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Abstract An analog neural network tnodel with time delays was studied which
demonstrated chaos similar to human and animal EEGs. Measures of chaos and cor-
relation were used to investigate chaotic neural network behavior under the different
external conditions and internal structural changes. External sinusoidal and pulsed
periodic forces were used for chaos control. They produced transitions, "chaos-
order" and "chaos-chaos", which were similar to those observed experimentally in
the brain. A chaotic neural network state was introduced which is similar to that
proposed for the brain, It is characterized by trvo types of rnemory and correlation
structure of neuronal activities. Pathological non-chaotic neural network activity
and activity with decreased chaos is induced by rveakening interneuronal connec-
tions. Possible application to Parkinson's disease and dementia is discussed.
Keywords: Chaotic neural network, chaos control, EEG, Shannon entropy, epilepsy.

1 Introduction. SupportingReductionism

Recent developments in neuroscience allowed consideration of consciousness as a sci-

entific problem [28]. However, many obstacles hinder the resolution of this problem.

The two main paradigms within which most scientists and philosophers now work

are the holistic and reductionist approaches to the problem of consciousness [S].
The holistic approach considers consciousness a consequence of brain function.

Consciousness cannot be reduced simply to the activity of neural ensembles because

it is subjective and exists in the brains of humans or higher mammals. The typical

holistic definit ion of consciousness is given by J. R. Searle (1998): " 'consciousness'
refers to those states of sentience and awareness that typically begin when we wake

from a dreamless sleep and continue through the day until we fall asleep again, die,
go into a coma or otherwise become 'unconscious'." The holistic approach has been

successfully used in the nineteenth century as demonstrated by the discovery that

lesions in different areas of the brain are responsible for defects in different cognitive
functions.

The reductionist approach supposes that consciousness is an objective phenornenon

and can be described in terms of neural activities. At present, such reduction of

conscious brain states to the activities of neural circuits and ensembles is still far
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from resolution. However, it successfully challenges the holistic approach. One di-
rection in reductionism is artificial neural networks that allow simulation of brain
functions such as object recognition and memory [18]. More comprehensive neural
network models explain neuronal activities of particular brain areas [15]. It was also
proposed that the activity of the brain could be described in terms of computation
and information processing [21].

At present time the holistic approach has become obsolete. A modification of this
approach has been made by J. R. Searle [28,29,30], but even the modified approach
has unclear interpretations of the subjectivity of consciousness. We overcome this,
probably most important, issue to show advantage of reductionism.

Thesis about subjectivity ofconsciousness. The holistic approach considers that
the consciousness is subjective, and we can only study its objective features. For
example, scientifically, we cannot describe pain as a subjective sense, but we can
describe indirect objective evidence of pain. We consider such an approach as in-
correct. To explain our point ofview, consider the childhood of any conscious adult
person. Everybody who has a child knows how it is difficult to understand whether
or not a child suffers pain. We can only use indirect objective evidence of pain or
disease. However, talking to a child, we usually call his state as a state of pain. Fi-
nally, when child grows, he learns that his state, as described above, is the state of
pain. Thus, when a child learns word "pain" he begins first from objective indirect
evidence of this sense through learning about the meaning of this word with the
help of adults. From a reductionist point of view, nothing is lost scientifically if we
consider the state of pain as an objective state with definite indirect and objective
evidence for it. The problem with the holistic approach in this case is that it does
not consider how aa individal learns about his own senses and that the senses are
only generalized terms for individal states or states of his brain.

One more interesting recent discovery is a chaotic activity of neural circuits and
ensembles in the brain on the macroscopic level as recorded by EEG [ ]. This
discovery is especially interesting when taken into account with the discovery of
unconsciousness by Sigmund Freud at the beginning of 20th century. The paradigm
of unconsciousness considers that wild chaotic forces exist in human will along with
rational forces. On the other hand, the brain also can produce specific chaos which
is called low-dimensional chaos. This chaos differs from random noise because it
can be described by a finite, relatively small number of equations, and can produce
relatively large fluctuations. So, we can suppose that the chaotic activity of the
brain can produce unconscious chaotic will. Thus, the study of brain chaos can be an
important key for understanding the problem ofunconsciousness and consciousness.

