Generalized Formula of Physical Channel
Capacities!

Bohdan Hejna
Navigatoru 615/15, 161 00 Praha 6, Prague, Czech Republic
e-mail: bhejna@cpoj.cz bhejna@seznam.cz

Abstract

We consider a process of information transmission in the environment described by
the canonical distribution of noise, considered as the transmission channel in the
Information Theory. We derive the generalized form of the noisy entropy of this
environment. Then, the generalized information capacity formula is derived for the
geometric distribution of the output variable under the condition of greater or equal
than the minimal value of the mathematical expectation of the input variable. We
also state the hypotheses the capacity, when this input parameter is less or equal
than that minimal (critical, extreme) value, is just defined by the lower capacity
estimation which is the capacity for the limit distribution with this minimal input
parameter. This paper generalizes the paper [6] presented on CASYS’98.
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1 Introduction

In the present paper we study an information transmission in the environment
described by the canonical distribution of noise

1-p
Pr(s)=¢* 0<s<r, 4= 1
which is transformed into the Fermi-Dirac distribution if we put p = e# and r = 1,
or into the Bose-Einstein distribution if p = e and 7 = oo.

We derive the generalized form of the noise entropy of this environment which
we consider as the information transmission channel of Information Theory,

h(p) _ h(P™)
1-p 1-—ptV’

H.(p) =

where h(-) is the entropy function —plnp — (1 — p)In(1 — p). Information capacity
is then evaluated as
h(z)

1—=z

C(p,T{W) = - Hr(p)

LThis paper is an excerpt of Chapter 6 in [7].
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for 0 < p < 1, r > 1 and geometrical distribution z(j) = (1 — £)z?, j > 0 of the
output variable under the condition W > Wy for the mathematical expectation
W of the input variable. This condition is considered to be the main result of this
paper. We also state the limit distribution of the input variable for its extreme

expectation value .
(r+1)p™*
W = Wa*it = -—]:_—pm-

The condition binding the output and input variable together is expressed in terms
of their expectations as

_p(l-¢ _(r+1)p(1-p)
E = 15 + W, where c= 1=l ;

The lower capacity estimation for W < W is then stated as

h r+1 r+1 w
—(p—)—, where 4 = .
1-prtt 1—prtt r41

C.(p,r|W) =

We express the hypotheses that C(p,7|W) = C.(p,r|W) for W < Weris.

2 Generalized Formula of Physical Channel Capacities

2.1 Definition and Formulation of the Problem

Let us consider the Hermitian operator of energy € of quantum particles with
spectrum S(€) of eigenvalues ¢; (energetic levels of the particle) in pure states ; of
the system ¥ under consideration. We assume that a variable a with a spectrum
S(a) = {ayp, 1, ...} is measured with the probabilities

p(j—id) for j=1
plaslal6) =

0 Jj<i,
where {p(0), p(1), p(2), ...} =Pr(-) is a probability distribution defined on the set
{0,1,...}. This situation occurs when, for example, a particle is excited by a
random interaction from the energetic level ¢; to £;45, and the spectral energetic
jump s is random with the distribution Pr(s), s =0, 1, 2, ... . Then, energy of the
excited particle is measured. The excitement can occur as a result of interaction
with another particle or a wave. If the particle energy is ; = ie, then, for example,
after interaction with a wave with energy &, = se, and after absorbing its energy, the
additive energetic jump to the level €;,, = (i + s)e occurs. In the example stated,
it is the energy distribution Pr(-) in the environment interacting with the emitted
particle that plays the key role. For an observer capable of measuring the particle
energy, that particle represents an information signal.
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The distribution Pr(s), s > 0, also has a similar meaning in a general case, when
an observer of the variable a can obtain information of the state 8 of the system . If
Pr(s) = 0 for all s # 0 and Pr(0) = 1, then, based upon the measured value & = o,
the observer can determine, without errors, that the system is in the pure state 6.
Otherwise the observer’s determination will be less accurate. If we have a possibility
to bring gradually the system ¥ into arbitrary pure states 6;,, i, .- ., 6;, from a
state subspace ©y C ©, then the observer who takes n independent observations
of the variable a, thus obtaining independent random values i, Qi - - -5 Qk, ID
these states, receives a certain amount of information 1(6; o).

