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Abstract This article is a small survey and pioneering as a starting point for a
longer research project: to utilize generalized semi-infinite optimization for purposes
of prediction. Firstly, it reflects the analytical and inverse (intrinsic) behaviour of
generalized semi-infinite optimization problems P(f,h,g,u,v) and presents inter-
pretations of them from the viewpoint of anticipatory systems. These differentiable
problems admit an infinite set Y (z) of inequality constraints y, which depends on
the state z. Under suitable assumptions, we present global stability properties of
the feasible set and corresponding structural stability properties of the entire opti-
mization problem [89][90]. The achieved results are a basis of algorithm design.

In the course of explanation, the perturbational approach gives rise to reconstruc-
tions. By studying three applications of generalized semi-infinite optimization, sec-
ondly, we interpret these aspects of inverse problems in the sense of prediction. The
three anticipatory systems are: (i) Reverse Chebychev approzimation, where we de-
scribe a given system by a neighbouring easier one as long as possible under some
error tolerance. We begin by a motivating problem from chemical engineering and
turn then to time-dependent systems. (ii) Time-minimal or -mazimal optimization
problems, where we want to pull or push the time-horizon of some process to present
time or into the future. We mention global warming and turn to further kinds of
biosystems. (iii) Computational biology, where we are concerned with prediction
and stability of DNA microarray gene-expression patterns.
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1 Introduction.

This article is a first contribution to a general theory of anticipatory systems by
means of semi-infinite optimization. In computational biology, medicine and tech-
nology research and applications, we have to deal with questions of a long-term un-
derstanding and forecasting, e.g., of genetic or metabolic processes or of temperature
in atmosphere. Modelling of such processes by dynamical systems or optimization
problems is followed by a stability and anticipation analysis and interpretations in
biological or technical terms of how meaningful, possibly: optimal, the modelling
has been. Based on this analysis and interpretation, maybe, the model must be
improved. There is a tension, some tradeoff, between the bounded time-horizon in
which the measurements and experiments were made, and the long term in which
processes take place. Our topics in modelling, stability analysis and prediction
are inverse problems of understanding and characterizing the inner nature and be-
haviour of systems, and they aim at learning. Just from these viewpoints we study
and interpret our semi-infinite optimization problems.

The following introduction to generalized semi-infinite programming bases on
[89][90]; for further foundations see also [73]. Concerning the results of them given
in this papers, we do not work out the proofs given there, but figure out main
inverse and dynamical-perturbational ideas underlying these results. Generalized
semi-infinite (GSZ) optimization problems have the form

Minimize f(x) on M[h,g], where
P00 o (2 R =0 e 1), ole) 20 (v € V() )

The semi-infinite character lies in the typically infinite number of elements of Y(=
Y (z)) [24][63], while the generalized character comes from the z-dependence of Y'(-).
We suppose these index sets to be finitely constrained (F):

Y(z) = Mzu(z,-),v(z, )] = {y € R!| u(z,y) =0 (k € K), ve(z,y) 20 (L €
L)}, (zeR").

Here we used the following notation: h = (h;)icr, u = (uk)kek, v = (V¢)ecr, Where
hi:R*—>R,iecl:={1,...m}, uu: R"xR'> R, ke K:={1,...,7}, v
R"xR! - R, feLlL:={,..,s)(m<mnr<gq). Lt f: R®" >R, g:
R"xR? — R, h; (i € I), ux (k € K), v, (£ € L) be continuously differentiable (C*).
By Df(z), DT f(x) we denote the row- (column) vector of the first-order partial
derivatives a—i:f(x), and D,g(z,y), Dyg(z,y) consist of a‘%g(z,y) and %g(m, ).
Let U Cc R*, M[h,g|NU # 0, be some bounded, open set. For motivation and
references see, e.g., [88][90]. Recent GSZ applications appeared in optimal design,
namely, of civil and aerospace structures, of experimental design, and in the inverse
problems of discrete tomography of, e.g., VLSI chip design [10][15][65][89]. We make
the following assumption in order to start our continuity and stability research:




Assumption Ay: U, ;Y (z) is bounded (and hence, by continuity, compact).

In generalized semi-infinite optimization, Mh,g] does not need not be closed
[41]. However, the following assumption ensures closedness:
Assumption By: For all z € U, the linear independence constraint qualifi-
cation (LICQ) is fulfilled for Ms[u(z,-),v(z,")], i.e., linear independence of

Dyuk(fa ?)7 k € Ka Dyvf(fa y)v 14 < LO(T’ y)

(considered as a family), where Lo(Z,7) := {€ € L | v(Z,7J) = 0} consists of
active indices. We shall realize strong Assumption B to be a central condition of
this article, but also a structural frontier overcome by recent research.

Under both assumptions we start our continuity and stability research. Using
differential topology [34][37], they admit local linearization of Y (z) (xr € U) by
finitely many C!-diffeomorphisms ¢ : V? — S’ (j € J) in such a way that the
image sets Z’ of indices are z-independent squares in a linear subspace. Herewith,
P(f,h,g,u,v) becomes locally, namely in U , equivalently expressed as an ordinary
semi-infinite optimization problem Posz(f, h,g°, u°,v°), where Moszlh,g°] NU =
Mlh,g]NU, f being unaffected [84](90].

On the upper stage of variable z, we shall use a constraint qualification, too.
This cq geometrically means the existence of an at M[h] = h~}({0}) tangential,
“inwardly” pointing direction at z:

Definition 1.1. We say that the extended Mangasarian-Fromovitz con-
straint qualification (EMFCQ) is fulfilled at an T € M[h,g], if EMF, 5 are
satisfied:

EMF,. Dh(Z), i € I, are linearly independent.
EMF,. There exists an “EMF-vector” { € R™ such that

Dhi(T)( =0 foralliel,
D;g%(z,2)¢ > 0 forall z€ RY, j € J, with (¢5)7'(2) € Yo(Z),

where Y5(Z) := {y € Y(Z) | 9(T,y) = 0} consists of active indices.
EMFCQ is said to be fulfilled for M[h,g] on U, if EMFCQ is fulfilled for all
T € M[h,g]NU.

For further information and versions of EMFCQ see [32][37][41][42][57][74], but
also {14](36].

