Models of Aristotelian Concepts in Computer Programming

Eugene Kindler
Department of Mathematics, Faculty of Sciences,
Ostrava University, CZ — 701 03 Ostrava 1, 30. dubna 22
Fax: +420-2-2191-4323; e-mail: KINDLER @KSIL.MS.MFF.CUNIL.CZ

Abstract

The paper considers some analogies between Aristotelian concepts and their images at
the computer programming, applicable for computer modeling of anticipatory systems.
The concepts are namely matter/form and their influence to the law of extensionality,
general/individual and time/eternity.

Keywords: Traditional logic, Philosophy of mass, Object-oriented programming, Time,
Computers

1 Introduction

There is a large group of material systems made or controlled by humans. Let they be
simply called man-made systems. The production/logistic systems, those of health care,
of services, of agricultural production, etc. can serve as examples of them, but a lot of
objects have similar system properties although they might seem not to have too many
man-made components (systems like woods, rivers, humans or animals under a strong
individual medical procedures, etc.). An essential property that characterizes the man-
made systems is that they are consciously controlled by humans or governed by
automata constructed by a conscious work of humans. Often a certain professional level
of the control is desired: the controlling humans should form their decisions so that they
respect the instantaneous situation existing in the controlled systems and derive the
decisions from what they observe, applying the rules of causality as much as possible.
The controlling automata should model what humans would make if they were at their
places. In other words, the controlling automata model the controlling humans and
contribute by their much greater capacity of storing information, by their much greater
rate of deriving consequences and by their ability to form much greater chains and trees
of logical consequences. The mentioned quantitative differences between humans and
automata (computers) can grow up into qualitative differences, but with the exception of
rather rare cases the present practice neglects this phenomenon and considers the
automata as quantitatively powerful “human idiots”. It makes possible to neglect some
special aspects of the controlling automata and to formulate the next argumentation only
for the case when humans control the systems. Let they be simply called dispatchers.

The man-made systems belong to the physical world and their dispatchers have to
recognize the properties of the material elements of the systems they control. They must
often detect phenomena for which a description in standard professional languages of
(natural) sciences is too fine, too complex for being tested and therefore useless for

International Journal of Computing Anticipatory Systems, Volume 12, 2002
Edited by D. M. Dubois, CHAOS, Liége, Belgium, ISSN 1373-5411 ISBN 2-9600262-6-8

deriving logical consequences and formulating decisions. As an example we can present
phenomena “fault of a machine”, “length of a queue” or “age of a patient”. When they
are to be detected the dispatchers do not use methods of physics or biology, but they
recognize them similarly as the humans recognized all the phenomena of matter before
the sciences existed or outside sciences (e.g. the age of a patient can be determined by a
simple looking into a form or into a database, a fault of a machine can be recognized by
watching a certain indicator). The ideas of the first philosophers and namely the
successful general results of the philosophy of matter can be applied to the dispatchers’
observation in the same manner as they were applied to the ancient Egyptian architects,
to the old Greek businessmen with wine, to the Phoenician sailors, to the Roman
architects or to the medieval Cistercian “water engineers”. The dispatchers often derive
the consequences of their observation by the same logic as the “habitual” humans, i.e.
they (often unconsciously) use the logic the rules of which were often formulated by the
philosophers who expressed the common laws concerning the matter. Note that the last
statement doesn’t introduce some antagonism between the logic of the early
philosophers and that of contemporary scientists but would like to express that different
logical systems neglect certain aspects that are essential in thinking on the material
world (e.g. mathematical logic respects axiom of extensionality and essential contents of
the relation general-individual).

The dispatchers’ often base their decisions on their anticipatory processes. Such
processes are bound with the material components of the system, which they concern
and use the same logic as mentioned above. The evident consequence of it is to include
results obtained by ancient philosophers into the research and practice of the
anticipatory systems. Really, we have met the first results in the proceedings of CASYS
conferences — see e.g. the classification of causes formulated by Aristotle and given into
relation of the system theory by Dubois (2000). From another side, recommending the
people living in the modern epoch facilitating by physics, chemistry, mathematics,
mathematical logic and other modern sciences to return to the results obtained more
than 2000 years ago may seem strange. The present paper should support respecting and
accepting the way of ancient philosophers; the reason is that the contemporary
programming of digital computers offers a surprisingly rich analogies with general
statements on the world and universe, formulated by old authors in the ancient times and
Middle Ages and offer new insights to the old results and problems of philosophy.