Taking into account this situation and the rapid growth of non-linear science
in the 1980s, several studies have been done concerning the origin of human and
animal EEGs [4, 72, 17,33, 13, 24, 25]. These studies showed that human and
animal EEGs have relatively small numbers of degrees of freedom (finite fractal
or correlation dimension) and therefore can be described by a finite number of
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equations. The number of degrees of freedom in an EEG can change depending
on brain state: 6-9 in the waking state, 4-5 during sleep, and 2-4 during epileptic
seizures [11, 33, 24,25]. However, there are investigations that have shown that
human and animal EEGs can be considered as filtered noise [36, 1, 37].

Chaotic outputs were obtained in single neuron and neural network models
122, 741. Quantitative characteristics of chaos in neurons and neural networks with
iterative dynamics (Lyapunov exponent, fractal and information dimensions) were
investigated in [2, 23].

A neural network model that produced chaotic activity similar to human and
animal EEGs was studied in [5,6]. The characteristics of chaos, such as correlation
dimension v and the largest Lyapunov exponent ), were in agreement with the
experimental values. The control of chaos in a neural network with time delay by
external sinusoidal force was investigated in [7, 8]. It was found that transitions
in neural network activities occur when varying the amplitude and frequency of
external sinusoidal force. The chaotic neural network activity was also controlled
by external pulsed periodic force [10]. The results of simulations in [5, 6, 7, 8, 10j
are in qualitative agreement with the experiments on controlling chaos in the brain
lL7, L9,261.

Finally, the concept of coherent neuronal ensemble, which is created by syn-
chronous activity of individual neurons) was developed by [31, 32]. This concept
establishes a link between the synchronous activity of neural ensemble, brain states
and neural correlates of consciousness. The ensemble consists of a temporary asso-
ciation of neurons into functionally coherent assemblies that as a whole represent a
particular perceptual object. In this neuronal representation strategy, at different
times, each neuron participates in different ensembles, because a particular feature
can be part ofmany different perceptual objects. Additionally, these representations
are very flexible and allow rapid changes of neural ensemble structure depending on
external input and changes in environment. So, the content of input signals is
represented not only by individual neurons, but also by dynamically associated en-
sembles. The experiments show a correlation between the occurence of response
synchronization and brain states [32].

in this paper we investigate the chaotic neural network which produces chaos
similar to human or animal EEGs [5, 6] at different network parameters. For in-
vestigation of changes in neural network activities, we used measures of chaos and
interneuronal correlation, such as correlation dimension u, largest Lyapunov expo-
nent À, Shannon entropy ,Ss;, renormalized Shannon entropy ̂ 9r, and Pearson's cor-
relation coefficient r. Simultaneous control of several characteristics of both neural
inputs and outputs allows reliable detection of changes in neural network activities.
The role of time delay is studied for the production of different types of activities
and for control purposes. Irregular transitions, "chaos-order" and "chaos-chaos",
with different characteristics of neuronal soma potential time series, are found under
the external action of sinusoidal and pulsed periodic forces. We also introduced a
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chaotic neural network state which is analogus to the brain state. It is characterized
by two types of memory (memory I and memory II) and by correlation structure of
neuronal activities. Memory I is formed by the pattern of the constant parts of soma
potentials. Memory II is created by the pattern of oscillation amplitudes. Stimulus-
evoked activity of the chaotic neural network is investigated when external pulsed
periodic force'rvith different amplitudes is applied. Synchronization and epilepsy-like
phenomena are observed in this case. Epilepsy-like activity can be achieved by in-
creased chaotic neural network excitability. Substantial changes in chaos and both
types of memory are found under rveakening interneuronal connections. Possible
application of our model for Parkinson's disease and dementia is discussed.