Let a local minimizer £ of P(f,h,g,u,v) be given and EMFCQ be fulfilled at
Z. Then, we can state the existence of Lagrange multipliers A;, u., such that the
conditions KTy:

Df(2) = Y ADhi(3) + Y peDegie(#,27),  mx 20 (k€{l,...,R})

iel we{l,...,R}



are satisfied, referring to ordinary semi-infinite (OST) data [32](84](90]. Now, we call
2 a G-O Kuhn-Tucker point. Here, the points z* € Z3* are suitable active indices.
Below, Z}(x) stands for the set of z € Z7 being active for g3(z,-). Referring to
all the given GST data, a further evaluation yields the following Kuhn-Tucker
conditions with corresponding Lagrange multipliers Xi, pix, Qi B, [84][90]:

KT,. Df(z) = S MDhi(2) + Y pxD2g(E,y")

iel k€e{l,...,k}
— 3 ek Deur(E,y%) — D BueDeve(E,y")
keK teLo@.u")

ke{l,...,R}
KT,. ty, Bee = 0 (€€ Lo(2,y%), € {1,...,k}).

Again, the y* € Yy(Z) are active. Now, we call Z a G Kuhn-Tucker point. Un-
der general assumptions, the necessary optimality conditions KT, , were for
the first time proved by Jongen, Riickmann and Stein [41]. Note, that the linear
combination KT, contains the derivatives of all the defining functions. For further
information see [49][74][84][90]. In fact, let LICQ be satisfied at a given point Z as
an element of M[h], and M[h]| NU be star-shaped with star point &. Moreover,
9%(-,2) (z € Z?, j € J) be quasi-concave and f be pseudo-convez on M[h] NU.

This means the following implications for all = € M[h]NU [33][49]:

@z,2) > ¢%(&,2) => Daug2(#,2)(z—2) > 0and Df(2)(z~%) 20 =
f(z) > f(@).

Then, # turns out to be a local minimizer of P(f, h, g, u,v) [45](84][90]. Concerning
structural frontiers in (F) nonconver optimization see [44]. After this introduction
of basic conditions, we make the following convention for the ease of presentation.
In fact, as the theoretical treatment of the equality constraint functions is merely
technical [26][66][80][90], we may delete them:

Convention: Until the end of Subsection 4.1 we assume: [ =0, K = 0.

Before we introduce the second-order condition for strong stability we state (un-
der Ay, By):

Lemma 1.2 [90]. Let & € M[g] NU be given, and EMFCQ be fulfilled at
#. Then, Z is a G-O Kuhn-Tucker point for P(f,g,v), if and only if the ex-
tended Mangasarian-Fromovitz constraint qualification on M([(g, —f+ f(%))], called
El\ﬁ’\CQ, is violated at Z.

We prepare our introduction of strong stability of a stationary point by assuming
that f,g,v are C? and putting for any bounded open neighbourhood V C R? of
U Y(z) and any subset M C R":

zell



i n 8f n 62f
norm((f, g,v), M] = SUP{ 5up {lf(l”)| + ;Ia—%(ﬂvﬂ + ;Im )| },
up e { HZ' @ >I+Z
yey {vwwlveL}

q a n
S5 ko) +z'6y3y n}}

=1 j=1

In F or OST optimization we replace V by J, Y or disregard v, using notation
normg|-, |, normesz[-, -] then. By continuity stated in Section 2, the next condition
is well-defined.

Definition 1.3. Suppose a point * € M[g]NU for P(f,g,v) (of class C?),
Posz(f,g°v°) be locally (in U) representing P(f,g,v), and &* be a G-O Kuhn-
Tucker point of P(f,g,v). Then, we say that z* is (G-O) strongly stable, if for
some € > 0 with B(&*,€) C U and for each € € (0, there is some 4 > 0 such
that for each C*-function (f, 0) with normesz|[(f — f, ¢° -—gO) B(1%¢)] < § the
open ball B(#",€) contains an ordinary Kuhn- Tucker point £¢ of Phsr(f,9 )
Posz(f, % 1°), which is unique in B(%Y, ).

Referring to a G Kuhn-Tucker point * and to norm[(f— f,g—g,v—"0), B(z*, €)l,
we get the condition for (G) strong stability.

Here, “u, d” stands for (un)disturbed (respectively). For our preferred (G-O)
strong stability expressed by original GSZ data, see [90]. In Section 3, we utilize an
algebraical characterization of strong stability in the way of Kojima and Riickmann
[67]47).

2 Stability of Feasible Sets and Its Characterization.

Results called Manifold Theorem, Continuity Theorem, Genericity Theorem and
Stability Theorem [89][90] underline the importance of EMFCQ for concluding that
M(g,v] :== M][g] is a topological manifold with boundary, behaving continuously and
stable under perturbations of our defining C*-functions. With these perturbations
we remain inside of suitable C}-open neighbourhoods of (g,v). Here, C§ stands for
the strong or Whitney topology, which respects asymptotic effects (for topologies
C%, k € NU{oo} cf. [34][37]). We call a given M C R" a Lipschitzian manifold
(with boundary) of dimension &, if for each T € M there are open neighbourhoods
W! CR" of 7, W2 C R"™ of 0,, and a bijective ¢ : W' — W2, ©(T) = 0,, with
Lipschitzian continuity of ¢, ¢~! such that ¢ carries MNW?! to the relatively open




set ({On—r} X R¥)NW? or to the set ({O0p_x} X {w € R|w >0} x R~ )NW? with
(relative) boundary. So, Lipschitzian manifolds can locally be linearized, however,
without preserving “angulars” in the boundary. According to our Convention, we
shall focus on the case x =n. In F optimization, that preservation is given by the
stronger condition LICQ, using C'-smooth linearizing “charts”.

For topological stability, where the given and any arbitrarily slightly perturbed
feasible set can be mapped onto each other by a global homeomorphism, EMFCQ
is even characterizing in the sense of equivalence. In the next section, we embed
this Stability Theorem in the model given by our entire problem P(f,g, v), where
additionally the level parameter 7 of the objective function arises.

