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Abstract

The definitions of two versions of uncertain logics and variables are given. The review
of main concepts and results concerning the application of the uncertain variables to the
analysis and decision making in a class of systems with unknown parameters in their
mathematical models is presented. The special and related problems concerning the
application to pattern recognition and operation systems, the learning processes and the
distributed knowledge representation are described.
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1 Introduction

Uncertainty is one of the main features of anticipatory systems. There exists a great
variety of definitions and formal models of uncertainties and uncertain systems [e.g. 25,
26, 27]. The most popular approaches are based on probabilistic model, fuzzy sets
theory and related formalisms such as evidence and possibility theory. In this paper the
uncertainty is understood in a narrow sense of the word and concerns an incomplete or
imperfect knowledge of something which is necessary to solve the problem. In our
considerations it is the knowledge of the parameters in the mathematical description of a
system. The purpose of this paper is to present a short description of so called uncertain
variables and a review of main concepts and results concerning the application of the
uncertain variables to the analysis and decision making in a class of systems with
unknown parameters in their mathematical models [2, 4, 5, 8, 9, 11, 12, 17-24]. The
unknown parameters will be assumed to be uncertain variables and the systems with
uncertain parameters will be called uncertain systems.

The uncertain variables, related to random variables and fuzzy numbers are described
by their certainty distributions which correspond to probability distributions for the
random variables and to membership functions for the fuzzy numbers. The certainty
distribution is given by an expert and evaluates his opinion on approximate values of
the uncertain variable. The definitions of the uncertain variables are based on definitions
of uncertain logics. Two versions of the uncertain logic and the corresponding versions
of the uncertain variable are introduced in Sec. 2 and 3. The definitions of the uncertain
variables contain not only the formal description but also their interpretation, which is
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of much importance. It is worth to note that from the formal point of view (without
taking into account the interpretation) the probabilistic measure is a special case of the
fuzzy measure and the probability distribution is a special case of the membership
function in the formal definition of the fuzzy number when the meaning of the
membership function is not described. The uncertain variable in the first version may be
formally considered as a very special case of the fuzzy number (exactly speaking — the
possibilistic number) with a specific interpretation of the membership function.
Nevertheless for the sake of simplicity and unification it is better to introduce it
independently (as has been done in the paper) and not as a special case of much more
complicated formalism with different semantics.

In Sec. 4 the applications of the uncertain variables to basic analysis and decision
making (control) problems are presented for the system described by a function
(functional system) and described by a relation (relational system). In the second case
the analysis consists in finding the output property (i.e. the property concerning the
output vector or the set to which the output vector belongs) for the given input property.
The decision making is an inverse problem: for the given output property one should
find the input property which implies the required output property [1, 3]. For the system
with uncertain parameters the modified versions of these problems adequate to the
description of uncertainty are presented. In Sec. 6 the applications of the uncertain
variables for a closed-loop control system with a dynamical plant are indicated and in
Sec. 7 special problems are described. The details and examples may be found in the
papers listed in References.

2 Uncertain Logics

We shall present two versions of an uncertain logic: logic L and logic C. Consider a
universal set 2, @ € 2, a set X c R¥, a function g: Q2 — X, a crisp property
(predicate) P (X) and the crisp property ¥ (w,P) generated by P and g “For

X = g(w) £ ¥(w) assigned to @ the property P is satisfied”. Let us introduce now the
property G, (x)=“¥(w) = x” for x € X < X, which means: “X is approximately
equal to x” or “x is the approximate value of X ”. The properties P and G,, generate the

soft property ¥ (,P) in 2 “the approximate value of ¥(w) satisfies P”, i.e.
‘[7’(0),P)’= "X(w) € Dy", D, ={¥e X :P(x)}, 1)

which means: “% approximately belongs to D, ”. Denote by /4, (x) the logic value of
G:
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w (@) = x] 2 hy(x), /\ ho() 2 0. maxhy () = 1. @)

xelX A’

Definition 1. The uncertain logic L is defined by £ X, X, crisp predicates P (¥), the
properties G, (x) and corresponding functions A, (x) for w € 2. In this logic we

consider soft properties (1) generated by P and G, . The logic value of ¥ s

__ A max h,(x) for D, #O
w[¥ (w,P)] = v[¥ (w,P)] = {xeDy
0 for D, =&

and is called a certainty index. The operations are defined as follows:
V=¥ (@, P)=1-v[¥ (o, P)], (3)