Let us assume we would like to transfer one of the messages from a source
Z, ={1,2,..., My}, where the number of messages M, increases with numbers
of observations n as the integer-related portion of the number ef" where R > 0
is an invariable called information rate of the source. It follows from the Shannon
coding theorem (see [3]), that a message from the source Z, can be transferred to the
observer with an arbitrary small error probability when the number of observations
n is great enough, provided that R < C, where

C £ C(¥l{a}, 60) = sup 1(6; @) (1)

is called "relative capacity” of the system W.
We will look for the probability distribution Pr(s), s > 0, within the class of
the Gibbs canonical distributions in the form
‘ e‘ﬁE(s)
' Pr(s)= g 20
where the energy E(s) will be different from zero in all of the states s > 0 of the
| "system noise” under consideration, or only in the states 0 < s <, where 7 > 0 is
‘ finite. Here, 8 > 0 is a parameter and Z(f) is the statistical sum. For simplicity,
we put SE(s) = 0s, where the value of the parameter 6 is usually considered to be
e/kT, where € > 0 is energy, T > 0 is temperature and k is the Boltzman constant.
Consequently, we consider the distribution

for 0<s<r
Pr(s) = @)
for s>,

(=]

where 8 > 0 and Z(6) = (1 — e~ +1)/(1 — e7%), or alternatively,

gp’ for 0<s<r, ¢=ihr
Pr(s) = (3)
0 for s>,
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where 0 < p < 1. In (2) and (3) r > 1 is either a finite integer or 7 = oo. In the
case of r = oo the distribution Pr(s) is always positive and Z(f) = 1/(1 —e7%),
respectively ¢ = 1 — p. Then, in (3) we substitute

p=e’ resp. p=e 7. (4)

The extreme cases of the distribution given by relations (2) and (3) correspond
for the values 7 = 1 and 7 = oo with known distributions of statistical physics

For r = 1, the only probabilities different from zero are

! P
= — =1-P = —,
Pr(0) ity and Pr(1) =1- Pr(0) % (5)

With the substitution (4) we obtain the known Fermi-Dirac distribution, see [9]. There-
fore, the distributions (2) and (3) with r = 1 are called the F-D (Fermi-Dirac)-type
distributions. If, instead of the substitution (4), we take

-0 —£
e e kT
P=1__ TP P=1 (6)
we obtain the Maxwell-Boltzman distribution.
For r = 00, all probabilities are different from zero,
Pr(s)=(1—-p)p*, s 20, (7

and when substituting (4) we obtain the known Bose-Einstein distribution, see
[9]. Therefore, the distributions (2) and (3) with r = oo are called the B-E (Bose-
Einstein)-type distributions.

2.2 Additive Physical Channel Capacity
We will consider only such states @ the distribution of which ¢(i) = ¢(i|@) holds

00

> ig(i) =W, (8)

i=0
where W is the power parameter of the ”signal variable” @ on the channel input
(if &; = 1deo is the energy considered at the beginning of Subsection 2.1., and if
we use 7 > 0 as a symbol for "time window”, in which "modulation of input”
and a consequent process of measuring of the variable « is performed, which is an
”input-output communication action”, then W /7 is the power on the input of the
channel). In this paper we deal with the capacity

C(p,r|W) = 6'sexé,p I(e;0), W >0, 9)

where Ow is a set of the states @ the distributions of which satisfies the condition
(8) and I(e; @) is the information transferred.
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Lemma 2.1 In the additive physical channel it holds, for the output entropy
H(c||6;) in the input state 6;, foralli > 0, 0 <p <1 and 1 <7 < oo that

h(p h pr+1 A

H,(p), (10)
where p® = lim,_,o, p" = 0 and

h(p) = —plnp — (1 — p) In(l - p) (11)

is the entropy function of the parameter p. Therefore the capacity of this channel is
given by the relation

C(p,r|W) = sup H(a||0) — H(p) (12)
6cOw
for Ow defined above and the output entropy H(cx||0).

