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Abstract

We present a new approach to get bounds on the service cycle time in acyclic fork-
join queueing networks. The approach is based on (max, +)-algebra representation
of network dynamics and involves analysis of limiting behaviour of a product of
random matrices. As a result, a new upper bound on the cycle time is established
which takes into consideration the network topology.
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1 Introduction

Fork-join networks, as introduced in (Baccelli, 1989; Baccelli, 1992), present a class
of queueing systems which allow customers (jobs, tasks) to be split into several
parts, and to be merged into one when they circulate through the system. The
fork-join formalism proves to be useful in the description of dynamical processes in a
variety of actual complex systems, including production processes in manufacturing,
transmission of messages in communication networks, and parallel data processing in
multi-processor computer systems. As an illustration of the fork and join operations,
one can consider respectively splitting a message into packets in a communication
network, each intended for transmitting via separate ways, and merging packets at
a destination node of the network to restore the message (Baccelli, 1989).

One of the problems of interest in the analysis of stochastic queueing networks is
to evaluate the service cycle time of a network. Both the cycle time and its inverse
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which can be regarded as a throughput present performance measures commonly
used to describe efficiency of the network operation.

A natural way to represent the dynamics of fork-join queueing networks relies on
the implementation of recursive state equations of the Lindley type (Baccelli, 1989).
Since the recursive equations associated with the fork-join networks can be ex-
pressed only in terms of the operations of maximum and addition, there is a pos-
sibility to represent the dynamics of the networks in terms of the (max, +)-algebra
which is actually an algebraic system just supplied with the same two operations
(Cuninghame-Green, 1979; Baccelli, 1992; Maslov, 1994).

In this paper, a new approach to get bounds on the service cycle time for acyclic fork-
join queueing networks (AFJQN’s) is developed. We exploit the (max, +)-algebra
representation of network dynamics derived in (Krivulin, 1996), which allows one to
describe the evolution of a network by a stochastic vector difference equation. We
consider a (max, +)-algebra product of random matrices involved in the equation,
and give algebraic bounds on the product. Furthermore, the limiting behaviour of
the product is examined, and appropriate bounds on its associated limit matrix are
obtained. Finally, we apply the above results to get bounds on the service cycle
time, including a new upper bound which takes into account the network topology.

The rest of the paper is organized as follows. Section 2 serves as an introduction
to the problem under consideration, including a brief description of AFJQN’s and
their related performance measures. Section 3 starts with an overview of basic facts
about (max, +)-algebra. Furthermore, we investigate alternating (max, +)-algebra
products of matrices of particular types, and give some useful inequalities.

In Section 4, we present a dynamic equation which represents the network dynamics,
and give an example. We also show that the service cycle time of a network is
determined by the limiting behaviour of a product of random matrices. We examine
properties of the matrix product and offer algebraic bounds in Sections 5 and 6.

In Section 7, the above results are applied to establish existence conditions for a
limiting matrix and obtain appropriate bounds on the matrix. Finally, in Section 8,
we present bounds on the service cycle time, and give related examples.

2 Acyclic Fork-Join Queueing Networks

Consider a network with n single-server nodes and customers of a single class. The
topology of the network is described by an oriented acyclic graph G = (N, A), where
the set N = {1,...,n} represents the nodes, and A = {(7,7)} C N x N does the
arcs determining the transition routes of customers.

For every node i € N, we denote the sets of its immediate predecessors and succes-
sors respectively as P(:) = {j|(j,7) € A} and S(¢) = {j|(¢,5) € A}. In specific
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cases, there may be one of the conditions P(i) = @ and S(i) = () encountered. Each
node i with P(i) = 0 is assumed to represent an infinite external arrival stream of
customers; provided that S(i) = @, it is considered as an output node intended to
release customers from the network.

Each node i € N includes a server and its buffer with infinite capacity, which
together present a single-server queue operating under the first-come, first-served
discipline. At the initial time, the servers are assumed to be free of customers; the
buffers in all nodes 7 with P(i) # () are empty, whereas the buffer at each node
with no predecessors is assumed to contain an infinite number of customers.