V[YJI(UJ,PI) \% Tz(w’P2)] = max{‘)[‘ill(wwpl)v \’[?’2((1),])2)]}, (4)

0 if foreachx w(P, APy) =0
v[# (o, P) "y, Py)] =1 _
min ¥ (o, P), v[¥>(w, P,)]} otherwise

(5)
where ¥ is ¥ or =¥ ,and ¥ is ¥ or =¥ O
It is easy to note that G, is a special case of ~ for D, = {x} (a singleton) and
viX(w) = x]1= h,(x), vi¥(@) Z x] =1~ h,(x).
For the logic L one can prove the following statements [11, 20]:
v (@, vP)]=v[¥(0,P)vT(0,P)], (6)
vI[¥ (o, P A Py)] < min{v ['}7(60 P)lv [¥ (o, P)l}, @)
V[¥ (0, -~ P)] 2 v[-¥ (w, P)]. 8)
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The interpretation (semantics) of the uncertain logic L is the following: The uncertain
logic operates with crisp predicates P, but for the given it is not possible to state if P
is true or false because the function g and consequently the value ¥ is unknown. The
function A, (x) is given by an expert, who “looking at” @ obtains some information
concerning ¥ and uses it to evaluate his opinion that ¥ = x. For the same (£2, X) we
may have the different logics (the different 4, ) determined by different experts.
Definition 2 (the uncertain logic C). The first part is the same as in Def 1. The certainty
index of ¥ and the operations are defined as follows:

Ve [P (@, P) = %{1/[?7(a),P)]+]—v['if—(a),—'l’)]} = %[ max hy,(x) +1- max hg,(x)],

xeD, xeD,

—~¥% (w,P) =¥ (w,-P), )
¥(w,P) v ¥ (@, P) =¥ (P v Py), (10)
¥ (@, P) A (0, Py) =¥ (o, P) A Py) (11)

O

One can note that G, is a special case of ¥ and

ve [¥(@) = x] = %[hw(x) +l- max () (12)

xeX-{x}

For the logic C one can prove the following statements [11, 20]:

Vo [’17(0), Pl Vv P2 )] > maX{\7(‘[.{7(a), Pl )], V(*[y—’—(w, Pz )] } 5 (13)
vC[Y7(a), B A Py))] < min{ve- [¥ (o, P)lve [‘17(60, P}, (14)
vel[~ ¥ (@, P)] = 1-vq[¥ (@, P)]. (15)

The definition of implication is not introduced here because it is not used in the further
considerations concerning uncertain variables and the decision making problem.
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3 Uncertain Variables

The variable ¥ for a fixed w will be called an uncertain variable. Two versions of
uncertain variables will be defined by: s(x) given by an expert and the definitions of

certainty’  indexes w(X¥ €D,), w(x €D,), w(X EDy VX ED,),
w(XED AXED,).

Definition 3. L-uncertain variable X is defined by X, the function A(x) = v (¥ = x)
given by an expert and the following definitions:

v(¥ € D,) = max h(x) for D, # @ and 0 for D, =, (16)
xeD,

V(¥FED,)=1-v(XED,), 17

v(¥* €Dy vX € D,)=max{v(¥ € D), v(X¥ € D,)}, (18)
min{v(x € D)), v(¥x € D)} for DynD, #J

‘ V(f’éDI/\f’éDz)z (19)
0 for DinD, =0

The function 4 (x) will be called L-certainty distribution O

The definition of L-uncertain variable is based on logic L. Then for (1) the properties
(6), (7), (8) are satisfied. In particular, (8) becomes

V®ED)2v(xED)=1-v(xED).

Definition 4. C-uncertain variable is defined by X, h(x) = v(X = x) given by an
expert and the following definitions:

ve(¥ € D,) = %[xnelan h(x)+1- max h(x)], (20)

xeD,

ve(X® € D) =1-vo(X € D,), (21)




vo(X € Dy AX E D)) =vo(X E Dy N Dy) (23)