2 Neural Network Model and Method of Analysis

The neural network model is described by the set of differential equations:
M

tl i(t) : -ur(t) - 
D ooi T @j(t - rj)) + ei(t),
J = L

where u;(f) is the input signal of the rith neuron, M is the number of neurons, c,1i
are the coupling coefficients betn'een the neurons, ri is the time delay of the jth
neuron output, f @) : c. tanh(r - p), e(t) is the external force, p is the threshold of
the nonlinear function /(r). Accorcling to [18], u1 is the mean soma potential of a
neuron from the total effect of its excitatory and inhibitory inputs. They form the
EEG-like electrical activity of the neural network. Output signal of the neuron /(u;)
is considered as the short-term average of its firing rate. The coupling coefficients
are produced by random numerical generator in the interval from -2.0 to +2.0. All
hI :L0 neurons are organized in a single layer, r'ith the connections "all-with-all".

Eqs. 1 are solved by the fourth-order Runge-Kutta method with the time step
À.:0.01. The frequency spectra are calculated using the digital fast Fourier trans-
form from the time series of // : 16384 points. The correlation dimension z [16]
is calculated, using N : 16384 points as well. Control calculations of y made for
several time series with I/ : 131072 points showed the values of the correlation
dimension close to those obtained from time series rvith JV = 16384 points.

The largest Lyapunov exponent is calculated as described in [27]. It is deûned
âs

i ,  j  :  7 , 2 ,  . . . ,  M , (1 )

(2)1 :,l i* 
rlàgo r-' ln[D(t)/D(0)],

where D(t) and D(0) are the distances between the perturbed and unperturbed tra-
jectories at the current and the initial moments, respectively. The largest Lyapunov
exponent À is calculated from time series of N : 137072 points.

The Shannon entropy was calculated from equation
w

n \ a
ù5à = -  

)_PxL\Px,
ft=1

49

(3)



where pr are the probabilities of finding the trajectory in kth subinterval of the
interval of the amplitude variation. Here, K : I28, Ast : 8.0.

Along with ,Ss;,, the renormalized Shannon entropy ^9, is used [ï S" does not
depend on the averaged effective energy E, because for the calculation of S" we
renormalize A5y, which is used in eq. 3:

A, :4 t /EAsn ,

where

t  N  t . ,  _ d \ 2
E:* I ( * " * )  .  (5 )" -  N3- ' \  A - )

Here Z is the constant part of u, A: 512 is the normalization constant. Then renor-
malized Shannon entropy ,9, is calculated from eq. 3, but with the new subinterval
length A, defined by eq. 4.

Pearson's correlation coefficient r is defined by equation

\ . .
, :  z;#L-; ,  (6)

\ J t ;D  j j ) ' /  "

where 511 :Df=r(u*o-a,o)', Sii = Il=,(urr-li i)2, and S,i = DLr(upi-ù;)(upi-ûi)
for zth and jth neuronal inputs. Coefficient r is also calculated for neuronal outputs.
In this case the input signal u in eq. 6 is replaced by output one /(u). Pearson's
correlation coefficient is used for er,aluation of the degree of synchronization between
two neuronal inputs or outputs.

For the estimation of neural netv,'ork excitability, the average value of coupling
coefficients is used

(4)

Q , :

In the case when the sum of excitatory
of inhibitory connection strengths, d :
increase neural network excitabilitv.

(7)

connection strengths is equal to the sum
0. By increase of D to positive values, rve

L -* +""'

3 Simulation Results and Discussion

3.1 Role of Time Delav

Time delay plays importunt ,ot" in the production of different types of neural net-
work activities. Depending on r, we obtain both non-chaotic and chaotic input and
output time series.
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Fig. l: Largest Lyapunov exponent ) (r), Shannon entropy ,Ss7, (b), and
renormalized Shannon entropy S, (c) as functions of time delay r: M:10, c:3.0,
er(t):0.0, d : 0.0. Figures lb and c show the dependences for all 10 neurons.
[Reprinted from [9], Copyright (2001), with permission from Elsevier Science.]