Furthermore, we suppose that, in addition to the usual service procedure, special
join and fork operations are performed in its nodes, respectively before and after
service. The join operation is actually thought to cause each customer which comes
into node i, not to enter the buffer at the server but to wait until at least one
customer from every node j € P(i) arrives. As soon as these customers arrive,
they, taken one from each preceding node, are united into one customer which then
enters the buffer to become a new member of the queue.

The fork operation at node i is initiated every time the service of a customer is
completed; it consists in giving rise to several new customers instead of the original
one. As many new customers appear in node i as there are succeeding nodes
included in the set S(i). These customers simultaneously depart the node, each
being passed to separate node j € S(z). We assume that the execution of fork-join
operations when appropriate customers are available, as well as the transition of
customers within and between nodes require no time.

For the queue at node i, we denote the kth arrival and departure epochs respectively
as u;(k) and z;(k). Furthermore, the service time of the kth customer at server
¢ is indicated by 7. We assume that 7 are given nonnegative random variables
(r.v’s). With the condition that the network starts operating at time zero, it is
convenient to set z;(0) =0, and z;(k) = —o0 forall k<0, :=1,...,n.

It is easy to set up equations which relates z;(k) and wu;(k). Specifically, the dy-
namics of the queue at any node ¢ is described as

zi(k) = max(7ix + ui(k), i + zi(k — 1)). (1)

As it immediately follows from the above description of the fork-join operations, the
kth arrival epoch into the queue at node i is represented as

ui(k) = { Daagdh), P, (2)
o if P(i)=0.
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We consider the evolution of the network as sequences of service cycles performed
in the network nodes. In each node, the 1st cycle starts at the initial time, and it is
terminated as soon as the server in the node completes its 1st service, the 2nd cycle
is terminated as soon as the server completes its 2nd service, and so on. Clearly,
the completion time of the kth cycle in node ¢ can be represented as zi(k).

In many applications, one is interested in evaluating the limits

1 1
‘ v; = lim —z;(k), v = lim - maxz;(k)
k> k k—o00 4
‘ for all ¢ = 1,...,n, provided that they exist. The limit v is normally referred to
as the service cycle time of the network. The system throughput presents another
performance measure of interest, which is calculated as the inverse of 7.

It has been shown in (Krivulin, 1998) that if for each i = 1,...,n, the service times
Ti1, Tiz, . - -, present independent and identically distributed (i.i.d.) r.v.’s with finite
‘ mean and variance, then it holds

‘ max E[r;1] < v < E[max 7).
Note that both the lower and upper bound do not depend on the topology of the

underlying network. Below a new upper bound will be given based on the (max, +)-
algebra approach. The bound allows one to take into account the network topology.

3 The (Max,+)-Algebra

The (max, +)-algebra presents an idempotent commutative semiring (idempotent
semifield) which is defined as the triple (R.,®,®) with R, = RU {e}, ¢ = —o0,
and binary operations @ and ® defined as

¢ @y =max(z,y), TOY=z+Y,

for all z,y € R..

As it is easy to see, the operations @ and ® retain most of the properties of the
ordinary addition and multiplication, including associativity, commutativity, and
distributivity of ® over @. This allows algebraic manipulations to be performed
under the usual conventions regarding brackets and precedence of ® over @. Note
that the operation @ is idempotent. In other words, for any z € R., one has
rdhr=uw.

There are the null and identity elements in the algebra, namely ¢ and 0, to satisfy
the conditions t®e=e@z==z,and ®0=0Qz = z, for any = € R,. The null
element ¢ and the operation ® are related by the usual absorption rule involving
TR®e=eQr=c¢.




3.1 Matrix Algebra
The (max, +)-algebra of matrices is readily introduced in the regular way. Specifi-
cally, for any (n x n)-matrices A = (a;;) and B = (b;;), we have

n

{AEBB},'J' :aijé})bij, and {A@B}U‘ = @aik®bk]‘.
k=1

Asin the conventional algebra, both the matrix operations @ and ® are associative,
whereas only the operation @ is commutative. The distributivity property of &
over & is also valid in the matrix algebra.