Proof. The relation (10) follows from (3) and from that H(c||@;) occurs with
probabilities ¢(i|@). It follows from (10) and from the definition of I(c; 8) that

I(a; 0) = H(ct||6) — H:(p) (13)

and the relation (12) follows from here, from (9) and from the definition of Oy .

In the lemma below and further on, we consider a distribution of the state 6

q(i/@) when ¢>0
q() = (14)
0 when <0
and the respective distribution of the variable o
p(ajlal@) when 5 >0
z(j) = (15)
0 when ;<0

in the system ¥ under consideration.

Lemma 2.2. The following system of equations holds between the distributions
(14) and (15)

() =qlp"qi —r)+p g -+ 1) +...+pe(i - 1) +q()], 720, (16)
which is equivalent to the system

qi) =p™gli—r—1)+ ’”—(’)—’—”q“i(’—‘l—) i>0, 17)

where p, g, 7 are the noise parameters appearing in (3).
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Proof. By the probability definition p(c;|cx|@;) stated at the beginning of Subsec-
tion 2.1, for all j > 0 it holds that

2(i) = S pleslel0dai) = 3 Pr(i = )a) (18)
By substituting Pr(j — i) ;rom (3) we obtain (16). By (16)
2(i-1) =g —r-1)+p g~ 1) +... +pe(i — 2) +q(i - 1)),
pa(j-1) = glp"'q(j—r—1)+p"q(j—)+. . +pa(i-1)] = ep" ' q(G—r-1)+2(j) —qq(4),
z(j) = pz(j — 1) + qq(4) — gp™ gl — 7 - 1). (19)
Then (17) follows directly from the equation (19).

Now, we will derive the relation between the power parameter W = W(0) of the
state @ from the formula (8) and the similar power parameter of the variable a

E=E(a)= f;o i) > 0. (20)

Lemma 2.3. The power parameters W = W(0) and E = E(a) are related by

1—=
E=B(—C)+W where , (21)
l1-p
a (144 0\T prpra-p)
C=Cr(p)=(p—r+1‘—p—) =—_T—PT€(O’1)' (22)

Proof. Multiplying both sides of the equation (19) by j > 0, we obtain that
jz(3) =p(i — N)z(j — 1) + pz(j — 1) + ¢ja(4)—
~gpt (G —r —1)g(j —r—1) @™ (r + 1)g(i —r - 1).
By summing up both sides over all j > 0, we obtain
E=pE+p+(1-pW —gp'(r +1).

According to (3) and (22), for ¢ = (1 — p)/(1 —p™*!) and c = c,(p) it holds
A-ppti(r+1) __ pr+1)

1—prt 14tttz
Therefore it holds E(1 — p) = p(1 — ¢) + (1 — p)W, which implies the relation (21).

gt (r+1) = = pe.

In the next part we are interested in a solution z of the equation

. _p(l-c) _
-2~ 1-p +W  where ¢c=c(p) from (22). (23)
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Lemma 2.4. The solution z of the equation (23) satisfies the condition

_pl-9+(1-pW
1—pc+ (1 —pW

€ (0,1) (24)

and meets, for ¢ from (22), the relation z > p if and only if

(r+1)p™*'  pc

W > = :
— l=pt 1—g

(25)

Proof. From the equation (23) we obtain

o= pl-q+(1-pW _pd-+1-pW
pA=c)+(A-p)W+1) 1—pc+(1-pW

Therefore, the equality in (24) is valid. Also it holds that 0 < z < 1. Further, we
obtain

1=
= fe
’ 1-pct+ (1-pW’
g-p_(;_ 1 _ (1-pW-pc
1-p 1—pc+(1-pW 1—pc+(1—p)W’

So that z — p > 0 if and only if (1 — p)W — pc > 0, which is the condition stated in
the equivalence (25).
Lemma 2.5 Let z(j), j > 0, be an arbitrary probability distribution defined on

the set {0, 1, ...} . Its entropy H = — 332 z(j) In z(j) achieves, under the condition
(20), the maximum

h(z)
Hess = e (26)
if and only if '
z(j) =(1-2z)’, j=20, (27)
where z is the solution of the equation
z
-z E (28)

and h(z) is the entropy function defined in (11). (This key lemma follows from
Lagrange multipliers method or from more general Theorem 9.37 in [15].)
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Lemma 2.6. If z, given by the relation (24), leads to a non-negative solution
q(3), 1 > 0, of the system of equations