Figure la shows the dependence of the Iargest Lyapunov exponent on r. The
calculations are made with the step Ar : 0.1. At small delays (r < 5.0) we
have only two relatively large positive values of the largest Lyapunov exponent:
À(r : 1.1) : 0.030 and )(r : 2.0) : 0.018. These values indicate chaotic solutions
of eqs. 1. The correlation dimensions arc u(r : 1.1) = 1.7 and u(r - 2.0) : 1.96,
respectively. In these cases we have relatively low-dimensional chaos (z < 3). For
other values of r < 5.0 we find only small magnitudes of the largest Lyapunov
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exponent lÀl < 0.001, both positive and negative. In the transition range of r
(5.0 < r 17.5), we see irregular changes of À, from relatively large positive values
to À æ 0. Further increase of the time delay r produces only chaotic neural network
activities, with positive values of the largest Lyapunov exponent (Fig. 1a). In this
case, the value of correlation dimension z varies from 5.8 to 7.5, which is close to
those observed in experiments with human or animal EEGs in the waking state
(from 6 to 9) [4, 12, 11,33, 13, 24, 25]. We consider this kind of activity developed
chaos.

oô o.2 0.4 P.)6 0.8
* e

Fig. 2: Spectra of the soma potentials for all 10 neurons. M : I0, c : 3.0, r :
10.0, d - 0.0, ei(t) :0.0. [Reprinted from [8], Copyright (1997), with permission
from Elsevier Science.]

Figures lb and c show the dependences of the Shannon entropy Ss;, and the
renormalized Shannon entropy ,9, on the time delay r for the activities (soma po.
tentials) of all 10 neurons. All quantities behave irregularly with r up to r x7.5,
showing abrupt changes in their values. They produce different "patterns of en-
tropy". The dependence ^957,(r) does not indicate abrupt changes of the degree of
chaos in the neuronal activities at r : 1.1 and r : 2.0 (Fig. 1b) which are clearly
seen from Fig. la. Only the dependence S,(r) increases at these time delays. In the
transition range ofr (5.0 < r < 7.5) we see irregular abrupt changes ofall entropies
and their patterns (see Figs. 1b and c) when the degree of chaos changes, according
to changes of the largest Lyapunov exponent (Fig. 1"). Note that only changes
of S, correlate with changes of À: S" increases every time as ) increases, and ,S,
decreases every time as À becomes close to zero (see Figs. 1a and 1c). When r > 7.5
we observe a stable picture for Ss6(r) and ̂ 9r(r). In this range of time delays the
order of curves Ssn(r)  for di f ferent neuron numbers (6, 5,  3,  7,8, l ,  10,9,4,2,
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from top to bottom) in Fig. 1b does not change. However, the dependence .9,(z)
shows the distribution of neurons over two clusters. First (upper) cluster includes
neuron numbers 2, 4,7,8, 9, 10. These neurons produce more chaotic activities.
The second (bottom) cluster consists of neuron numbers 1, 3, 5, 6. They have less
chaotic activities.

For the case of developed chaos typical spectra of all 10 neuronal soma po-
tentials are shown in Fig. 2 (r: 10.0). The peak frequencies are in the ratios
of 0.12:0.28:0.46:1.04. Similar ratios of the rnain rhythms of the human EEG
(delta-, theta-, alpha, and beta-rhythms) are also observed in the experiments:
2.3:5.5:10.5:21.5 [20). However, depending on the matrix of coupling coefficients
a6i, the spectra of neural activities can be different.