2 Situation in Computer Programming

Although modern computing technique has existed since a short time of about 50
years, its development surprises by its speed and spreading and one expects it to con-
tinue in future with a similar dynamics. Modern computing technique is an important
and sophisticated component of communication and of information storing, retrieval and
processing (where the term “information” should be interpreted not only as data but in a
more general way — e.g. as relations, models, knowledge and concepts). And even when
one is conform to the fact that modern computing technique will never replace the

370

human thinking in the complete manner, he has to take into account the historical
phenomenon that modern computing technique accepts a lot of properties of thinking
and becomes a certain model of it (in sense of an amplifier or of a prosthesis, not of a
pattern, prototype or archetype). In that manner, interpretation of the human’s
application of computing technique turns to be a certain model of philosophy, namely of
that in its initial stage in the ancient Greek epoch, when the philosophers were
stimulated not only by questions of one’s own existence but also by those of the practice
of the everyday communications between the humans. In other words, the computer
science as it exists nowadays gives new views at a lot of philosophical concepts,
attitudes and positions that were often grown and formulated already in the epoch of
classical Greek civilization and that were able to be used also outside “pure philosophy”
(for the everyday communication, namely in questions and problems connected with the
law, business and/or moral areas, for foundations of sciences etc.).

The development of the computer modeling and of the knowledge representation at
computers is very fast and nothing shows that the dynamics of this development should
be limited in the near future. According to that expectation an analogous expectation can
be formulated: while we observe that nowadays there are interesting and surprising
analogies between results of the ancient philosophy and the practice of computer
programming, we can expect in the future these analogies to grow in their number and
in their internal contents as well. Some use of computer recalls a thinking of a rather
limited specialist today — e.g. the use of the language GPSS (Schriber 1991) but it
develops so that it will more and more recall a larger professional thinking of adults
(Kindler and Islo, 1995). Although the results of ancient philosophers, mentioned in the
present paper is partially applicable to a thinking of such limited specialists, their fully
interpretation excels in relation to the thinking of the persons with a large horizons.

The anticipatory activities were very important stimuli for the development of the
ancient philosophy: a lot of such activities were made in order to know the medical,
economical, military, agricultural and existential aspects expecting individuals,
communities or human kind as a whole. Among the applications existing outside the
pure philosophy, such activities took place, though the pure philosophy tended also to
formulate more or less general principles that could be today related to the theory of
anticipatory systems — we have already mentioned the interpretation of Aristotle’s
classification of the causes in the system theory and the choice of the conceptions of
Aristotelian logic presented in CASYS conferences.

But the present-day computer science fights with some problems that are very similar
to those, with which the ancient thinkers fought, and thus some discoveries arise that are
surprisingly similar to those made more than 2000 ago. A certain analogy of the
development in the ancient philosophy will surely pass inside the computer science, and
during it the following aspects are to be expected:

1) The analogy in computer science will be given by the demands rooting in the
applications of the computing technique and not by some I’art-pour’l’artism of
intellectuals, who might try to give the computing technique the direction similar
to that of the ancient philosophy.

371

2) The development of the computer science will present more and more analogies
with that of the philosophy but never will be able to replace it; it will never be
able to formulate such notions as that of existence, God, the good, love, sin etc. in
an exhausting form but it will be able to make some models and illustrations of
them or of their interesting properties (in other words: it is not realistic to expect
the computing technique to replace good philosophers but it is to expect it to help
them and their pupils more than by serving by databases, vocabularies, registers
and partially translating software, as it is able to serve nowadays). The modeling
of anticipation activities will be one of the basic stimuli for such a development.

What was written until this line may seem being as a rather abstract, academic and

general vision. Nevertheless the contemporary development of the computer modeling
offers several results that can serve as certain ways to concretize the expressed ideas.

3 Matter and Form in Case of Storage Mediums

Matter/form (materia/forma, “OAn/uop¢n) is a basic pair of concepts of the
philosophy of mass. The pair was profoundly studied in relation of physics, especially to
modern physics. Nevertheless the computer science offers a new insight into the matter-
form relation, namely by means of a similar relation between a part of memory medium
of a computer and its contents. The abstraction from the memory media during the
programming and modeling work neglects any properties of the physical matter, at
which information is stored and considers it only as something formless that is only able
to store information. Let us illustrate it at an example.