The matrices
E ... € € 0

present the null and identity elements, respectively.

The matrix operations & and ® possess monotonicity properties; that is, the
component-wise matrix inequalities A < C and B < D result in

A@B<Co®D, A®B<C®D
for any matrices of an appropriate size.

Let A # £ be a square matrix. In the same way as in the conventional algebra, one
can define A° = F, and A" = AQ A" ! = A" @ A for any integer m > 1.

Note that idempotency of @& leads, in particular, to the identity
A@B)’"—@A’ ® B™, (3)

for any square matrices A and B of the same size.

Consider an (n x n)-matrix A. It can be treated as an adjacency matrix of an
oriented graph with n nodes, provided each entry a;; # ¢ implies the existence of
the arc (¢,7) in the graph, while a;; = ¢ does the lack of the arc.

It 1s easy to verify that for any integer m > 1, the matrix A™ has its the entry

76 ¢ if and only if there exists a path from node 7 to node j in the graph,
Wthh consists of m arcs. Furthermore, if the graph associated with the matrix A
is acyclic, we have A™ = € for all m > p, where p is the length of the longest path
in the graph. Otherwise, provided that the graph is not acyclic, one can construct
a path of any length, and then it holds that A™ # £ for all m > 0.
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Let A = (a;;) be an arbitrary matrix. The matrix G obtained from A by replacing
each entry a;; > ¢ by 0 is referred to as the support matrix assoclated with A.

For any matrix A, we denote its maximal element as
14l = @D ais-
g

Suppose that G is the support matrix of A. Then we can write the obvious in-
equality
A< Al @G. (4)

Finally, we introduce the ordinary matrix addition + as an external operation.
We consider both the operations ® and & as taking precedence over + in any
algebraic expressions below. Clearly, the operation + is distributive over .

3.2 Distributivity Properties

Let A;; be (n x n)-matrices for all i = 1,...,k and j =1,...,m. Distributivity
of the operation ® over @ immediately gives the equality

k m
Q@Pai= O Aunoodo (5)

k m
Z @Aij = @ (Asj, + -+ Ak ) (7)

=1 j=1 1<51yJk M

and then the inequality
k

k m
Z@AijZ@ZAij- (8)

=1 j=1 j=1 i=1

Consider the matrix operations ® and +. Although there is no way to formulate any
general distributivity property associated with these operations, in particular cases
involving support and diagonal matrices, some useful inequalities can be established.
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Specifically, it is not difficult to verify that for any matrices A and B, and support
matrices GG; and G, it holds

Gi®(A+B)®G<G1®AR G +G1®BRG,. (9)

Consider a (max, +)-algebra diagonal matrix D = diag(dy,...,d,) with all off-
diagonal elements equal to ¢. As it is easy to see both matrix operations @ and
+ being applied to diagonal matrices produce the same result. In other words, we
have D] ® Dg = D] + .D2.

Let D; and D, be diagonal matrices. Then for any matrices A and B, it holds
D, ®(A+B)® D,
3.3 Products of Diagonal and Support Matrices

In this section, we consider @-products of alternating diagonal and support matrices,
which take the form

Do®(G®D1)® @ (G®Dn)=Do® ) (G D), (11)
j=1
where Dy, D;,...,D,, are diagonal matrices, G is a support matrix. Some useful

inequalities will be given which offer bounds on the product in terms of both the
ordinary matrix addition + and @-multiplication. ‘

First suppose that the diagonal matrices in eq. 11 can have both positive and neg-

ative elements on the main diagonal.