1—;! for i=0

) = 3 (29)
ptlgli—-r—1)+ (e " le-p) ’q 2Pl for i>1,

then the supremum appearing in the formula (12) satisfies the equality

h(z)

sup H(c||0) = H(al6) = 1—g’

fcow

(30)
where @ € O is the state with distribution ¢(3|@) = ¢(), i > 0.

Proof. By Lemma 2.5 and 2.6, H}}, . & supy (H(c||@)) is the maximal entropy
of the distribution z(j), j > 0, which solves the system of equations (16) under
the condition the distribution ¢(z), 7 > 0, in (16) satisfies (8). By Lemma 2.3, this
condition holds if and only if the solution z(j), j > 0 itself satisfies the condition
(20) for positive E defined by the relation (21). Hence, following Lemma 2.5, the
value H},, is less or equal Hpay in (26) and the equality H}, ., = Hmes is achieved
if and only if it is possible to find out such a solution z(j), 7 > 0 of the system
(16) satisfying the condition (20) for E given by the formula (21), which is the
geometrical distribution (27) with the parameter z, solving the equation (28) for E
given by the formula (21). This also means that z solving the equation (28) for E
given by (21) means nothing else than that z solves also the equation (23), i.e. that
it is given by the relation (24). According the equivalence between the systems of
equations (16) and (17), the geometrical distribution (27) satisfies the conditions
stated above if and only if the solution ¢(7), ¢ > 0, of the system (29) is, for z given
by (24), the probability distribution. As we can see, this solution always satisfies
the equality Y°72,¢(¢) =1, so it is obvious that the condition of the probability
distribution holds when ¢(z) > 0 for all 4 > 0. This is the necessary and sufficient
for the equality H}., = Hmax.- The lemma thus holds when Hp,or = h(z)/(1 — z)
holds, which is guaranteed by Lemma 2.5.

Theorem 2.1. For all parameters W satisfying the condition

a(r+1)p*  pe
W2Weu= T o =1, (31)

the capacity (9) of the additive physical channel with parameters 0 < p < 1 and
1 < r < > is given by the formula

Otpyriw) = 12 - 20, M), (32)
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where z = z(p,7|W) € (0,1) is the variable stated in (24) and h(-) is the entropy
function defined by (11) on the interval (0,1). The capacity is achieved, i.e. the
equality C(p,7|W) = I(a; ) is valid, in the state @ with the distribution ¢(i|8),i >
0, given by the relations (14) and (29).

Proof. The condition of non-negativity of the variable ¢(z), 2 > 0, in Lemma 2.6
will be satisfied when the solution z of the equation (23) satisfies the condition
z > p. By Lemma 2.4 this happens when the power parameter W satisfies the con-
dition (31). Under this condition Lemma 2.6 guarantees the equality (30). Now,
the required equality (32) follows directly from Lemma 2.1 and from the equality
(30). The condition for the capacity achieving follows from the formula (13) for
information I(c; @), and from the formulas (12) and (30).

Note that the power restriction (31) holds
Werie = 0,  more accurately Weri = o(rp"),

for rp” — 0, i.e., for example, for any p and r — oo, or for any r and p — 0. For
the critical value of power parameter

(r+1)p*+

W = WC’rit = 1 _ pr+1

(33)
the capacity formula streamlines, following Theorem 2.1.

Consequence 2.1. The capacity (9) of the additive physical channel, with the
power critical value (33), is

C(p, 7 Werit) = I”% (34)

It follows from this result that C(p,r|W) < h(p™*')/(1 —p*') for W < Wepse,
where the upper bound is small except for small values 1 < < oo and great values
0 < p < 1. However, the formula of the capacity C(p,r|W) of the additive physical
channel for the under-critical power norm W < W,.; remains to be as an open
theoretical problem.