In the applications of every algorithmic programming language variables are
introduced. When one introduces a variable he knows that it is automatically
represented as something coded at a piece of the computer storage medium (PCSM) but
neglects that. More exactly said, one uses a variable X as a name for both a PCSM M(X)
and for an information J¢X) stored at it but he respects only J(X), he may take into
account that there is something like M(X) that carries J(X) but he neglects all other
properties of M(X). For the user of the programming language, the PCSM behaves as a
materia prima and the information stored at it as its substantial form.

More illustrative examples are offered by the programming languages that permit
their users to use them to reflect objects (more material and concrete entities than
variables). They are e.g. the discrete event simulation languages or object-oriented
languages. As an example, we can present a model of a car (train, airplane, human,
lathe, building, field, factory, portion of metal, portion of water, ...) in a simulation
model. Such a model of a car is a PCSM carrying all properties of the modeled car,
which are taken in account in the modeling process. If the properties change the PCSM
does not change; the PCSM fully corresponds to the materia prima of a real car R (for
which C is its computer model) and the information coded at the PCSM corresponds to
the substantial form of R. Note that to think about the PCSM would be against the
reason of the applied programming language; the programming languages that permit
their users to handle the PCSM (for example to give him the address of PCSM) are

372

considered as “hybrid” (e.g. mixing the object-orientation with autocode programming,
i.e. not perfect). They allow the programmers to make errors that end with “wild run”,
i.e. with a collapse of the computer operating system used. And they enable to make
errors that could be illustrated like “take a part of the materia prima of a car and add that
portion to the materia prima of something completely different from the car, e.g. to a
distant road. Note that different objects have always different (and mutually disjoint)
PCSMs.

The analogy between matter/form and PCSM/stored information is supported by the
practical use of the programming languages for computer modeling: their essential
contribution is that they lead their users to describe the modeled objects instead what
should happen in the computer. Their users should be made free from the complicated
and difficult transformation between the description of the modeled reality and that of
the corresponding processes inside the computers (the transformation is made
automatically by the computer). So the organization of the information stored inside the
computer should follow a lot of relations existing at the modeled reality. It is just the
effort to make the expressing tools of both the sides of the modeling (the real things and
their models inside computers) as near as possible, that promises in the future
development of the modeling technology to move the view to the programming
concepts even nearer to the classical philosophy of mass than as it is nowadays.

4 Axiom of Extensionality

The analogy between the matter and the PCSM is a base for viewing on the absence
of the axiom of extensionality, i.e. of the negation of the statement “if the sets have the
same elements they are equal”. This axiom is fundamental for any thinking inside
mathematics, but fails outside it. For example, in mathematics only one empty set exists
and when two two-dimensional points (i.e. ordered pairs) have the same coordinates
they are viewed as one point (although the old geometricians have introduced that
implication as a certain definition of the equality among the points, in the later time of
mathematics it appeared to follow from the axiom of extensionality). Outside
mathematics, one could observe e.g. two empty bags so that the bags themselves were
not considered to be important, and those bags were understood as different, because
one of them could be made non-empty by putting a thing into it, while the other
remained empty (note that a similar way of thinking can be met in computer animation —
two point having the same place at the computer display can be considered as different
points, because they can change their positions to be seen at different places). While the
absence of that axiom outside mathematics and computer science can be explained by
the existence of the matter the foundation of the absence in the computer science
consists just in the memory medium. As an evident illustration, we can present a pair of
cars that have the same parameters: in the real world they differ by their portions of
matter (these portions are disjoint), while if modeled at a computer they differ by their
mutually disjoint PCSM — note that both PCSM can carry the same information (both
the modeled cars would have the same properties).