3 Structural Stability of the Problem and Its Characteriza-
tion.

3.1 Structural Stability of the Problem.

Under Ay, By, we still refer to the bounded set M{[g], but furthermore take f into
consideration. The structure of the entire problem P(f,g,v) is established by all
the lower level sets

L'(f,g,v) == {zeR"|z€ M[g,v], f(z) <7} (TER)

We observe this structure under perturbation of all problem data now, and we define
structural stability. Here, descent has to be preserved, if the level varies. We assume
that all defining functions are C2. Then, this global stability can essentially be
characterized by EMFCQ of M[g] and by strong stability of all considered stationary
points.

Two problems P(f1,g%,v'), P(f?, g% v?) (with defining C*-functions) are called
structurally equivalent:

P(fla 915 vl) ~P P(f27 gz’ U2) )

if there are continuous functions ¢p : R x R* — R" and ¢ : R — R with the

properties &1 2 3:

E;. pp, : R® —» R" is a homeomorphism, where op.(z) = pp(r,x), for every
T € R.

E,;. ¥ : R — R is a monotonically increasing homeomorphism.

E3' @P,T(Lr(f17glvvl)) = L¢(T)(f2792’,u2) for all 7 € R.

Here, components have to go onto components continuously and from the global
viewpoint of all level sets, and continuously connected along of them. To guaran-
tee and prepare all these mapping tasks, the level shift function ¢ represents the
pairwise correspondence of two level sets.




Now, let us consider the first problem as undisturbed and the second one as
slightly disturbed. Then, we arrive at structural stability [25](40][43][80][90] (cf. also
(2](9][37][69]):

P(f,g,v) (with defining C*-functions) is called structurally stable if there
exists a C%-neighbourhood O of (f,g,v), such that for each ( f, 4, 7) €

’P(f,g,'U> ~P P(f).éa'b)

3.2 Characterization Theorem.

Under Ay, By we state:

Theorem 3.1 (Characterization Theorem or Structural Stability Theorem;
[90]).
Let Mg] C U hold for problem P(f,g,v) (with defining C?-functions).
Then, P(f,g,v) is structurally stable, if and only if the conditions Cy 93 are
fulfilled:

C;:. EMFCQ holds for M]g].
C,. All the G-O Kuhn-Tucker points T of P(f,g,v) are (G-O) strongly stable.

Cs. For any two different G-O Kuhn-Tucker points ' # 72 of P(f,g,v), the
corresponding critical values are different, too: f(Z') # f (Z?).

In this main result, we could also make a further assumption, excluding cer-
tain inequality constraints z from the relative boundary 0Z7 (j € J). Then, we
could identify the G-O Kuhn-Tucker points by some G Kuhn-Tucker points. For
the validity of our Characterization Theorem, however, we need not make such an
assumption [90].

3.3 Proof of Characterization Theorem: Main Ideas.

Preparations.

We intensively apply Implicit Function Theorem in Banach spaces [37][55]; in
particular, we state a continuous dependence of (g% 1% on (g,7). Consequently,
small perturbations on the data of P(f, g,v) cause slight perturbations on the data
of Posz(f, g%, v°). The inverse problem arises: Can small perturbations of the OST
data be reconstructed under the problem representation from slight perturbations of
the given GST problem ¢ We give a conditionally positive answer. However, this
answer will be fitting for the perturbational argumentations on Characterization
Theorem:

Item 1: For representing OSZ problem(s),#° is of special linearly affine form
and, under sufficiently small perturbations of the GSZ problem, we may treat them
as ficed. Hence, besides the perturbations f — f, for Posz(f,g%1°) we are



concerned with ¢° — g~° only. We therefore introduce the simplifying notation
Posz(f>9°) = Posz(f,g°°).

Item 2: Subsequently, we mainly perform local perturbations for Posz(fs q°).
Hereby, we treat the finitely many functions g? (j € J) separately in small disjoint

open sets V; (j € J ), such that their perturbations g? — g? can be reconstructed
by one single C?-function § (given below). Therefore, we would need the perturba-
tionally stable

Assumption F*: For all j',j% € J, j' # j*, we have

U _ ((ﬁ)“(zél(z))ﬁ(ﬁ)“l(zéz(r))) =0.
zeM[g]nUO

For the well-definedness (possibility) of this hardly controllable assumption we take
into account that for any x € M[g] N UP the sets Z3 (z) merely consist of active
inequality constraints z. Herewith, they are subsets of Z7" (k € {1,2}). While by
definition for some preimages (¢7')~(Z’') and (¢2°)~1(Z7") an overlapping must
exist, their subsets (¢JI'1)‘1(Z31(33)) and (@2)‘1(Z32(:r)) need not intersect.

We are going to exploit Assumption F*_after perturbations. However, if we may
sustably choose our perturbed functions g%, then Assumption F* is naturally fulfilled
(after perturbation), and we need not make it in the unperturbed situation. Now,

under problem representation and joined by v, this function g generates g? locally
in V; (j € J). Then, for each j € J, small perturbational (global) effects outside
of V! (j € J) have no influence and can be ignored. The function announced before
is

_ _ [ P i), if ye(6l)HZ) and (z,4(y) €V}, jE€J
glz,y) = { g(z,v), else. ;

Item 3 Below we must consider a certain global perturbation of Ppsz(f,g°) to
receive C®-data or, finally, some (global) “open and dense” property. Therefore,
we apply on the one hand the perturbation technique from the proof of Genericity
Theorem. On the other hand, whenever it is possible to turn from the GSZ problem
to an OSZ (or F) one, then we are back in the situation of Item 2 in order to perform
local perturbations.

For our proof of Characterization Theorem, the algebraical characterization of
(G-O) strong stability for a G-O Kuhn-Tucker point T is important [67][90]. Here,
we assume EMFCQ at Z. That refined characterization refers to (restricted) Hes-
sians of Lagrange functions, and it bases on a case study where we refer to the
reduction ansatz. This RA demands strong stability in the sense of F optimization
[47] for the local minimizers of the problem from the lower (y-) stage. Herewith, RA
admits local representation of P(f,g,v) around & by Implicit Function Theorem
[67][90]; see [31][91].
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Case I: ELICQ and RA are fulfilled at Z.
Case II: EMFCQ — but not ELICQ — and GRA are fulfilled at 7.
Case III: EMFCQ - but not GRA - is fulfilled at Z.

In all these cases, we can also classify the type of the strongly stable stationary point
7Z: While in case I a saddle point, a local minimizer or local maximizer is detected
by the “stationary index” of # (a topological invariant), in cases II, III we have a
strict local minimizer throughout [90]; cf. [48][67](80].