O

The definition of C-uncertain variable is based on logic C. Then for (1) the properties
(13), (14), (15) are satisfied. According to (9) and (15) x. The function

ve(x = x) £ hc-(x) may be called a C-certainty distribution. To determine A- and
ve(x € D) it is necessary to know & (x) and to use (12) and (20), respectively. The

uncertain logics L and C are chosen as the bases for the uncertain variables because of
the advantages of these approaches. In both cases w(¥ € D,) =1-w(¥ € D,), in

the first case it is easy to determine the certainty indexes for v and A, in the second

m m
case in the definition of M (¥) = Y x;h(x;)( Y h(x; )~ the values of h(x) for D,

i=1 i=1
are also taken into account. In the discrete case, i.e. for X = {x, x5, ..., x,,}
m m =]
M (x) = 3 x;h(x;)( X h(x;)) (24)
i=1 i=1

is called a mean value of L-uncertain variable X. In the continuous case (% is a
continuous function) the sums in (24) should be replaced by integrals. The mean value
of C-uncertain variable is defined in the same way, with A~ in the place of 4. To
compare the uncertain variables with probabilistic and fuzzy approaches, let us take into
account the following definitions for the discrete case (x e R, using 2 wand g

introduced in Sec.2.
The random variable X is defined by X and probability distribution

P(x =x) A p(x). The function p(x) does not depend on the subjective opinion of an
expert, may be determined in empirical way and describes the whole set £2 (A, (x)

describes the fixed, particular w).
In the fuzzy approach there exist three basic definitions of the ﬁxzzy set based on the
number set X: (a) The fuzzy number %(d) for the given fixed value d € X is defined

by X and the membership function u(x,d) which may be considered as a logic value of
the soft property “if £ = x then £ = d ”. (b) The linguistic fuzzy variable £ is defined
by X and a set of membership functions ;(x) corresponding to different description of
the size of X (small, medium, large etc.). E.g. 1;(x) may be considered as a logic value
of the soft property “if X = x then X is small”. (c) The fuzzy number %(w) is defined
by Xand u,,(x) which is a logic value of the soft property “it is possible that P(@, x)”
for the given P(w, x). In the cases (a) and (b) x does not depend on @ and the
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difference between X(d) or x and the uncertain variable ¥(w) is evident. In the case
(c) the function g may not exist, ¥(w) may be considered as a special case of #(w)
(where relation P(w, x) is reduced to the function g), with a special interpretation of
U, (x) = h,(x)= certainty index that ¥(w) = x. The further difference is connected
with the definitions of the certainty indices for ¥ € D,, ¥ € D,, X €D, vX D,

and X € D) nX € D,. The function w(X & Dx)ém(Dx) may be considered as a
measure defined for the family of sets D,. Two measures have been defined here:

v(x €D,) émL (D) and v~ (x € D,) é-mp(Dx) Taking into account the measures
known in our area (e.g. [25]) it is easy to show, that m- is neither belief nor plausibility
measure and m; is a possibility measure with very specific semantics: m~(D,) is a
certainty index that ¥ € D,..

4 Uncertain Systems

Systems whose description contains uncertain parameters may be called uncertain
systems. For such systems one may formulate analysis and decision making problems
analogous to those for deterministic functional and relational systems [1, 3]. Consider a
static system described by a function y = @(u,x) where u e U/, yeY, 6 x e X are

input, output and unknown parameter vector, respectively (U, ¥, X are number vector
spaces). The parameter x is assumed to be a value of an uncertain variable ¥ with
h .(x) given by an expert.

Analysis problem for a functional system: For the given @, A .(x) and u determine
h,(v;u) and M (¥). Using (16) one obtains
hy(yu)=v(y=y)= max h.(x) (25)

xeD,(v.u)

where D, (y,u) = {xe X : @(u,x) = y}. Having h,,(y;u) one can determine My(y)

according to (24). The analysis problem may be extended for a system described by a
relation R (u, y,x) c U xY x X in the following way:

Analysis problem for a relational system: For the given R, /4 .(x), u and Dy

determine v[D , & D, (u; x)] where

Dy(u; x)={yel: (uyx)eR@u,y,x))}
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is the set of all possible outputs for the fixed u. To solve the problem one should
determiner(Dy,u) ={xe X: Dy c Dy(u; x)}. Then

D, D (ux)]=v[xED.(D, u]= max h (x). 26
v[D, € Dy(u;X)] = v [¥ € Dy(Dy,u)] re DDy ) x(X) (26)

The value (26) denotes the certainty index of the property: the set of all possible outputs
approximately contains the set D, given by a user. In the above formulations X has

been considered as L-uncertain variable.
The analogous problems may be formulated for C-uncertain variables: for the same
data as in the above formulations one should determine C-certainty distribution

he. 5 (y;u) and M, .’ (¥) in the case of the functional system and
ve [D,, € D, (u; ¥)] for the second case. For the solution one should use (25) and (26),
find

vix €D,(D,,w)]= max  h.(x)
- Y& Da(Dy 1)

where D, = X - D,., and determine hq ,(yiu), v [D, & D, (u;%)] using the
relationships (12) and (20), i.e.

v(w[D_v c Dv(u, X)]=ve[x € DX(D_V, w)]= %{v [x € Dx(Dy, w]+1-v[x e Bx(Dy’ w)] .