But we can present a more illustrative example. Let P=[x,y,z] and O=[u,v,w] be two
points. In accord with the axiom of extensionality, it is commonly accepted by the
science of geometry that in case x=u, y=v and z=w there are no two points but one point,
P=0Q. Nevertheless, the object-oriented programming permits to model two different
points with the same coordinates (note that in geometry the coordinates cover the
substantial form of the points). Let us present several examples, written in the
programming language SIMULA designed as the first object-oriented language by Dahl,
Myhrhaug and Nygaard (1968) and used at many computers (beside others workstations,
Macintosh and IBM PC compatible (SIMULA 1989)):

class point(x,y,z); real x,y,z;
begin real procedure distance_from(P); ref(point)P; distance_from:=
sqr((x-P.x) **2+(y-P.y) ¥*2+(z-P.2) **2),
ref(point)procedure projection_to(j); real j; projection_to:=new point xy.Jj);
procedure move_to_right _of(j); real j; x:=x+j;
real module;
module:=sqrt(x**2+y**2+z**2)
end of point;

class horizontal_circle(center,radius); ref(point)center; real radius;
begin Boolean procedure contains(P); ref(point)P; contains:=
z=P.z and then center.distance_from(P)=radius;
procedure move to_right_of{(j); real j; center.move_to_rihgt_of{(j);
real surface, length;
surface:=3.14159*radius **2; length:=1.5708*radius;
end of horizontal _circle;

horizontal_circle class vertical_cylinder(height); real height;
begin ref(horizontal_circle) procedure lower_base, lower_base:-
this vertical cylinder qua horizontal_circle;
Boolean procedure contains_inside(P); ref(point) P, contains_inside:=
P.z > center.z and then P.z < center.z+height and then
lower_base.contains(P.projection_to(z));
real volume, surface;
surface:=lower_base.length*height+lower_base.surface*2;
volume:= lower_base.surface*height
end;

The text horizontal circle class vertical cylinder states something like “every
vertical cylinder is a horizontal circle”, in a similar sense like “every dog is an animal”,
i.e. dog is a sort of animal). The concept horizontal_circle has a greater extent and a
lesser contents than the concept vertical cylinder (it is possible that horizontal circles
exist that are not vertical cylinders, but the horizontal circles hat are not vertical
cylinders have no height and volume and it is not meaningful to speak on their lower
base). The vertical cylinder is understood as a “thick horizontal circle”.

The “attributes™ of the classes are values introduced for them; e.g. horizontal circle
has attributes center, radius, surface and length. The “methods” of the classes are algo-
rithms introduced for the classes; e.g. move_to and contains are methods are methods of
class horizontal_circle. A class “inherits” attributes and methods of its “prefix”, i.e. of
the class the name of which is possibly written before the key word class. So the class
vertical cylinder, having attributes height, volume and surface and methods contains
inside and lower_base, “inherits” also all attributes and methods from class horizontal
cylinder. The inheritance of the attributes and methods is an essential tool for modeling
the subordination of concepts. As it will be shown, SIMULA reacts to the context, and
therefore there is no problem that class horizontal _cylinder has two attributes having the
same name surface — one introduced directly for that class and the other inheriting from
its prefix vertical circle. The attributes and methods can be used by the help of “dot
notation”: if 4 is a name of a vertical cylinder and E is a name of a point then A4.volume
gives the volume of 4 and A4.contains_inside(E) gives an answer whether E is inside 4.

Note that the examples presented in this paper are very simple, nevertheless they
admit to handle for example two following different points P and Q that are identical in
the geometrical sense, five following different circles 4, B, C, D and E that are identical
in the geometrical sense and eight following vertical cylinders F, G, H, I, J, K, L and M
that are also identical in the geometrical sense:

P:-new point(4,3,6); O:-new point(4,3,6);

A:-new horizontal circle(P,10); B:-new vertical cylinder(P,10);

C:-new horizontal circle(Q,10); D:-new vertical cylinder(Q,10);

E:-new horizontal circle(mew point(4,3,6),10);

F:-new vertical _cylinder(4,20); G:-new vertical cylinder(B,20);

H:-new vertical cylinder(C,20); I:-new vertical cylinder(D,20);

J:-new vertical _cylinder(E,20);

K:-new vertical cylinder(mew horizontal circle(P,10),20);

L:-new vertical _cylinder(mew horizontal circle(Q,10),20);

M:-new vertical cylinder (new horizontal circle(mew point(4,3,6),10),20);

A computer scientist knows that P differs from Q by its PCSM, but the computer
users do not need to know that detail — for them an idea is sufficient (unconsciously) to
accept that any point has its own portion of matter and that two points always differ by
such portions. The same holds on the circles and cylinders (note that matter is not space,
though some philosophers declared some strict relations in this sense!).