Lemma 1 Let G be a support matriz, and D;, j =0,1,...,m, be diagonal matri-
ces. Then it holds

D@ @(GOD;)<Y oD 86, (12)

j=1 J=0

The above inequality can easily be proved with eq. 9 by using induction on m. Note
that for m = 1, we have from the obvious identity Do® G = Do @G+ G, and eq. 10

Dy@GQRD,=(Dy®@G+G)@D; =Dy @G+ G®Q Dy.
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Lemma 2 Let G be a support matriz, Dy) be diagonal matrices forall : =1,...,k
and j =0,1,...,m;, and m =mq +--- + my. Then it holds

k M;

®Déi)®® G ® DY) <Z Z Gie@DY,  ®G™, (13)
j=1

=1 1=1 j=M;_

where Mo =0, and Mi=my+---+m; forall 1 =1,...,k.

The proof of the lemma can be given using egs. 12 and 9.

Let us now suppose that the diagonal matrices in the products under consideration
have only nonnegative elements on the main diagonal.

Lemma 3 Let G be a support matriz, D] ,Dm be dzagonal matrices with non-

negative elements on the main diagonal for all j = 0,1,...,m. Then for any s,
1 < s <m, it holds

D‘“@@ (G @ D)+ DI @ R)(G © D)

J=1 j=1
> D“)®® GeDM e & (GeDP). (14)
J=1 j=s+1

Proof: Let us first introduce the matrices
p; = DM @ D = p{ + DI
for all j=0,1,...,m
By applying induction on m with egs. 10,9, it is easy to verify the inequality

DQ’@é)(G@D}l) D(2)®®G®D é)a@p

7=1 j=1

Since the diagonal elements of the matrices Dg»l
that D; > D{¥ and D; > D for all j =
1 < s <m, we get

) and Dgz) are nonnegative, it holds

0,1,...,m. Therefore, for any s,

Do® ®(G®D;) 2D @@ (Ge D)o Q) (GeDP).
j=1 =1 j=s+1

101




4 Algebraic Representation of Network Dynamics

In this section, we briefly show how the dynamics of AFJQN’s can be described based
on the (max, +)-algebra approach. Further details can be found in (Krivulin, 1996;
Krivulin, 1998).

Let us consider eq. 1 and eq. 2. Clearly, with the (max, +)-algebra operations, they
can be rewritten in their equivalent forms as

z,(k) = T ® U«,‘(k) DT ® CEz(k — 1), (15)
D =ik). if P()#0,
ui(k) = { jer() (16)
€, it PE=0
In order to get egs. 15 and 16 in a matrix-vector form let us introduce
ul(k) Tl(k) T1k &
u(k) = : ;o ®(k) = E v Te=
un (k) zn(F) € Tk

As it easy to see, eq. 15 leads us to the equation

zk)=TiQu(k)®Tr @x(k—1). (17)

Furthermore, eq. 16 can be rewritten in a vector form as
u(k) = GT @ (k), (18)
where GT denotes the transpose of the support matrix G with elements

{ 0, if i € P(j),
9ij =

¢, otherwise.
Note that G can be considered as an adjacency matrix of the network graph.

By combining egs. 17 and 18, we arrive at the equation

2(k)=Th @G @z(k)® Tk @ 2(k — 1).

By iterating the above implicit equation, with the condition that G? = £ for all
g > p, we immediately obtain the explicit dynamic equation

a(k) = A(k) @ z(k — 1), (19)

102




! 2 e €00 ¢

e 10 e e ¢ 0 ¢

9 G=]|¢ e e e 0

e e €€ 0

10 € € € € €

Fig. 1: An acyclic fork-join network.
where » .

AR =P Moo Ti=PTe (" T (20)

=0 =0
An example of AFJQN having n = 5 nodes together with its associated support
matrix G are shown in Fig. 1.

Taking into account that for the graph G, the length of its longest path p = 2, we
arrive at eq. 19 with the state transition matrix calculated from eq. 20 as

AR)=(EaTi 96T (oG e T

T1k e & 15 3

& Tok &€ & &

= T1kQ T3k € T3k € €
T1k @ Tak Tok @ Tak € Tak 5

Tk @ (T3 BTak) D75k Tok@TakQTsk T3k @Tsk Tak@Tsk  Tsk

Consider the service cycle time 5 of the network. It is clear that now we can
represent it as

1
y = lim Cllz(k)],
where ||z(k)|| denotes the maximal element of (k).