Decision making problem for a functional system may be formulated as follows:
Version I: to find the decision #* maximizing v(y = y*) where y* is a desirable
output variable.

Version II: to find #™ such that M y(yiu) = .

In both versions 4 ,(y;u) should be determined according to (25). Then, in version I
u”* is the value of ¥ maximizing h,( y*,u) and in version I #" is obtained from the
equation M (y,u) = y*. If X is considered as (-uncertain variable then A~ ,,, M¢ |,

and vo(y = y*) should be determined.
Decision making problem for a relational system: For the given R, # ,(x) and D,

find the decision #* maximizing the certainty index of the property: the set of all
possible outputs approximately belongs to D, given by a user. Then
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u" = arg max v[Dy(u; X)C Dy] = argmax  max h.(x) 27
u u xeD,(Dy,u)

where
ﬁx(DV,u) ={xeX: Dy(u; x)cD,}
or
Dx(Dy,u) ={xe X :ueD,(x)}

where D, (x) < U is the largest set such that the implication # € D,(x) > y € D, is
satisfied, ie. D, (x)={uecU: Dy(u, X) C Dy}. Let x =argmaxh (x), ie.
h(%) = 1. Then the set of all decisions u* is D, ={uelU:xeD,(u)} and
v[D,(4;X) C D] = 1. The considerations using v for C-uncertain variables are

analogous to those for the analysis problem.

The formulations of the analysis and decision problems may be extended for the
system (the plant) described by a function y = @(«, z, x) or by a relation R(u, y, z, x)
where z € Z is a vector of external disturbances [19, 23]. In particular, the decision
problem for the functional plant in version I may be formulated as follows: For the

givenzand y* find u* maximizing v (¥ = y*). Then

u" = arg max @ (u, z) A ¥ (2)
uelU

where @ (u, z) = hy (y*; u,z) and hy is determined according to (25) with @(u, z, x)
in the place of @(u, x). If 4" is a unique value maximizing @ for the given z then we

obtain the function u* = ¥(z) ie. the decision algorithm in an open-loop decision
system. Assume that the equation @ (u,z, x) = y has a unique solution with respect to

u. uy é¢’a,(z, x). This relationship together with A (x) may be considered as a
knowledge of the decision making and may be called an uncertain decision algorithm.
Using it one can obtain the deterministic algorithm

u; = arg max hy, (u; z) 4 ¥,;(z)
uelU

where
h,(u;z) = max h,(x)

xeD, (u;z)
and D (u;z) ={x € X : u = @;(z,x)}. The algorithms ¥ and ¥; are based on the

knowledge of the plant KP =< @, h, > and on the knowledge of the decision making
KD =< ®;,h, >, respectively. The results of these two approaches may be different,
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i.e.in general ¥;(z) # ¥(2).
Example 1: Consider a plant without the disturbances z, with u, y, x € RY . The relation
R is given by inequality xu <y <2xu, D, = 1,21, y1 >0, ¥ >2y;. Then

21

D, (x) =[]

, y—z], D, (u) = y_’ 12—]. Assume that x is a value of an uncertain
x % u’ 2u

variable X with triangular distribution A,(x): x € [0,1], X = % It is easy to note that

u* minimizing v in (27) is any value from [2y;, y,] and v (u*) = 1. For C-uncertain
variable we obtain

y2(2u)‘l when u <y +05y,
ve(u) = 1 - ylu“1 when y; <u <y +05y,

0 when u<y.

It is easy to see that uZ- = y; + 0.5y, where uzw is the value maximizing v (u), and
vC(uga) =y,(2y; + yz)‘l. E.g for y; =2, y, =12 the results are the following:
u' e [4,12] and v =1, uzv =8 and v, =0.75.