Line of Proof.

Sufficiency Part:

Let Cy3 be satisfied. We equivalently represent P(f,g,v) by Posz(f,¢°% v°)
and interpret C;23 as OSZT conditions Coszi23: (OS8I) constraint qualification
EMFCQ, strong stability of all Kuhn-Tucker points in the sense of OSZI optimiza-
tion, and separateness of the OSZ critical values. Under slight perturbations of
the GST data, v° does not (and need not) vary. Now, we are prepared for OST
explanations and, finally, F constructions from [40][43][80] in our GSZ context.

An easy counterexample shows that C3 can not generally be avoided for establish-
ing structural stability [80]. Here, two connected sets, say: (arcwise) components,
would have to be mapped onto one component, contradicting homeomorphy. A
similar counterexample shows that the 7-dependence of the homeomorphisms is
necessary, too. Moreover, each G-O Kuhn-Tucker point Z* has to be mapped to
the corresponding stationary point ¢ of the slightly perturbed problem P( f,3,9).
Finally, from the overall boundedness, EMFCQ and strong stability we conclude that
the number of G-O Kuhn-Tucker points is finite: #¥ (o € {1,...,0°}) [43](80](90].

We start by dynamically constructing the level shift 1): We integrate a C*°-
vector field such that each critical value f(Z%) becomes shifted in R to the corre-
sponding critical value f(2¢) (o € {1,...,0°}).

Now, we may think 3 = Idgr, otherwise referring to f o 1. There are disjoint
open ball neighbourhoods B(ZY,¢) around Z%, such that the smaller neighbour-
hoods B(£%,£) contain ¢ (0 € {1,...,0°}). Without loss of generality we as-
sume that the unperturbed and the perturbed lower level sets coincide in all the
sets B(2%¢€)\ B(3%, %) (0 €{1,...,0%).

Having performed this reduction of 3 and based on the previous assumption, we
local-globally proceed by constructing ¢p, (r € R"). At first, we realize which
undisturbed sets have to be homeomorphically mapped onto which corresponding
sets from the disturbed situation (mapping task). We distinguish three situations
given by levels 7 < 7,7 = 7, or 7 > 7. Some area from outside of the feasi-
ble set possibly must be “carried in”. Apart from the stationary points, the level
sets transversally intersect with the boundaries. On these fundamental domains our
further construction will be raised.

11




Outside of B(i%€) (¢ € {1,...,0°), we use “EMF-technique’ based on
Lemma 1.1 and applied on L%/ (f,¢°) (= L7(f,9,v)), Lpsz(f,3°): Within of
tubular neighbourhoods we transform undisturbed boundaries onto corresponding
disturbed ones along trajectories of vector fields which are generated by EMF vec-
tors. Using differential topology, this global construction is glued together in

o (B(z%,€) \ B(&, £) 5)) with the local construction sketched next referring to
one unperturbed stationary point z%(= &%) € {Z},...,2%} and a corresponding
perturbed point #¢. Now, we are inside of B(%*,€). We may restrict to n € {2, 3},
doing dimensional reduction by successive hyperplane intersection otherwise.

Case 1. % is lying in the interior Mosz[g°](= M|g,v]) :

Then, #¢, being sufficiently slightly perturbed, lies in the interior of Mgsz[§7].
Both stationary points are nondegenerate [37], and for each 7 we transform the
7-levels around #* onto the local 7-levels at #¢. In fact, this Morse theoretical
local construction can be made by a C'-diffeomorphism [43][80].

Case 2: &% is placed on the boundary of Mosz(g°] :

Then, #¢ may lie on the boundary or in the interior of Mpsz[g°]. Without loss
of generality we assume the boundary case. Actually, using an implantation of
a suitable level structure, we turn from stationary points at the boundary to fic-
tive stationary points in the interior. This level structure is locally given by fictive
objective functions f* and f¢. For performing this implantation of f¥, f¢, we
need precise knowledge of the configurations around the boundary points z*,#¢,
characterized by both position of cones or balls with respect to the boundaries and
growth behaviours of f, f. We have two conical types and one radial type, gov-
erned by strong stability (under EMFCQ) [43][80][90]. By means of fictive interior
problems, extrapolating the “characteristic” of £*, #¢ and implanting fictive sta-
tionary points Y%, i‘}ic, we arrive back in case I (interior position). Hence, in case
2, the entire mapping task is also fulfilled.

Necessity Part:

Let P(f,g,v) be structurally stable; we prove Cgsri23 in indirect ways. Based
on our assumptions, we carry over the proof of the OSZ necessity part from [40]
into our GSZ setting.
Many details of argumentations are Morse theoretical [25][42][43][80][90]. To avoid
loss of differentiability, we assume that all data are C* [25]. This smoothness can
be achieved by fine perturbations of all OSZ data and, by tracing them back, of all
GST ones.

Here, we make the inequalities of different indices z¢' # z¢" independent from
each other (by small shifts).

Ci: Since M [ | is compact, there exists the finite maximum 77%* := max{ f(z)|
z € Mlg](= L"(f,9,v) 7 € [tT™®* 00)). Under sufficiently slight perturbations,

M[g] remains compact. Let 7™2% for each slight perturbation ( f,3,%) denote the
maximal (feasible) value of f. Taking 7* := max{7™8X ¢~1(7M8X)} " the homeo-
morphism ¢p .+ gives topological equivalence between M[g,v] = L™ (f,g,v) and

12




M[j,%] = LY")(f,§,7). By Stability Theorem, topological stability implies EM-
FCQ. In fact, by suitable perturbations any violation of EMFCQ at a feasible point
leads to compact sets M|[g], M[g], satisfying ELICQ but being not of the same
homotopy type [26][42](80](90]. When, e.g., the two sets have a different finite num-
ber of connected components, this must contradict topological equivalence (cf. also
(37])-

Cy: Suppose EMFCQ, but C; not fulfilled: some G-O point z* be not (G-0O)
strongly stable.

Lemma 3.2 (Perturbation Lemma [90]). Let a G-O Kuhn-Tucker point
& of P(f,g,v) be given with EMFCQ being fulfilled, but (G-O) strong sta-
bility violated. Then, for each open C?-neighbourhood O of (f,g,v) there are

(f,3,0), (f §,0) € @ and k' € N such that:

(i) P( f,3,7) has k¥ G-O Kuhn-Tucker points, all being (G-O) strongly stable,
except one (namely, ).