Let us represent the vector @(k) in the form

z(k)=Ak)@z(k—1)=---=Ak)®--- A(1) ® 2(0),
and denote
k p
AT=AT(1)®---®AT(k)=®@T,® (GO T). (21)

Clearly, in order to get information about the growth rate of @(k), one can examine
the limiting behaviour of the matrix A7. Below we investigate the limit AT =
limy—oo AT /k, and give related existence conditions.




5 Subadditivity Property

Let us consider the product of matrices Ay defined by eq. 21, and introduce the
=0,1,...; 1 < k} with

A,k =AT(1+1)@ - ® AT(k).

Note that A7 = AT .
The next lemmastates that the family {A% |/ < k} possesses subadditivity property.

Lemma 4 Forall Il <r <k, it holds
AL < AL + AT

Proof: With egs. 5 and 7, we can write

T 14 k P
Al+4L = @PTecGeTy+ QR PTeGoTy

i=Il4+1 =0 i=r+1 j=0

” k
= @ KRTecen+ PH QQTeGen)™

0<myyyyeeymr<pi=l+1 0<Mrg1yeeymp<p i=r+1
r k
= & <®7?®(G®77)"”+®’H®(G®7§)m').
0Smyyq,omr<p \i=l+1 i=r+1

By imposing more restrictive conditions on the indices mj41,mita,...,my in the
last term, we get

p r k
AL &P <®7}®(G®7§)’"’+®7Z®(G®Ti)m')-

m=0 myp1ttmr=m  \i=l41 i=r+1
mry1totmp=m
m=mr<mri1

Consider the sum in parenthesis. Lemma 3 allows us to take any integer s such
that m — m, < s < m,41, so as to write

T k
R TeGoT)™+ Q Te(GeT)™

1=Il+1 i=r+1
r—1
> QTOGRT)™eT, @ (G T) ™
i=l+1

k
OT1®(GOTs)" @ Q) Ti®(GeT)™

=742

k

= ® R (GRT)"




where
m;, ifli<i<r,
5 = s—m+m,, ifi=r,
v Mry1 — S, 1f2=7'+1,
m;, if’l‘+1<i§k‘

with si41 + -+ 8 =
Finally, with the condition that G? = £ for all ¢ > p, we have
P k
Al+4aL, > P P QKTeGeT)

m=0 sj41+-+sg=m i=l+1
k

k p
= P QRTe@Gen) = QPTeGaTy

0<8141 -8k <P i=l+1 i=l+1 j=0

_ AT
- Alk-

6 Algebraic Bounds on A;

The next lemma offers algebraic bounds on the matrix Af.

Lemma 5 It holds that

lp/k] &
PRTeGeT) < @GT+Z P ¢eTedc, (22)
r=0 =1 i=1 0<r+s<p

where |r| is the greatest integer equal to or less than r.

Proof: With eq. 6, and considering that G? = £ if ¢ = kr > p, we immediately
obtain the lower bound

lp/k] &
AT>Q%(§)T® (GOT) @@T@ (GOT).

Note that as k becomes greater than p, the lower bound degenerates into

AT>®T ZT

=1

In order to derive the upper bound, we first apply eq. 5 to represent the matrix A7
in the form

k p

AT=QP TeGeTy= O ®T® GRT)"

i=1 j=0 0<my,..ymp<p 1=1




Application of eq. 13 to the inner ®-product, with My =0, M; = my +--- + m,
forall :=1,...,k,and m = my + -+ + my, gives

k k M;
QRTe@eT)™ < Y Y FeTiec"

1=1 1=1 j=Mi_y
k M; k
= > ) @eTeG i+) GMgTieGm M-
i=1 j=Mi_1+1 i=1

With eq. 8, we further obtain

AT = P Z Z GRT,G™

0<my,....mp<p 1=1 ]—M, 1+1

+ @ ZGM’-1®7;®G"‘-M"-1 = Si+5,

Let us now define Dy =T; &+ @ T. Since Dy > 7T; for each i =1,...,k, we get
with eq. 4