2.3 Capacity Estimations in the Area of W < We;t

Now we will concentrate on upper and lower estimations

Cu(p,7|W) < C(p,r|W) < C*(p,7|W) (35)
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of the capacity C(p,r|W), given by the formula (12) for the area of the low input
power parameter W < W.;:.
Let z, = z,(p, 7|W) be a solution of the equation

Z, w
l-z, r+1 36}
Then0 <z, <1lforall0<p<1, 1<r<ooand W > 0. For all mentioned p,r
and W, we define
_ h(=z.) _ h@) _ hp) _ ™)
C.(p,rIW)—l_z' and C‘(p,er)—-l_x 1—p+1—pf+1’ (37)

| where z = z(p, 7|W) is the solution of the equation (23), i.e., is given by (24).

| Theorem 2.2. The functions in (37) are estimations of the capacity C(p, r|W) of
the additive channel for the whole range of the parameters 0 < p <1, 1 <7< @
and W > 0.

Proof. The function C*(p,r|W) features an appearance of h(z)/(1 — z) — H.(p),
while for h(z)/(1 — ) = Hpq, We argued in the proof of Lemma 2.6 that

sup H(al|f) < Lz(_:c)_
8cow l-z

Therefore, the inequality C(p,r|W) < C*(p, r|W) follows from (12). When proving
the other inequality for C.(p,7|W) we will use a state 8, € Ow defined by the
condition that for every i > 0,

(1-z)zk  if i=k(r+1), k>0,
q(il6.) = (38)
0 otherwise.

| For the state 0, defined in this way it is easy to see, from the definition (36), that
0. € Ow, from the definition (37) and from Theorem 4.4 in [7], that

C.(p,7|W) = H(0,), (39)
where #(6,) is the Shannon entropy of g(:|6.). Now we will prove that it holds
H(c||0.) = H(6.) + H(p), (40)

where H,(p) is that entropy defined in (10). By the definition of information trans-
ferred and by the relation (10), it is obvious that I(e;0.) = H(6,) and, therefore,

#(0.) < sup I(c;0) = C(p,r|W).
fcOw
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This means that (39) is the lower estimation of the capacity, which was left to
prove. Then, the problem shrank to proof (40). As for this proof, we will use that

for q(i) = q(i|@.), the probabilities z(j) £ p(cjlal6.), j > 0, satisfy
z(j) = Pr(s)q(k(r +1)) = gp°(1 — z.)z%,

where k > 0 and 0 < s < r are unambiguously specified by the equation j =

k(r +1) + s. As we denote s 2 In[gp*(1 — z.)z¥] = In(gp®) + In((1 — z,)zF), it is
easy to find out that

H@0) = - al)naG) =3 3 o'l - =)kl
J= =0 s=!
= - E'%qp’ In(gp®) — i(l —z,)z*In((1 — z.)z¥)
= k=0

= H,(p) + H(q(6.)) = H;(p) + H(6.).

Theorem 2.3. The probability distribution (38) we used for the lower estimation
C.(p,r|W) of the capacity C(p,r|W) in the area W < Werit is the limit of the
optimal distribution (29) for z | p, ie. for W | Wy and for z = p, ie. for
W = Wiy it is identical with this distribution. Therefore, it holds for W = Wy
that the optimal state @, in which according to Theorem 2.1 the capacity is achieved,
is for this W = W, identical with the state @, used in the proof of T heorem 2.2.
Therefore, the lower as well as the upper estimations satisfy the relation

C,(p,'r|Wa.“) = C(p,T|Wa-,t) =C* (p,ercrit)- (41)
Proof. It is obvious from (29) that for z = p it holds for all : > 0
Q-p )@+ i i=(r+1)k k20
q(i) =
0 otherwise.

However, for the state 8 with the distribution g(i) = ¢(i|@) falls into the set Ow
(i.e. for the distribution g(i), i > 0 that satisfies the condition (8)) it has to hold

r+1

p
- pr+1

i.e. p+1 has to be identical with the number z, defined in (36). In other words, the
distribution (29) has to be identical with the distribution (38). As the distribution
(29) is a continuous function of the variable z € [p, 1), in all common norms (e.g. in
Ly-norm), it has to hold that limgy, ¥32 |g(2) — ¢(i|6:)| = 0.