(ii) P( f §,7) has at least k'+1 G-O Kuhn-Tucker points, all being (G-O) strongly
stable.

(iii) In both P(f,§,7) and P( f:., 3,7), EMFCQ is satisfied everywhere, and differ-
ent G-O Kuhn-Tucker points have different critical ( f-or f-) values.

In F or OST necessity parts of [25][40][80], these perturbations are realized by
three steps. Step 1 yields local isolation of % as a stationary point where (E)LICQ
is guaranteed but unstability preserved. In step 2, outside of the local situation,
(E)MFCQ and strong stability of all (other) stationary points are established. In step
3, finally, the unstable Kuhn-Tucker point 7* “splits”: By this bi- (or tri-) furcation
we locally get two new stationary points; they have strong stability. No, in this
G817 situation, we use the algebraical characterization from our preparations. For

L™(f,3,9), L( f,§,7) we have to take into account each change of the homeomorphy
type of a lower level set, when 7 traverses (—oo,00). Based on the perturbations

from above, we apply the following items on P( f,3,9), and P(f,§,7). We look
at a C%-problem P( f,9,7) with a compact feasible set fulfilling EMFCQ, and put
L (f,9,0) = {x € M[j)|a < f(x) < b} for some a,b € R, a < b [67][89][90].

Item 1. If L¥(f,§,7) does not contain a stationary point, then L%( f,,9,) and

LY( f,4,0) are homeomorphic.

Item 2. Let Lb( £ §,7) contain exactly one stationary point #’. Moreover, let
a < f(#') <b and #' be (G-O) strongly stable. Then, Le(f,§,0) and Lb(f,§,%)
are not homeomorphic.

Here, Item 2 can be expressed with attaching k-cells (x = stationary index at
i’ ) By Manifold Theorem and Lemma 1.1 we conclude for all noncritical levels 7:

L7( f,9,9) = M|(g, —f 4 7)] is a compact topological manifold (with boundary).
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So, their homology spaces (over R) are of different finite dimensions [71]. Since
these spaces are topological invariants, the two considered lower level sets cannot
be homeomorphic [37].

Now, we are prepared to make a “discrete” statement on topological changes

for the lower level sets: The homeomorphy type of L7( f:, G,7) changes (at least)
at k' + 1 times, whereas the homeomorphy type of L7(f,g,7) changes (at least)
at k' — 1 times, but at most at k' times. This contradicts structural stability of
P(f,9,v) [90].

Cs: Let C; be violated, but EMFCQ and strong stability be satisfied. By local
addition of arbitrarily small constant functions on f, we get a problem P(f*,g,v)
satisfying Cs. Let k* denote the number of critical points of P(f*,g,v). Then the
homeomorphy type of L7(f*, g,v) changes k* times, whereas the homeomorphy
type of L"(f,g,v) changes less than k* times. Hence, we are faced again with a
situation which is incompatible with structural stability of P(f,g,v). B

Our optimality conditions, topological results and techniques together prepare
iteration procedures for treating P(f, g,v). For detailed explanation of the design see
[60](85][88][89](90]. Further new approaches and numerical methods are presented
in [23][54][65][75][76][77][78][79].

4 Generalizations.

We generalize our inverse and perturbational results along the following two direc-
tions:

(I) M[g] is unbounded (noncompactness),

(IT) f is of the nondifferentiable GST mazimum-minimum-type, i.e., the composi-
tion f = fpo fy_10...0 f; of finitely many functions which are of max-type
fi(x) = maxcyi(y) wi(z,<) or of min-type f;(z) = minceyi(q) w;(z,5).

On (I): We overcome noncompactness by turning to the family of ezcised subsets of
M{g]. The effect of intersection is generated by subtracting lower semi-continuous
functions from g [68](80](90], yielding cuts, e.g., by cylinders or balls, by R" itself
or by bizarre sets. Referring to all excised sets, we get the condition of excisional
topological stability which can actually be characterized by the overall validity of
EMFCQ in the unbounded set M[g]. The (Ezcisional) Stability Theorem is given
in [90].

On (II): In the case where f is of maz-type, nonsmoothness can be overcome
by representing P(f,g,v) as minimization of z,.; over the epigraph E(f) :=
{(x,Zp41)|z € M[g], f(z) < Zpy1}. (From this problem in R™*' we obtain our
stationary points of P(f,g,v) and the appropriate condition of strong stability
[80][81][90]. Now, (max-) structural stability of our nondifferentiable problem can
again be characterized by EMFCQ), strong stability and the technical separateness
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condition. This Characterization Theorem and the one for the case combination
with (I) are presented in [90]. A classical example of minimization of max-type
functions is given by Chebychev approzimation; we refer to this in Section 5.

In case of a min-type f, we turn to E(—f) and use geometrical insights from the
max-type case. Now, in our general case of finite maz-min composition, we unfold
nondifferentiability step by step, finally getting our maz-min structural stability and
its characterizing conditions [87].

Remark: In (II), we treated the discrete-combinatorial nondifferentiability
structure underlying f by unfolding or lifting along continuous parameters. For
further examples of tracing back structures in the way “discrete — continuous”, or
“continuous — continuous”, “continuous — discrete” and “discrete — discrete”, cf.

(52](90].

5 Anticipatory Systems.

5.1 Prediction and Reverse Chebychev Approximation.

(a) Approximation of a Thermo-Couple Characteristic (Chemical Engi-
neering).