51

k
® > Y dones

0<my,...mp<p =1 j=M;_1+1

IN

myt-tmy

D Y GeDieGm

0<my+-4+mip<p j=1

= éim@ (@T) Y e

r=1 s=1

Let us represent S, in its equivalent form as

k
— é @ 2 GMi- RTi® Gm—Mi-1

m=00<my,...,mp<m i=1

By applying eq. 7 and then eq. 8, we finally have

? k m
S5 = PY.PFeTee
m=0 =1 j=0
k P m k
Y PPeeTeci =) P ¢oTed.

=1 m=0 j=0 i=1 0<r+s<p

IN
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7 Limiting Behaviour of A;

Now we give simple existence conditions for limi_., Ax/k to exist, and present
bounds on the limiting matrix A. We start with the following theorem which can
be proved based on the Subadditive Ergodic Theorem (Kingman, 1973) as well as
on the result of Lemma 4.

Theorem 6 If for each i = 1,...,n, the service times T1,Tiz,..., present i.i.d.
r.v.’s with E[r;1] < oo, then there exists a fired matriz A such that

1. limp_oo AT /k = AT with probability 1,

2. limp—co E[AT]/k = AT.

Theorem 7 If in addition to the condition of Theorem 6, D[ri1] < oo for each
t=1,...,n, then it holds

E[7:] < AT < IE[ p ¢oTo G] (23)

0<r+s<p

Proof: First note that Theorem 6 allows us to conclude that the limiting matrix
A exists with probability one. Moreover, we can write

AT = lim E[AT]/k.

Clearly, eq. 23 can be obtained from eq. 22 after taking expectation and dividing by
k. To prove the right inequality, one has to show that

%E@q\__m ax ot oo

The last assertion follows from the bounds for the mean value of maximum of i.i.d.
r.v.’s and related asymptotic results established in (Gumbel, 1954; Hartly, 1954). In
fact, these results allow us to write the relation

o @ -0

as k tends to oo (see also (Krivulin, 1998)).
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8 Evaluation of Bounds on Service Cycle Time

In this section we show how the above bounds on the limiting matrix A can be
applied to calculating bounds on the service cycle time 4. The next result is a
consequence of Theorem 7.

Lemma 8 Under the conditions of Theorem 7, for any finite fized vector x(0), it
holds

ERl< < g @ conoc]| (24)

0<r+s<p

As it is easy to see, eq. 23 can also be exploited to derive bounds on the service
cycle times of particular nodes in a network. Let us introduce the matrix

Bkh)= P (*2Thed)T,

0<r+s<p

and denote its (¢, j)-entry by b;;(k). It is not difficult to verify that the service cycle
time of node ¢, ¢ = 1,...,n, satisfies the double inequality

Elry) <7 < EB Efbi; (1)].

Consider the network depicted in Fig. 1. To get bounds on =, let us first calculate
the matrix ‘

B(l)=(T16GRTioTioGaG 0T eGTieGaToGY)T.

Furthermore, application of eq. 24 gives

Erm]®:  ®Em] <v<Em®m®ra® ) ®E(ra & & Ts1).

Now suppose that for all i = 1,...,5,and k = 1,2,..., ther.v.’s 7 are independent
and they have exponential probability distribution of mean 1. Then we have
1.0000 € € € €
€ 1.0000 € € €
E[B(1)] = | 1.5000 € 1.0000 € 5

1.5000 1.5000 € 1.0000
2.0833 1.8333 1.5000 1.5000 1.0000

™

Evaluation of bounds on the cycle time of the network leads us to the inequality

1.0000 < v < 2.0833.
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‘ Finally, one can easily obtain bounds on the cycle times of the network nodes 7,

1=1,...,5
7 =72 = 1.0000,
10000 S Y3, Y4 S 15000,
1.0000 < ~5 < 2.0833.
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