = Upn_1 — W2 AtTn_1 (27)

these coupled difference equations are the classical Euler discrete equations for the
harmonic oscillator. They emerge when using Euler’s method for the numerical
integration of the second order differential equation (1). They will be solved by the

2.4 Coupled Formulation
discrete path formalism.
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3 Simultaneous First Order Difference Equations

In this section we will present the general solution to a set of two coupled homo-
geneous linear difference equations with variable coefficients, and initially defined
boundary conditions.

We write the two coupled linear homogeneous equations in the standard discrete
path notation as:

Rno = f10(n,0) Rn-10+ fi,-1 (n,0) Rpoyn 12=1,2,3,...,00 (28)
Rﬂ,l = fl,O (na 1) Rn—l,l ¢ fl,l (TL, 1) Rn—l,O n= 17 27 37 -y OO (29)

with the initial conditions given by Rog = Ao and Ry = Ag ;.
The discrete path solution to the above coupled homogeneous equations is [1]

1 gmax(n,k,k")
Rop=Y Y w92, (K, q} n=1,23,..,00 (30)
k=0 ¢=0
where
Gmax (N, k, k') = [(ﬁ;lgﬁkL)J (31)
Qi (K, q) = > F; (4, k5) ‘kj=h(k',mj) (32)
£;€{0,1} j=1 1mj=b1+£a++L;
l1+...+ln:2q+(1—5kk/)
] 1 m; ! ]'
h(K,m;) = = + (=1) :(k ——) (33)
2 2
and
Fy(n,k) = [fi0 (n, k)] [fi1 (n, DI [fio1 (m, 0)] 0" (34)
4 'The Solution for the Harmonic Oscillator
In the case of the harmonic oscillator
Rag=2n Ry =1, | (35)
J
om0 =1 fi(m0)=ar fgmy=120D__5 g
Hence
Fy(n, k) = (—w?At)™ (20) 179 = (i)™ (At)" (37)
and
Fy; (4, ;) = (iw) 25795 (iwan (38)
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4.1 Reduction of the Solution
Substituting the above expression (38) for Fy, (4, %;) in equation (32), we obtain
Qg (K, 9) = D H (iw)? (ki~3) b (iwAt)Y

G} =1
O+ A n=2g+(1- 8 )

kj:h(k',mj) (39)
mj=f+Lla+-+L;

Du to equation (33)

(k,- o %) Jky=hiarmgy = (=1)" (k' = %) (40)

Hence, imposing the auxiliary conditions in equation (39), we obtain

n Li+la++;

QK= Y H-tiry2=aal= (iwAt)” (41)

[j €{0,1} j=1
b+ A =2q+(1-by;r)

and executing the product, leads to

Qi (k') q) = (iwAt)zq‘l'(l—Jul) Z (iw)2(k'—1/?)77'?;(&12,-",31:) (42)
¢;€{0,1}
b1+...+Hn=2g+(1—0ppr)
where
142 L+ttt
CACK SEAED DG VR (43)
j=1 b+...4+l=m
¢;€{0,1}
and we have made use of the fact that inside the summation, ¢; + ... + £, = 2¢ +
(1 s Jkk,)
Next we define the combinatorial structure functions G1™ (z) by
GI"()= ¥ (pTReh (44)
¢;e{0,1}
h+...+lp=m

so that equation (42) can be rewritten as

. b)) m20+(1=br) [
Qe (K, ) = (iwAt)"T+070) G, () (45)
Note that, to obtain (45) we made use of the fact that &' € {0,1}, and hence
2(K —1/2) =

Subsituting for Q,x (k',¢) from (45) into solution (30) for Ry, and executing
the sum over k' leads to

B s {qu(nko) (i At)2q+(1 8k0) (m24+(1~8k0) (zw)}
qm&x?"s k,1) 2 ¥ 9 1-8 (46)
+/\0’1 { 3 (iwAt) g+(1—0%1) G:L q+(1—8k1 (M)}
=0
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where gmax (1, k,0) = [(n — 1 + 0k)/2] and gmax (7, k,1) = [(n — 1 + &;)/2]. Since
k € {0,1} we have the identities (1 — dgo) = d1% and (1 — dg1) = Jor. Hence we
finally obtain