The following motivation of reverse Chebychev approximation from chemical
engineering was formulated by Hoffmann and Reinhard [35] and also modelled in
[90]. A thermo-couple f is some spline of polynomials with different degrees between
3 and 13. It is defined on an interval [a,b] (a < b). ;From the engineer’s point
of view, the practical use of a thermo-couple characteristic is very sophisticated.
There are several reasons, which call for an approzimation of the characteristic
by a simpler function. For instance, the characteristic cannot be presented in a
closed form, the polynomials’ degree is too large, and often only a small region of
temperature is of practical interest. (Applications in chemical engineering can be
found in [93].) Hence, the engineer may look for an approximation by means of only

n
one polynomial p(y) = Y. Zx+1¥* (v € R) of some order n° such that the domain

of approximation is as lz:rgoe as possible, certain interpolation properties are fulfilled
and lower and upper error bounds are not violated. This optimization problem is
naturally called a reverse Chebychev approximation problem. Therein we put
n=n°+2, To=(T1,...,Tno41)’, 7 = (27, 2,) and

\IJ(zo; y) = kz—;() 17k+1yk, 6(1:0, y) = ‘I’(xmy) - f(y) (1‘0 € Rn_lv Yy € R)»

referring to some a € [a,b). Then we may model our problem in R" in the
following way, which can easily be seen to be of generalized semi-infinite character:
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Minimize -z, on Mgsz,
where Mgsy = {z € R"| ¥(z,,§") — fi =0 (i €l(zn)),
PQSI 5(513'0,1/) i 51(3/) >0 (y € [a,x,,_]),
—6(zo, y) + 6" (y) 2 0 (y € [, 7)),
Ty 20, ~Ep+h > 0T = (2L, 2,); 2. € R Y z,€R)}.

Namely, taking two different numbers ¢, d € R\ [a,b] we would define Y"(z) =
la,z,) (v € {1,2}), Y3(z) = {c,d}, z € R" (¢" = 1, v € {1,2,3}). However,
with the appearance of the z-dependent set I(z,) C I = {1,...,m}, there is an
additional generalization of discrete character in Pgsz. Here, the most important
practical situation is given by (z,) = {i € I| §* € [, z,]}. (A motivation of
general index sets can be given in optimal control theory [89][90].) Originally, the
points (¢, f ?) can be interpreted as interpolation points. Moreover, the continuous
functions f, 67, 6! need not always be continuously differentiable. In this paper,
we stick to the case of | = I (z-independence) and of C*-functional data.

Of course, there are other Chebychev bases, for instance trigonometric ones, to
which one may suitably refer instead of {z — 27 (z € [a,b])| j € {0,...,n°} }.

Based on our mathematical modelling by a generalized semi-infinite optimization
problem, all our structure and stability considerations from the previous sections can
be applied on our example from chemical engineering here.

(b) Optimization of Anticipatory Systems.

In the previous part (a), we extended the region of approximation, consisting of
values of the variable y. This variable, with respect to which we want to extend
the horizon optimally, can be of some, e.g., physical dimension, for instance, of
a variable or transformation of time, or just time ¢ itself. This interpretation of
our foregoing chemical process, or of another biochemical, physical, technological,
economical or social process, can be given in terms of prediction: We are looking for a
mazimal time-interval along of which the process can be well described or controlled.
This wide (in time) understanding, or anticipation, of the considered process is
meant in an approximative sense where, additionally, interpolation requests can be
integrated. Here, by that interval maximization, we want to optimize the entire
anticipatory system. By those interpolating conditions, we can put emphasis on
some very important data, or highly accurate measurements or experiments. Finally,
this understanding can be expressed as a solution of two kinds of problems: (i)
inverse problems, dealing with the “inner” properties of a system or process based on
“outer”, “selected” or “sample wise” experimental or measurement data [3][10], and
of the problems from recently rising (ii) statistical learning, dealing with estimation
of parameters based on those data [28].

We underline that all our structural and stability considerations from the previ-
ous sections about generalized semi-infinite optimization can by this problem rep-
resentation be applied here. This is very important for validating our data and the
model based on these data or, in terms of statistical learning theory, for testing or
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the process dynamics or, in the topological sense of generalized semi-infinite pro-
gramming problems representing the system to be optimized (cf. previous sections),
we express the robustness and well-posedness of a system.

In Characterization Theorem on structural stability, we stated that strong stabil-
ity of the stationary points to be one of the central features. This is a second-order
condition (in terms of derivatives) which can also be measured by “topological in-
variants” such as eigenvalues of Hessian matrices (on extended tangential spaces) or
by so-called Morse indices (for a basic introduction cf. [37][48]). In inverse prob-
lems and statistical learning, second-order conditions can be found with the help of
covariance matrices. There, significant information is given by confidence regions
(ellipsoids), i.e., by the lenghts of its principal axes. These lengths and the pro-
jections of the ellipsoids on coordinate axes measure “ellipticity”, where also the
correlation coefficients of the unknown parameters are indices for [3].

In the following subsection, we continue with our interpretation y =t, i.e., of a
widely (in time) reliable prediction. Then, anticipation will be understood by right
now, at present time, studying the time-horizon of observation, by pushing it into
future, which means: mazimization. Before we maximize, we briefly introduce a
corresponding minimization problem which is classical in generalized semi-infinite
optimization.

} goodness-of-fit measuring of the model quality. In fact, by stability (in time ¢) of
|
|
\

5.2 Prediction and Heating Processes: Time-Optimal Control.

‘ (a) Time-Minimal Control in Heating and Cooling Processes.

| Let us think that a given ball B consists of a homogeneous material. We study
the following problem of heating or cooling B from an initial to a terminal temper-
ature [50][51][90]:

6 :[0,R] x [0,00) — R, where 6|(0,R] x (0,00)

|
‘ Min I(T,u) := T such that there is a bounded function
|
\ is partially differentiable, wu = 6(R,-)|[0,T] is continuous,

P and 0, (r,t) = al@(r,t) = S2(r?,(r,t)) 1)
((r,t) € (0, R] x (0,00)),6(r,0) = o
(r € 0. RD.O(RT) = 60T > 0, [ou(R,8)| < 0 (t € [0,T)).

Here, A# represents the Laplacian of § and R denotes the radius of B. The
temperature 6(r,t) is a function of the radial variable r, where r measures the
distance from the center point 03 of B, and of the time ¢. Moreover, we start with
an initial temperature 6, and finish with an intended target (end) temperature
6 > 6y (or 6 < By, respectively). Because of this inequality, each time T which is
optimal for P'™, can not be zero (T\ > 0). The temperature is essentially governed
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by the implied heat equation, where a > 0 stands for the heat conductivity. This
can effectively be realized by the substitution v(r,t) := ré(r,t). We interpret
ur(-) == u(-) = 0(R,-)|[0,T] as a control variable (T > 0). Now, we are focussing
on partial differential equations with the following unique solution of the (boundary-
value) problem:

6(r,t) = 2r Z (fom D oo 1) exp( —a(E)2t)6, 1 sin(5r) + 2 S~ (~1)k 1k -
k=1 =4
t

Z]fexp(" (B5)%(t — 5)) u(s)ds - 7 sin(5Fr).
Furthermore, ¢,(r,t) denotes thermal stress tangential to the boundary 9B of
B (r = R); o* is a given upper bound of the stress.