As an illustration we can present an instruction K.move to right of(3); it is
performed in the following steps:

4.1. For the “generalium” vertical cylinder no definition of move to right of was
defined, but that generalium is a special “sort” of the “genus” horizontal circle.

4.2. For the “generalium” horizontal circle a definition of move to_right of exists
and therefore the cylinder K makes it according to that definition (note that K makes it
as it have been its own lower_base).

375

4.3. In the mentioned definition it is stated that a horizontal circle makes a move to
the right so that it “demands” its center to make such a move; therefore the move of K is
now delegated to the move of the center of its lower base;

4.4. The center is a point and for the “generalium” point the meaning of the words
move_to_right of is explicitly defined, namely in a manner different from that
belonging to the “generalium” circle: the point moves so that it changes its own
coordinate. Therefore the move of K is interpreted by a change by the coordinate x of the
center of its lower base.

If we accepted only the conventional geometric viewing, we would have to admit that
such a shift caused one cylinder K=L to became two different cylinders K and L. If we
admit K and L to be always different cylinders we will be in a more suitable logical
situation. The idea of different portions of matter makes it possible and the different
PCSMs make possible to model it at computers. Note that in anticipating models we
often meet objects that are the same in a mathematical sense but later each of them can
develop differently from the others.

5 Nominalism Versus Realism

Some philosophers of the our days and a lot of scientists consider the controversies
between nominalists and realists as a historical phenomenon that concerns the Middle
Ages and is not interesting for the contemporary scholars more. Nevertheless it is just
the mentioned object-oriented programming that carries an unconventional method of
knowledge representation giving a new insight into that aged philosophical confront-
ation: the object-oriented programming handles with the “generalia” so that it allows to
analyze and construct their connections based on the hierarchy of relations “lesser extent
and greater content” and to make “instances” (individual entities) of those “generalia”
so that such instances completely reflect the relations introduced for the “generalia” and
mutually differ both by their formal properties and by their matter (PCSMs).

A good illustration that the computer can model “generalia” and relation among them
was presented in the example in the preceding section, namely in the logical steps for
performing the procedure move to right of. If for example the “generalium” vertical _
cylinder were not introduced as a “sort” of another generalium horizontal circle, K
would not be able to react to the instruction of moving, because it could not meet any
definition of it. From the other point of view, we can observe that the “generalium”
vertical_cylinder has two “attributes” called surface: one was defined directly for that
generalium (in class vertical cylinder) while the other one is “inherited” from the
generalium (introduced in class horizontal circle). The first corresponds to the concept
of surface of a cylinder while the last corresponds to the concept of surface of a circle,
i.e. — for the cylinders — for their (lower) bases. The language SIMULA offers several
tools to express whether K performs something as a cylinder or as a circle (see the line
this vertical cylinder qua horizontal circle of the definition of lower_base above — one
can write K qua vertical cylinder to express that K performs something as a cylinder,
and one can write K qua horizontal circle to express that K performs something as a

376

circle; the programmers understand qua as an abbreviation of “qualified as”, but qua
can be interpreted as a Latin word and understood as the English word “as”

The models of the generalia can exist and be applied independently of humans who
expressed them: I can represent vertical cylinder at a computer and forget it while
another person can used it a long time after. It is interesting that the importance of the
old philosophical ideas of realism and nominalism appeared after (unsuccessful)
struggling with the problems that had to make clear questions in communication
belonging to the typical everyday programming work. The questions of the computer
business could seem to be much more simple than the profound philosophical for-
mulations of medieval scholars. But the development of the technique of computer
representation of knowledge and its application tends to the formulation and
manipulation with much more complex “generalia” and so to reduce the distance
between the sorts of questions of programmers and those of philosophers. Then the
programming practice will be able to model and illustrate some contradictions between
radical realists, Thomists and nominalists. Already nowadays it is possible to represent
e.g. an idea of imagining specialist (Kindler, 2000). Nevertheless the relation between
the philosophical attempt and computer modelers’ view, as it exists nowadays, is a clear
illustration that the communication between realists and nominalists is more modern
subject than it is generally assumed.