((n—0dk1)/2]
Roj = Do { qf__kl; ARy griiehin (iw)}

L(n—dko)/2] ‘
#han{ 3" s grnse )|

=0

(47)

4.2 The Structure Functions

We will now evaluate the combinatorial structure functions (The G functions) for
the harmonic oscillator as defined by equation (44). Since the set of values {¢;} is
subject to the two constraints ¢; € {0,1} and ¢; + ... + £, = m , then there are
exactly m £s which are equal to 1, and exactly n —m £s which are equal to 0. Hence
there are exactly m nonzero terms in V% (£1,%s,--,£,). Let the k** nonzero term
be denoted by pf, (k) , so that

Ve (b by la) = S 00 (R) (48)
k=1

It is easily seen that p (1) = (1) and g% (k) = (~1) o, (kK — 1) , hence P, (k) =
(-1)* and

n _ 2, _[ 0 for meven

bt = B ={ D o e (49)
Hence

’)’31 (eh e2y ty en) = (Jﬁ,m mod 2 — 1) (50)

Note that ¥}, (1,42, -, ¢,) is independent of the details of the set {¢;}, as long as
{¢;} obeys the two conditions ¢; € {0,1} and £; + ... + £, = m.
Substituting for 42 (¢,42,---,£,) in the G-functions, we obtain

G¥ ()= Y (2)(ommeaz-t) (51)
¢e{0,1}
b+...+bp=m

Since (2)1(50_,,, mea2~1) s 5 constant with respect to variable of summation, then the
above expression can be rewritten as

GL™ (2) = (o)t (fommeart) 5~ (52)
le{O,I}
bH+...4Hp=m
For every possible set of objects {{;} subject to the constraints ¢; € {0,1} and
f1+ ...+ £, = m , there is a term of value unity in the sum. Hence the above sum
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is equal to the number of combinations of n objects taken m at a time [9], and is
given by the binomial of m relative to n , leading to

n
G™M™ (2) = F61,m mod 2
)= (1) (53
where we have also made use of the identity (dom mod2 — 1) = —81m mod2 - Hence
Gﬂlﬂqﬂskx N n © o1 (204851) mod 2 4
(1) = |5y 1, ) (1) it (54)
and
n.2q+0ko (- \ — a8 © Y91, (20+840) mod 2
Gy (iw) (2 g+ 5k0) (iw) ko (55)

But 01,(2¢464;) mod 2 = 01,6, = k1 and 61,1244 6,0) mod 2 = 91,6, = Oko - Hence

n,2q+0k1 (- \ _ n - Y0k
GY (iw) = <2q +5k1) (iw) (56)
and
7.29+6k0 (7 — n © Y~k
G% (1w) <2q + 5k0) (tw) (57)

4.3 The Discrete Solution

Substituting for the G-functions their values from equations (56) and (57) into ex-
pression (47) for R, x we obtain

L(n—dk1)/2]

R.n,k=Ao,o(z'w)‘5“{ b3 (z‘wAt)Q"”“( ; )}

RS W(n—8ko)/2] 2q+6ko ( n )
+Xo0,1 (w) { q§0 (iwAt) 2% + ko

So z, (t) and v, () , are given, for n = 1,2,3,...,00 by

[n/2]
T = Byp== Agp { 3 (iwAt)2q (an)}

=5 (59)
. = l.(n_l)/2.‘ : 2q+] I
+Xos (iw) { %, (wh) (2q A 1)
(n=1)/2)
Vn = Rp1 = Ao (iw) { > ’ (zwAt)f"q+1 (2qT:_ 1 )}
In/2] "~ ” (60)
+A0,1{ 3 (iwAt) (2 )}
q=0 q
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which can alternatively be written as

. L n 3 q " -1 L n . q
Zn = Moo qgo (q) (twAt)? + Ao 1 (tw) § (q) (iwAt) (61)
q even q odd
_ . B nY . g LS AN a
i 58 Mg () ‘E,?d (q) (WA + Ao, qu (q) (iwAt) (62)
q o even