Thus we show that time delay can be used for controlling chaos in neural networks
and for the production of both chaotic and non-chaotic activities. At time delays
r > 7.5, rve have stable neural netrvork operation with developed chaos similar to
human or animal EEGs in the rvaking state.

3.2 Chaos Control by External Sinusoidal and Pulsed Forces

Activity of chaotic neural network with developed chaos (, > 3) can be controlled
by external action of sinusoidal force. In this câs€, €; = e .sinuet.

10 .0
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o)s
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h )v l  w e
1 .001 .00
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Fig. 3: Correlation dimension u (a) and largest Lyapunov exponent ) (b) as
functions of external periodic force frequen cy u.; M : 10, c - 3.0, r : 10.0, o : 0.0,
e : 7.0. For the correlation dimension the intervals in which z varies are shown.

[Reprinted from [8], Copyright (1997), with permission from Elsevier Science.]

Correlation dimension u and the largest Lyapunov exponent À as functions of
the sinusoidal frequency ue are shown in Fig. 3. We observe transitions between
relatively low-dimensional (z < 3) and high-dimensional (z - 5-8) chaotic regimes,
with the largest Lyapunov exponent having larger values in high-dimensional cases
than in low-dimensional ones (Fig. 3b). As a rule, low-dimensional chaos is observed
when the frequency of external force is close to the eigenfrequency of self-excited
oscillations in the neural network without external action.
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Similar irregular behavior of the chaotic neural network activity is observed at
the external action of pulsed periodic force by varying frequency o" (Fig. a). The
external force represents very short pulses, as in experiments [17, 1g], with relatively
large interpulse intervals. This situation is close to experimental conditions in [17,
19]. As in the case of sinusoidal force, we obtain transition "chaos-order" and
"chaos-chaos" with different characteristics.

10.0

7.5

À 5.0

0.03

0.02

,< 0.01

0.00

-0 .01
.  0.00 0.25

b)
0.25 0.50 0.75

GJg

1 .00 0.50 0.?5 1.00
a)

Fig. 4: Correlation dimension z (a) and largest Lyapunov exponent ) (b) as
functions of external pulsed force frequen cy w": M : 10, c : 3.0, r : 10.0, d : 0.0,
e = 2000.0.

Figures 3 and 4 are in a qualitative agreement with Fig. 8 from [19] where chaotic
regimes alternate with phase-locked regimes. Such reaction of both our model and
animal EEG to the external force is typical for non-linear dynamical systems, but
not noisy ones. This supports a point of view that the human or animal EEGs have
non-linear origin.

3.3 Chaotic Neural Network State

As mentioned in the introduction, chaotic neural network state can be determined
by two types of memories and correlation structure of inputs and outputs. Figure 5
shows dependences of constant and variable parts of input and output neuronal ac-
tivities and Pearson's correlation coefficients between the lst neuron and the other
neurons for input and output signals on the neuron number. It means that the
neural network under consideration possesses two types of memory which create the
neural network state: memory I formed by pattern of constant parts of neuronal
activities and memory II formed by oscillation amplitudes. In addition, patterns of
correlation coefÊcients allow detection of the degree of synchronization between neu-
rons ât the different types of the neural network activities (chaotic, quasiperiodic,
or periodic). Finally, we àssume that our chaotic neural network creates its state
which is characterized by the pattern of constant parts of neuronal activities (mem-
ory I), by the oscillation amplitudes (memory II), and by the patterû of Pearson's
correlation coefficients (correlation structure).
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Fig. 5: Constant part of input (a) and output (d) time series, oscillation am-
plitudes of input (b) and output (e) signals, and Pearson's correlation coefficients
between the 1st neuron and other neurons at input (c) and output (f) of the neural
natwork versus neuron number. M:70, c:3.0, r:10.0, er(l):0.0, d:0.0.