Note that among the authors of books and papers about the object-oriented
programming there are similar confusions and contradictions as among the medieval
philosophers discussing the size of realism. For example, authors do not differ between
instantiation of a class (forming an object, e.g. an individual cylinder, in SIMULA by
using the key word new — see above) and defining a hierarchy among generalia. Or
some authors present class as a certain instance that is a “prototype” for the other
instances of the class — one can watch an analogy between the classes-prototypes and
Plato’s ideas.

6 Computer Simulation

In the Aristotle’s heredity there is also the philosophy of time. We can say that it is a
philosophy of Newtonian time (i.e. of a time that flows without relativistic effects), but
with neglecting the fact that time moments can form infinite ordered sets. The same
viewing on time exists in discrete event simulation.

Computer simulation is a special way of computer modeling. In a rather simple
manner, it can be described as an application of a program (called simulation program),
which turns the applied computer to an analogy of a certain process passing in the
Newtonian time. That process is called simulated system. It is possible to say that the
running computer controlled by a simulation program behaves similarly as the simulated
system, namely so that the order of the “events” in the simulated system (i.e. short steps
forming its development during time) is the same as the order of their representations in
the computer run. More about computer simulation can be read e.g. in (Dahl, 1964) or in
(Genuys 1968). It could be said that a good simulation program generates information

377

on the simulated system of a quality so good that a person who does not know its origin
can believe that it to have been measured and detected at a real system. Therefore
computer simulation enables to study a possible behavior of a system that does not
exists (e.g. that is designed) or a possible behavior of an existing system after
performing some decision in it.

Computer simulation exists in three sorts: discrete event simulation models the
systems in which the Aristotelian view to time is respected; continuous system
simulation models systems in which the Aristotelian view is completed by respecting
the continuous time flow and completed by Newtonian consequences oriented to the
interpretation of time derivatives; and combined discrete event continuous system
simulation (shortly combined simulation) that permits to include intervals of Newtonian
time into the Aristotelian one. The continuous system simulation and the combined one
are too bound by the processes described by (ordinary) differential equations and so they
are distant from the problems and results of the Aristotelian philosophy and also limited
in their world viewing. Therefore we will concentrate our attention to the discrete event
simulation, which we will in the future text call simply simulation.

Simulation was successfully used for anticipating the future behavior of a great
number of production, logistic, environmental, health care, military, energy, machine,
electronic, chemical and service systems and of organisms and social groups. But the
simulation programs can be also applied for training and for illustrating situations that
would be dangerous and/or expansive: such a situation is simulated at a computer and
one can watch them and their reaction to one's interventions. Simulation was not used
for some deeper psychological or philosophical processes. But it can be applied in a
more sophisticated manner, as it will be described in the following two sections. They
give further illustrations of the view to time formulated by the old philosophers.

7 Simulation of Worlds With Different Times and Physics

In a professional terminology of simulation, a computer run described in the
preceding section is called simulation experiment. During it, the time in which the
computing really exists maps the time of the simulated system so that if an event E;
comes in the simulated system before an event E, the “image” of E; in the computer run
cannot come before the “image” of E; (the image of an event is also an event, but inside
the computer). In other words, during a simulation experiment the simulated time
cannot flow in the direction opposite to that of the time of the simulated system. Note
that this ordering is of a great practical importance: it leads the authors of simulation
programs to reflect possible causal dependences among the events existing at the
simulated system in the simulated program.

But the simulation experiments are often repeated to get some more complex
information, e.g. to decide the optimal variant of a system that has to be installed, or the
optimal variant of an intervention into an existing system. Such a sequence of simu-
lation experiments is called simulation study. At the beginning of each simulation
experiment of a simulation study, the simulated system is reflected as being newly

378

constructed; it concerns the simulated time, too. Therefore a simulation study looks like
a computer model of a certain environment (let us call them “eternity””) which has no
(Newtonian) time and in which there is somebody who is able to create “physical
worlds” with their own times and mutually independent in the manner that they cannot
interact by means of their own properties and instruments: the only interaction between
the physical worlds is that they “export” information about themselves to the eternity
and there the “creator” can use them for an intervention to the next physical worlds.
Note that the simulated worlds can mutually differ not only by their times but also by
any of their parameters, control laws and even by their physical and/or social laws, by
their professional concepts etc. A statement expressed by St. Thomas Aquinas in
Summa contra Gentiles may be referenced in this context — “not in time but with time
the God created the universe”.