5 Closed-Loop Control System. Uncertain Controller

The approach based on uncertain variables may be applied to closed-loop control
systems containing continuous dynamic plant with unknown parameters which are
assumed to be values of uncertain variables. The plant may be described by a classical
model or by a relational knowledge representation. Now let us consider two control
algorithms for the classical model of the plant, analogous to the algorithms ¥ and ¥y
presented in Sec. 4: the control algorithm based on KP and the control algorithm based
on KD which may be obtained from KP or may be given directly by an expert. The
plant is described by the equations

5(t) = fs(@), u(®); x],
(@) = nls(H)]

where s is a state vector, or by the transfer function Kp(p;x) in the linear case. The

controller with the input y (or the control error ¢) is described by the analogous model
with a vector of parameters » which is to be determined. Consequently, the performance
index
T
A
0 = [p(y,x)dt=2(b, x)
0
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for the given 7" and ¢ is a function of 5 and x. In particular, for onedimensional plant

[e0]
0 = [eX(t)dt = D(b, x).
0
The closed-loop control system is then considered as a static plant with the input b, the
output O and the unknown parameter x, for which we can formulate and solve the
decision problem described in Sec. 4. The control problem consisting in the

determination of b in the known form of the control algorithm may be formulated as
follows.

Control problem: For the given models of the plant and the controller find the value 5
minimizing M(Q), i.e. the mean value of the performance index. '

The procedure of the problem solving is then the following:
1. To determine the function Q = @(b, x).

2. To determine the certainty distribution hy (g b) for O using the function @ and the

distribution 4,(x) in the same way as in the formula (25) for y .
3. To determine the mean value M (Q: b).
4. Tofind b minimizing M (Q; b) .
In the second approach corresponding to the determination of ¥; for the static
plant, it is necessary to find the value b(x) minimizing Q = @(b, x) for the fixed x. The

control algorithm with the uncertain parameter A(x) may be considered as a knowledge
of the control in our case, and the controller with this parameter may be called an
uncertain controller. The deterministic control algorithm may be obtained in two ways,

giving the different results. The first way consists in substituting M (b) in the place of
b(x) in the deterministic control algorithm, where M () should be determined using the
function b(x) and the certainty distribution A, (x). The second way consists in
determination of the relationship between u,; = M (i) and the input of the controller,
using the form of the uncertain control algorithm and the certainty distribution 4, (x). It

may be very difficult for the dynamic controller.
The problem may be easier if the state of the plant s(#) is put at the input of the
controller. Then the uncertain controller has the form

u="%(s,x)

which may be obtained as a result of nonparametric optimization, i.e. ¥ is the optimal

control algorithm for the given model of the plant with the fixed x and for the given
form of a performance index. Then

u; = M(u,s) éY’d(s)

where M (i1, s) is determined using the distribution
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h,(u;s) = v[X¥ € Dy (u;5)] = max h,(x)
xeD, (u.s)

and
D, (u;s)={xe X :u=¥(s,x)}.

Example 2: Let us consider the time-optimal control of the plant with
Kp(p;x) = xp~2, subject to constraint | u(¢) [< M . It is well known that the optimal
control algorithm is the following

u(t) = M sgn(e + |él¢(2xM)~)

where ¢ = —y . For the given A, (x) we can determine A, (u; &, &) which is reduced to
three values v; = W = M), v, = v(# = -M), vy = v(it = 0). Then

uy(t)y = M@@) = M@, —vy)(v + vy + \)3)_1 ;

It is easy to see that

vy = max h.(x), vy, = max h.(x)
xeDy xeDyy

where
D, = {x: xsgne > —|ge2Mle))~"},
Dy ={x:xsgne < -léle2Me))1y

and vy = h.(-glé(2Me)1).

The certainty distribution of ¥ has triangular form: A, = d Y (x-a+d) for

a-d<x<a, h,= —d‘l(x—a—d) for a<x<a+d, h,=0 otherwise,
0<d<a.Fore>0,6<0and x, <a it is easy to obtain the following control
algorithm
M for d<a- Xg
uy; = M(ur) = a-xg

m for dZa—xg

where x, = —Jélé(2Me)™! Eg for M =05, é=-3, £¢=1, a=16 and d = 10

we obtain u; = 0.2.