Note that the amplitude of neural network outputs only slightly dependent on
the neuron number. It means that the output information is carried by averaged
firing rate of each neuron in our model. However, input information is carried by
both constant and variable parts of the signal. So, each neuron in the chaotic
neural network processes information by its transfer from one characteristic (soma
potential) to another (averaged firing rate).
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3.4 External Stimulation and Epilepsy-Like Phenomena

To simulate chaotic neural network response to external stimulation, we applied
external periodic pulsed force with a frequency of u" : 0.25 and a pulse duration
of 0.1 in dimensionless units. We investigated the network response for different
stimulus amplitudes e : 300 and e : 3000, which effect the behavior of the chaotic
neural network in different ways. The results are presented in Fig. 6.
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Fig. 6: Shannon entropy ,Ssa (a, f), renormalized Shannon entropy ,S" (b, g),
constant part (c, h), oscillation amplitude (d, i), and Pearson's correlation coefficient
between the 1st neuron and other neurons (e, j) for neuronal input (a-e) and output
(f-j) time series as functions of neuron number in the neural network with pulse
external periodic force. Pulse force frequency is w" - 0.25, amplitudes q are 0
(triangles), 300 (squares), and 3000 (pentagons) in dimensionless units. M:II,
c : 3 . 0 . r : 1 0 . 0 . a - : 0 . 0 .
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The neural network does not show considerable changes in activity when external
periodic pulsed force increases from e : 0 to e : 300. It has the same values of
y:6.0-7.4 and À: +0.013. Only small changes in the patterns of z;, f(u), and
small increases of synchronization detected by r for input time series are available.
Increase in synchronization upon external stimulation was found in the experiments
with the brain [31, 32, 35, 38].

Futher increase of e to 3000 produces larger changes in neural network activity
(FiS. 6). The largest Lyapunov exponent becomes zero À = 0.0. Renormalized
Shannon entropy (pentagons in Fig. 6b) demonstrates a considerable decrease of its
value for input activity of all 10 neurons in the network, showing decrease in chaos.
Dramatic changes are also observed for Pearson's correlation coefficient (Fig. 6e)
and oscillation amplitude (Fig. 6d). It means that the input activity of all neurons
becomes fully correlated and their oscillation amplitude increases. Thus, with a
relatively strong external stimulus, our neural network shows a decrease in chaos
and large-amplitude synchronous oscillations. Such behavior is similar to stimulus-
evoked epilepsy, for example, due to a steady flashing light or loud sound, that is
observed in the experiments and in clinical practice.

Epilepsy-like phenomena can be produced in chaotic neural network at the in-
crease in neural network excitability. When the amplitude of external forces is zero
and d: 0.0, the neural network produces chaotic outputs with the correlation di-
mensions u : 6.0-7.4 (depending on the ordinal number of the neuron) and the
dimensionless largest Lyapunov exponent À : *0.013. The characteristic time se-
ries of input of the 3rd neuron for this case are shown in Fig. 7a. When increasing
the fraction of excitatory coupling coefficients by variation of the average value a
from 0 to 0.8, we replace relatively high-dimensional chaotic activity with v : 6.0-
7.4 (soma potential) by low-dimensional one with u :2.8-3.1. The time series for
the 3rd neuronal input in this case are shown in Fig. 7b. The largest Lyapunov
exponent decreases to the value ) : *0,010. It is also accompanied by a growth
of Pearson's correlation coefficient r. Further increase in d to 1.4 leads to further
increase in oscillation amplitude, decrease in correlation dimension to 1, decrease of
À to 0, and increase in r to 1.0.

Such behavior of our neural network model is also similar to epilepsy due to in-
creased brain excitability. The obtained correlation dimensions in the neural network
model are close to those observed in experimental epilepsy studies 2-4 14, 33, 13].
The value of the largest Lyapunov exponent is still positive, as \4/as found exper-
imentally. Epilepsy causes brain states which are different from those in normal
conditions (convulsions, loss of memory, etc.). Our chaotic neural network model
also shows changes of memory I, memory II, and correlation coefficients which char-
acterize neural network state in the regime of developed chaos to another ones for
the regime with decreased chaos.
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3.5 Modeling Dementia and Parkinson's Disease by'Weakening Interneu-
ron Connections

Changes of connection strengths substantially influence the chaotic neural network
activity. Figure 8 shows the dependences of largest Lyapunov exponent, renor-
malized Shannon entropy, constant component of neuron inputs, and oscillation
amplitudes as functions of the connection strength c.