Under suitable physical assumptions, at the boundary o, = o has the form

(ou(R,t) =) o%(R,t) = %(R%{G(r,t)rz dr — u(t)).

Here, E is the modulus of elasticity, u and a are the coefficients of cross-extension
and linear heat extension, respectively. For more detailed explanations and refer-
ences we refer to [50][51], where also an interpretation of P'™ as a problem from
two-stage optimization is given, based on the achieved representation of temper-
ature.

On the lower stage, for each T > 0 we consider the one-parameter family
(PP™)rejo,00) Of norm-minimal control problems on the thermal stress at the bound-
ary, given by the approzimation problem

pam { Miny, ||6% (R, )|z, where ur € C([0,T],R) fulfills ur(T) = 6. }

Item [50]: For each T > 0 the problem P{™ has precisely one solution dr.  This
(unique) solution @r of PE™ (T > 0) is ur(t) = G—E——y(%~ ar(t) +gr(t) (t €
[0,T]), where (@r,¥r) is the unique solution of some system of integral equations
(cf. [50][51][90] for details):

ur(t) - 0ftk(t-S)ﬂT(S) ds = 197(t) — [ k(t — 8)Fr(s)ds = Bo(t) (t € [0, T))

[

The mapping u%(t, T) := dr(t) is called a core of a Kuhn-Tucker function or, more
precisely: a global minimizer function. Inserting the optimal control variables (u =
)dir into the given problem P'™ leads to the upper stage, given by the following
generalized semi-infinite (GST) optimization problem of class C° with z:=T and
y:=t

Min f(z) := z such that

Pgsz(f,9,v) +02 (R,y)+0* > 0 (y € Y(z)),
z > 0, where Y(z) := [0,z] (z € R).
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Here, g, u comprise the three or two continuous inequality constraints on r and
y, respectively. The problem P'™ is an example for a terminal problem. For first
numerical treatments including convergence results see [46](51]{90]. Because of the
form of this generalized semi-infinite problem with its special implication of time,
i.e., t and T, such that a differential equation is becoming reflected, the corre-
sponding stability condition is right between the stability conditions on differential
equations [2][19] and structural stability of generalized semi-infinite optimization
(Subsection 3.1). This special form of optimization problems and stability condi-
tions is important not only for technical applications but also for biosystems. In
the following part (b) and in Subsection 5.3, we mention three of them, located
in control of global warming, of temperature control for premature infants and in
genetics, respectively.

(b) Control of Global Warming, Optimization of Anticipatory Sys-
tems.

When maximizing the time-horizon, we usually do not refer to a terminal state
where the system should be controlled to, but to a set where the state trajectories
are requested to lie as long as possible. As we did in Section 5.1, a maximization
problem can directly be translated to a minimization problem. The problem of
global warming [61] can on the one hand be considered as a controllability problem
of keeping the temperature in atmosphere (or stratosphere) within certain bounds,
or to achieve emission reduction (assumed to contribute to global warming). For
this reduction, Kyoto Protocol requests a collaboration between the countries, called
joint implementation [59]; [56] offers optimization and dynamical systems theory.
On the other hand, it can be interpreted as the maximization problem of respecting
the temperature bounds in time as long as possible. Besides the basic characters
and targets of the considered problems, there are some further important differences
between the time-minimal control (part (a)) and the global warming problem. In
fact, the latter one refers to atmosphere as a thin and gaseous boundary layer of the
earth rather than to a solid (ball) such as the earth itself. This surrounding layer
is not homogeneous. In particular, the temperature also depends on the degree of
latitude [61]. A more refined model needs to incorporate also topographical aspects,
the underlying distributions of the continents or oceans and, finally, corresponding
carbondioxid cycles. All these reasons require that our global problem of earth
warming is formulated with the temperature 6(r,z,t), depending also on the 2- (or
3-) dimensional locally interpreted variable z. Our second application of thermo-
regulation comes from medicine: It deals with keeping the heads of premature infants
in an appropriate, i.e., not too warm surrounding temperature. Such a care is
very important for those babies [7]. Herewith, we have turned to applications from
computational biology and medicine. Our third practical field is located in genetics
and it consists in the modelling and prediction of DNA microarray patterns. Here,
in the sense of our Subsection 5.2 (b), optimized anticipation means a maximized
time-horizon. In following Subsection 5.3, we introduce into this field of research.
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reverse version of Chebychev approrimation in the sense of Subsection 5.1 (). In
Subsection 5.2 (b), we made a very related approach by directly addressing the time-
horizon T' and maximizing it. There, however, the controllability aspect of reaching
a terminal state is included. In computational biology, such a required end state
may be imposed as a medical threshold or intended health state of the patient. For
both of these approaches (b) from Subsections 5.1-2 with their formulations by gen-
eralized semi-infinite optimization, all structural and stability results and reflections
from Sections 1-4 can be utilized for the prediction of gene-expression patterns.
Another approach by optimization theory to computational biology exists in the
investigation of protein structure. This research is very important for, e.g., the dis-
covery and design of drugs. One distinguishes between four kinds of structure: pri-
mary structure, which denotes the amino acid sequence, secondary structure, which
| refers to common substructures into which the amino acid chain forms, tertiary
| structure, related to the three dimensional structure of a single protein, and quar-
| ternary structure for a complex of several proteins. All these can be characterized
| differently in our topological terms of the previous sections. While in a protein
| string the primary structure gives more pointwise information, the secondary struc-
tures connects pointwise to local information; tertiary structure incorporates global
| shape information in space, whereas quarternary structure allows disconnected con-
| figurations given by the appearance of different protein chains. For more information
| and, in particular, secondary structure prediction, see [92].
| In computational biology, DNA microarrays are used. We began to study them
| in a larger class of chips, to which also microchips belong. With the structure of
| their atom clusters in boundary layers and with further topics discrete tomography is
| concerned [10](17]. We look at these chips from the unifying perspectives of inverse
problems (3], of experimental design [15](16] (cf. also [6]) and of statistical learning
; (28] (ct. [22]).
|
|
|