4.4 The Propagator Functions
Define the functions Seyen (1) , Sodq () and Sy (n) by

2 ny . q _ & fnY,. q
Seven (1) = q%g n (q ) (WAL S (n) = % (q ) (iwA?) (63)
S:!: (n) = Seven (’fl) = Sodd (n) (64)
then
Seuen (Tl) = ‘;‘ [S+ (Tl) +S_ (Tl)] Sgdd (n) = % [S+ (TL) -S_ (TL)] (65)

and equations (61) and (62) for z, (¢) and vy, (t) can be rewritten in terms of Seyen (1)
, Soad (1) as

Zn = A0,0Seven (1) + (1) ™" Ao.1S0ad (1) (66)

Un = wX0,0Sodd (1) + Ao, Seven (1) (67)
or, alternatively in terms of Sy (n) as

T = F8 Mo + (w) 7 Ao + I (Ao — (iw) ™" Ao (68)

vn =2 [iwd o + o] = = [iwdoo — Aos1] (69)

Where Ago and Ao, are given in terms of the initial conditions by Xoo = o and
/\0’1 =17 . So that

In = % (3’0 + %) Si (n) + % (zo —;;0> S_(n) (70)
-3(mrg)sm-g(o-g)sm )

S+ (n) are easily evaluated as

Si(n) = éo (Z) (iwAt) + qgo (;‘) (iwAt)? (72)
=0 =




or

Se(n) =3 ( Z) (FiwAl)? = (1 + iwAt)" (73)

q=0

So we finally have

_ l Vo . n 1 _ % e n
T =g (xo + _z'w> (1 + wAt)" + 5 (zo z'_w) (1 — iwAt) (74)
Eﬁ—l( +”—°)(1+wm)"-l(z—”—")(1—'At)" (75
w2\ W 2\ " W it )

4.5 The Continuum Limit

Taking the limit as n — oo while holding ¢, = 5 + nAt fixed at ¢, we have

, ,  rt—to\]" -

St (t) = lim 84 (n) |e,=¢ = lim [1 + iw ( = 0)] (76)
or

& () =S bl (77)

- Thus, making use of z () = lim z (ta) |,—¢ and v (t) = Jim v (n) [¢,=¢ we have

_1 v_o) wwit—to) 4 1 ( _ ”*0) —iw(t—;to)
2l =3 (x0+z'w . Gl Lol (78)
v.(—t) =1 (zo + v_o) ettt _ 1 (.’Co - 1)9) g M) (79)
w 2 w 2 w

4.6 The Lowering and Raising Operators

The energy lowering and raising operators for the harmonic oscillator are given
respectively by [3]

afey = % [\/?z &) + i\/—;nl—mp (t)] = \/% [ac () - ”—z%)] (80)
and
o (t) = % [\F%x () - i—\/%_—hwp (t)] =5 [z (t) + %QJ (81)

We define their discrete counterparts by

ay =a{t,) = \/_2%; [:1: (ta) — *{iﬂ)] = \/% (xn - ;U—:)) (82)
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and

=)= G (o) + 28] = [ (o 4 22) (53)

Their time development is given, via equations (74) and (75) by

anp = (1 — iwAt)"ag = S_ (n) ag (84)

= (1+ wAt)" a§ = S, (n) af (85)
a(t) = lim a(tn) [tn=t = e )ag (86)
@ (1) = Jim 0" () et = €405 &7

5 Conclusion

The simplicity of the harmonic oscillator problem and its well known solutions for
continuous as well as discrete time, have provided us with the framework to analyze
and understand the structure of the discrete path solution as it applies to harmonic
oscillator type problems. Four specific relevant mathematical functions emerge:
these are the Fy(n,k) functions as defined by equation (34); the G-functions as
defined by equation (44); the 4% (¢1,¢s,---,£,) functions as defined by equation
(43); and the Sy (n) functions as defined by equations (63) and (64). In the case of
the simple harmonic oscillator all these functions reduce to simple compact analytic
forms. For more complex anticipatory problems, we should expect that the form
of these functions will reflect the complexity of the problem being solved. But in
all cases, the simple analytic results obtained here will serve as a guide and provide
limiting test cases for the different parts of the solution.
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