At the decrease of c from 3.0 to 2.5, we do not observe substantial changes in
neural network activity. However, when c decreases to 2.0, the degree of chaos
changes too. The changes are detected by a small decrease of renormalized Shannon
entropy (Fig. 8b). Further, even a smaller change in c from 2.0 to 1.85 leads to
a stronger change in neural network activity. So, the largest Lyapunov exponent
becomes zero, indicating disappearance of chaos (Fig. 8a) at c : 1.85. It is followed
by considerable decrease in renormalized Shannon entropy S, (Fig. 8b). The pattern
ofconstant components ofneuronal inputs also shows substantial changes (Fig. 8c).
When c goes to 1.0, the neural network activity becomes close to periodic with
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a correlation dimension u x 1 at all neuronal inputs. The changes of Pearson's

correlation coefficients are not substantial when c decreases from 3.0 to 1.0.

0.02

0.015

0.005

2

- 1
la
t r o

- l

- 2
1 2 3

c
t 2 3

c

0

a)
4.2

. 4
tn

Ë s.e
ct

3.6

3.4

b)

c)

0.03

- 0.02

-  0.01

0

d)
t 2 3

c
t 2 3

c

Fig. 8: Largest Lyapunov exponent ) (a), renormalized Shannon entropy S' (b)'

constart component of neuron inputs Z (c), and oscillation amplitudes (d) versus

connection strength coefficient c; M:10, r: 10.0, er(r):0'0, d:0.0.

Changes of neural network dynamics at the decrease of coupling streugth between

the neurons show similarities to changes of EEG characteristics for patients with

dementia and Parkinson's disease. These patients have EEGs with decreased values

of the correlation dimension (4.31 for dementia and 4.89 for Parkinson's disease

versus 5.81 for control [34]). It is known that the cause of dementia and Parkinson's

disea.se is impaired neuronal function, particularly decreased connection strength

between neurons through impaired transmitter release. Our neural network model

demonstrates a decrease of correlation dimension from normal values 6.0-7.4 to 2.5-

4.2 upon decreasing the coupling between neurons. The last values are close to

those observed in patients with dementia (v : 4.31+ 1.40) and Parkinson's disease
(v :4.8e * 0.70) [34].

4 Conclusions

Thus, supporting the reductionist point ofview on the problem ofconsciousness and

memory in the brain, we investigated a neural network model which produces chaos

similar to the human or animal EEGs. Such a neural network can be considered a
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simple model for the brain, because it describes several types of the brain's properties
(similar characteristics of chaos, similar response to external stimulation, similar
information processing, etc.).

The chaos in the neural network can be controlled by the time delay or external
action of sinusoidal or pulsed periodic forces. The chaotic neural network shows
behavior similar to that observed in experiments on controlling chaos in the brain.

A concept of chaotic neural network state can be formulated by analogy to the
brain state which is characterized by two types of memories and correlation structure
of the network activity. The neural network state changes if any type of memory or
correlation structure changes.

Relatively large external stimuli or increased neural network excitability produce
epilepsy-like phenomena in a chaotic neural network. It characterized by a decrease
of chaos, an increase in oscillation amplitude and synchronization. These are features
of epilepsy in the brain.

Pathological non-chaotic activity appears in the chaotic neural network upon
decreasing connection strengths between neurons. The decrease in correlation di-
mension upon weakening connection strengths from the normal values of 6.0-7.4 to
2.5-4.2 is similar to that observed in patients with dementia and Parkinson's disea^se.
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