6 Conclusion.

This paper contains a first approach to interpret and optimize anticipatory sys-
| tems as generalized semi-infinite optimization problems. We introduced into this
wide, well motivated field of mathematical programming problems, and we studied
their structure and stability. Finally, we represented problems from chemical engi-
neering and of heating or cooling in the form of generalized semi-infinite problems.
These problems are reverse Chebychev or time-optimal problems; we interpreted
both problem classes as optimization of anticipatory systems. The stability results
which we provided before, serve for a validation of these systems from the view-
point of mathematical modelling, and for a testing of them from the viewpoint of
statistical learning theory.
The present contribution may be a first contribution and encouragement for a
new view and treatment for important prediction problems from various fields of
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Here, we ask for stability or instability of the system of differential equations depend-
ing on certain (control) parameters in the matrix M(E). We call them ezpression-
metabolic (em-) parameters. Answering this question also means anticipation of the
future, and (statistical) learning. Based on (in-) stability, which we detect by our al-
gorithm for the given parameter constellations (having done the time-discretization)
[1]{21]{19], we optimize the process and experimental design such that our mathe-
matical model is permanently under improvement (optimization). Here, we need an
intensive interdisciplinary exchange between mathematicians and biologists. This
all means a joint process of learning in a wide sense.

That approximation problem in its simplest version is unconstrained. In princi-

ple it can be solved with well-known mathematical methods. But there may occur
problems in a biological sense, like, e.g., having much more genes than time-points,
what leads us to an underdetermined system of equations. We face this problem
by introducing some biological meaningful constraints, so that we have an approx-
imation problem with inequality constrains. We assume, e.g., that between two
time-steps the decrease of the transcript concentration is restricted by a constant
vector.
The matrix-valued function M may, for simplicity, be regarded to be constant.
Then, by an Euler discretization, our time-continuous dynamics turns into a time-
discrete one, and we can interpret the entries of M, i.e., our em-parameters m;;,
as the coefficients or rates of how gene i influences gene j. These interrelations
become represented by a gene regulatory network. We would like to obtain a net-
work with a biologically comparable and reasonable interpretation. Therefore, as
a further constrain, it is useful to limit the maximum outdegree and indegree of a
node. Since bounding of the maximal outdegree leads to a loss of a valuable de-
composition property of our minimization, we bind the indegrees. This is done by
means of binary variables. They make our modelling and inverse problem become
a mized integer programming problem [20] which can computationally be treated by
a branch and cut algorithm. If we look at the bounds in a time-depending way, the
programming problem becomes semi-infinite. In the following, we present a further
approach to semi-infiniteness.

In fact, sometimes there is an infinite set of data given which may be countable
or uncountable. For example, if we expect periodic behaviour of a process, we could
repeat a finite data set or the hypothesis of a continuous nature law periodically.
These sets or laws may, however, depend on randomness or they may be numerically
or by communication systems hard to evaluate. Therefore, we try to approximate
them in a very convenient way so that noise becomes ruled out. An optimal approx-
imation would again mean discrete or Chebychev approzimation. In the case of an
infinite number of data represented, e.g., by a continuous variable, this approxima-
tion problem can be represented by a semi-infinite optimization problem [32][37]. If,
however, our aim is to maximize the time-domain where the approximation under
some error bounds, possibly, under interpolation conditions, takes place, we do the
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5.3 Computational Biology and Medicine:
Prediction of Gene-Expression Patterns.

In this biological and medical context, we point out a few relations between gener-
alized semi-infinite optimization and forecasting into an open time-horizon. Here,
we refer to optimized anticipatory systems in the sense indicated in the parts (b) of
Subsections 5.1 and 5.2, and we give some closer explanations.

DNA-chip or microarray experiments offer the possibility to observe several thou-
sands of expressed genes within a cell simultaneously. This can even be the whole
genome of an organism. It is therefore a very convenient technique, e.g., to examine
the differences in concentrations of gene products, i.e., messenger RNA, between
treated and non-treated cells or between different states during development of a
cell, which can be detected by several measurements at different time-points. This
is especially interesting if we ask for the reaction of a cell when treated with a cer-
tain medicine. In the first step of such a chip-experiment the concerning genes are
labelled with fluorescent markers. Then they are verified via hybridization with spe-
cific probes called oligonucleotides, which are localized on the chip in a matrix-like
scheme. A laser scanner reads out the light signal. In order to compare between
different genomes one can label them with different markers, so that they can be
detected via various colours. It is even possible to get a quantitative result if you
distinguish between different nuances of the intensity of the genes’ signals, which can
be encoded with different integers. Our aim is to model the development of a cell’s
expression states over time and to make a prediction. Therefore, we canonically
represent the matrices of integers which we get from time-series data by column
(expression-) vectors E(t). We represent this process with a system of ordinary
differential equations E = M(E)E and find the matrix-valued function M(E) by
means of Gaussian or least-squares approzimation based on the finitely many DNA-
chip measurements [18][19]. This approximation means nonlinear optimization; as
there are only finitely many data given, we also call it discrete approzimation or data
fitting. To be more precise, we ask for the least sum of squares of differences (errors)
between difference-like quotients, based on the measurements, and the correspond-
ing values of M(E)E. We use a parametrical ansatz for M(FE), whose selection
bases on the biologists’ experiences and expectations in view of the future, e.g., poly-
nomial, piecewise polynomial (spline), exponential or periodic (e.g., trigonometric)
developments. Especially, Hill-curves are often used. The hypothesis for using that
kind of function to model the functional dependence of E; on E; is simply that
the concentration of the product of the regulating gene must first reach a certain
threshold value before it has a meaningful effect on the gene it regulates. By this
ansatz and the least-squares approximation we approach the open time-horizon.

We may first refer to the deterministic optimization and control model. (This
can later be extended by switching into a stochastic framework, where we take into
account normally distributed and uncorrelated DNA-chip data errors and where we
may extract the model parameters according to maximum-likelihood estimation.)
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science, technology and economy by means of modern optimization theory. As a re-
cent and more and more important application field, we mention modern life sciences
which encompass research and education about biosystems and human sciences from
micro and macro perspectives under criteria like learning and improvement of the
quality of live.
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