8 Parallel Existence of Simulation Models

In a conventional simulation study the simulation experiments alternate: the
extinction of a simulation experiment permits to generate the next simulation
experiment. At the used computer, more than one simulation experiment cannot exist
contemporary. One speaks on serial simulation study in that case.

Nevertheless there are some simulation studies, in which more than one simulation
experiments exist at the same time. They can be called serio-parallel or simply parallel
simulation studies. Such studies are rather rare because to implement them is very
difficult; nevertheless the Czech simulationists have good experiences in that branch
and their results are worldwide appreciated and applied (see e.g. section 2.1 of (Kindler
2002)). They model an “eternity” in which any physical world can rise, exist and
disappear independently of the existence of other. Each of the physical worlds has its
own time and so several independent times can exist “at the same time” in the same
eternity. The words “at the same time” are written in quotes, because there is a certain
contradiction — the eternity need not have its own time. Nevertheless, the computer
model maps some phenomena that are under the control of a certain ordering and that
can stimulate to think on certain events in which the eternity encounters a physical
world (note that the ordering of the events in the eternity need not to imply a concept of
distance between them — the events form an ordered set but do not need to form a one-
dimensional linear metric space).

9 Conclusion

For a philosopher who well knows the results of the ancient philosophy, the analogies
between the profound philosophical results and the mentioned concepts of the computer
programming may seem to be at the very surface of the ontology, logic and noetics. The
corresponding concepts of the computer practice may seem to touch the very fagade of
philosophy. Nevertheless, let us note that the development of computer programming
exists for about 50 years and during this period it developed rather dynamically: in the

379

50ies the computer programming was a technology with chaotic relations to the human
thinking (the real bindings between the programmer’s intentions and the corresponding
results of his work were considered as private and internal aspects of the programmer’s
intellectual life), since that time it came to the state of touching the “facade™ of real
philosophy and in the next decades it is expected to approach to the human thinking as
much as possible — that will not be a demand of philosophers but that of the program-
ming praxis (a demand to shorten the transfer and translation from the human thinking
to the computer operation). Therefore the computer programming is expected to penet-
rate more behind the fagade of philosophy. Some modern aspects are already certain
illustrations and stimuli of the future development, like object-oriented knowledge
systems containing peaces of knowledge that are themselves object/oriented knowledge
systems (or — in another viewing — formal theories, among the entities of which there are
other formal theories). Nevertheless, nowadays such stimuli are not elaborated in their
greater plentitude and so they could not be included into the present paper.

References

Dahl Ole-Johan (1964) Discrete Event Simulation Languages. Norwegian Computing
Center, Oslo. Reprinted in (Genuys, 1968).

Dahl Ole-Johan, Myhrhaug Bjorn, and Nygaard Kristen (1968) SIMULA Common Base
Language (1st ed.). Norsk Regnesentralen, Oslo, 1972 (2nd ed.), 1982 (3rd ed.), 1984
(4thed.).

Dubois Daniel M. (2000) Review of Incursive, Hyperincursive and Anticipatory
Systems — Foundation of Anticipation in Electromagnetism. Computing Anticipatory
Systems: CASYS'99 - Third International Conference. Edited by Daniel M. Dubois,
Published by The American Institute of Physics, AIP Conference Proceedings 517,
pp- 3-30.

Genuys Fernand (editor) (1968) Programming Languages. Academic Press, London —
New York.

Kindler Eugene (2000), Simulation of systems with imagining components. Workshop
2000 — Agent-Based Simulation. Edited by Urban Christian, Published by The
Society for Computer Simulation — Europe, pp. 239-244.

Kindler Eugene (2002) When Everybody Anticipates in a Different Way Computing
Anticipatory Systems: CASYS'99 - Third International Conference. Edited by Daniel
M. Dubois, Published by The American Institute of Physics, in print.

Kindler Eugene and Islo Henry E. (1995) Independent Object Components and Textual
Enclosures. ASU Newsletter, vol. 22, no. 3, pp. 4-13.

Schriber Thomas J. (1991) An Introduction to Simulation using GPSS/H, Wiley, New
York.

SIMULA Standard (1989) SIMULA a.s., Oslo

380

	Casus_v12_pp369-380_Kindler