6 Special and Related Problems

A. Logical knowledge representation
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The relation R(u, y, x) considered in Sec. 4 may be described by a set of facts, i.e.
logical formulas concerning u, y and x, which describe a logical knowledge
representation. If the properties u € D,, and y € D,, are described by logical formulas

using the simple formulas from the knowledge representation then the analysis and
decision problems analogous to those in Sec. 4 may be solved by applying so called
logic-algebraic method. The main idea of this method consists in replacing individual
reasoning concepts based on inference rules by unified algebraic procedures based on
the rules in two-value logic algebra [1, 3, 4].
B. Pattern recognition

The uncertain variables may be applied to a knowledge-based pattern recognition
problem. Let an object described by a vector of features # belong to a class
jeJ ={,2,.,M}. The knowledge representation in the form of a relation

R(u, j, x) is reduced to the sets D, (j) c U for j =1,2,...M . Then
Di(u,x)={jeJ :ueD,())}

is the set of all possible j for the given value u. The recognition problem may consists in
finding the certainty index

vy =PfE D;(u,¥)] = max h.(x)
xeD . ())
where D (j)={xe X :je Dj(u, x)}, or the certainty index v(4;) for the given
4; cJ
v(4)) = vID(u,x) c A;}= max h,(x)
xer(Aj)

where Dx(Aj) ={xe X :D;(u, x)c 4;}.In the first case v; is the certainty index
that j for the object to be classified belongs to the set of all possible j, and in the second

case v(4 : )is the certainty index that the set of all possible j belongs to 4; [9].
C. Task distribution in the complex of operations

Let us consider a complex of parallel operations executed by a group of executors
(operators in production system or computers for computational operations). The
operations are described by relations 7; < x;u; where T; = y; is the execution time and
u; is the size of a task (e.g. the amount of a raw material) in i-th operation, i € 1,k . The
requirement is y < @ where y =7 = max I; is the execution time of the whole
complex. The decision problem is as follows: for the given A (xy), ..., Ay (xg) and
a, find the task distribution u" = (uT ,...,uz) maximizing v(¥ € [0,a]) = v(J < a),
subject to constraints u; + ... + u, = U where U is the size of the task to be distributed.
It is easy to see that
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v <) =v(; L @) A AV(F < @)= minv(y;)
where

vi(u;) = v(y <a)= max hy(x;)
xier,-(u,-)

and D,;(x;) is described by x; < ozui_l [15, 16, 21, 22].
D. Descriptive and prescriptive concepts. Generalization

The knowledge of the decision making described in Sec. 4 may be obtained from the
knowledge of the plant or may be given directly by an expert. It is possible to compare
these two approaches by comparing the deterministic decision algorithm ¥y(z)

~ obtained by the determinization of the uncertain decision algorithm based on the
knowledge of the plant or the uncertain decision algorithm arbitrary formulated by an
expert. Under some assumptions so called principle of equivalency may be given. The
same problem concerns the descriptive and prescriptive approach for the fuzzy
description and the fuzzy decision algorithm (or fuzzy controller). The considerations
using uncertain variables, random variables and fuzzy numbers are similar from the
formal point of view and may be generalised by introducing soft variables and
evaluating functions. Then uncertain variables, random variables and fuzzy descriptions
are considered as special cases of the description based on the soft variables [23, 18].
E. Learning processes

For the knowledge-based system with unknown parameters x in the knowledge
representation, the learning process consisting in step by step knowledge validation and
updating has been described. The validation and updating may concern the knowledge
of the plant, i.e. R(u,y,x) or directly the knowledge of the decision making, i.e.

D, (x) where D, (x) c U is the largest set of the decisions such that the implication
ueD,(x)>yeD, is satisfied. In the process of the current estimation of x it is

possible to use a priori knowledge in the form of the certainty distribution 4,.(x) [6, 7,

8,9, 10, 13, 15, 16]. The analysis of the convergence of the learning process may be
based on the stability conditions for uncertain discrete systems [14].

7 Conclusion

The uncertain variables are proved to be a convenient tool solving the decision
making problems in a class of uncertain systems, including specific problems for
uncertain anticipatory systems. The analysis and decision problems based on the
uncertain variables may be extended for some classes of complex uncertain systems
with the distributed knowledge representation. In some cases it is possible to apply a
decomposition, and to compare the results with a direct approach to the system as a
whole. In particular, such an approach is possible for a complex production system with
a cascade or a multilevel structure [12, 22]. The problems concerned with the
applications of the uncertain variables and certainty distributions in learning
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knowledge-based systems and in systems with the distributed knowledge representation
(including anticipatory systems, decision making in complex manufacturing systems
and in computer operating systems) form the main new directions in the considered
area.
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