(r+1)

=)= LR =W,
k=0
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The significance of Theorem 2.3 is in the fact that it supports our hypothesis
saying that it holds

C(p,r|W) = C.(p,r|W) forall 0<W < Wei. (42)
A rigorous proof of our hypotheses (42) calls for an application of the Kuhn-Tucker
conditions in infinite-dimensional spaces, and therefore it is left for a later research.

2.4 F-D Channel Capacity

In this subsection we will concentrate on the special channel case, when r = 1
in the general model studied till now.

Theorem 2.4 For all parameters of the power W and parameters 0 < p < 1
satisfying the condition?

A 297
> G= S
W = Wcrlt 1— p21 (43)
the capacity (9) of the respective F-D channel is given by the formula
o _ h(z) P
CFD-CFD(p|W)—1_$ h<1+p , (44)
where
W + p(W +1)

= ,1 45

. W+1+p(W+2)€(p ) (45)

and h(-) is the entropy function defined by the relation (11) on the interval (0,1).

The capacity is achieved, i.e. the equality Crp = I(a;8) holds, in the state 8 with
the distribution

9(il6) = (—IL?%Z“)@‘“ - (-p""), 20 (46)

Proof. When we substitute c = 2p/(1 + p), we obtain the condition (43) from (31)
and the condition (45) from (24). By (32), we obtain the formula

M) _ k@) , hGP)
l1-z 1-p 1-p*

Crp =
Hence, after a verification of the equality
hw) _ ) _, (_»
1-p 1-p2 1+p

valid for all 0 < p < 1, we obtain (44).
The distribution (46), for which information in the variable e is maximal, is not a

2Formula (43), and (31), corrects an inaccurate statement for W in Theorem 10 in [6].
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canonical one in the sense of the exponentiality. On the pure states 8; of an even
order we speak about the addition of two canonical distributions which, after the
normalization to only ”even states”, takes on the form

_ (1=25)(1-p°
(z +p)(1 - zp)

On the other hand, on the states 8; of an odd order we speak about the sub-
traction of two canonical distributions which, after an application of the respective
normalization process on the set of ”odd states”, takes on the form

(1-2%)(1-p%
(z +p)(z —p)

Now, let us have a close look at these upper and lower estimations C,rp and
Cpp of the capacity Crp in the area 0 < W < 2p?/(1 — p?). The upper bound is
identical to the right-hand side of (44) and we include it for the sake of completeness
only, while, with regard of the hypothesis at the end of Subsection 2.2, the lower
bound is more interesting and of a far greater importance.

Qeven(i) (-’L'i+l +pi+l), 1 € {0, 2, 4, o } 3 (47)

Qoad(3) = ! —p*tY), i€{1,3,5,...}. (48)

Theorem 2.5. The upper and the lower estimations of the capacity Crp are

h(z) D h(z.) W
Ch. = =p it and C.rp = for T,= ——
Fb— 12z <1+p) 1—:1:,) g 24+ W

in the whole range of the parameters 0 < p < 1 and W > 0, z is the variable given
by the relation (45) and h(-) is the same entropy function as in the previous theorem.

Proof. This result follows from Theorem 2.2. It is sufficient to verify that z is a
solution of the equation (23) for r = 1 and z, satisfies (36) for r = 1.

The formula for the lower estimation which follows from Theorem 2.5 is

w 2 W
CtFD-—~2—ln(1+—W7)+ln(1+—2—) forall W > 0.

Our hypothesis says that, for 0 < W < 2p?/(1 — p?), the capacity is exactly on this
bound. At the same time, for very low powers, the following formula is applicable,

C.rp = W% (ln —;7 + 1) +0o(W?) for WlO. (49)

By substituting p = e# from the relation (4), and by introducing “the effective

temperature” Ty > 0 from the condition

6"';;" _ W+p(W+ 1)
W+14p(W+2)

=z, where z <1,
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we obtain from (44), (45), the capacity expressed in the form

€ €
Cro=e(g7) =8 (i) (50
where® for t > 0
t _ -

aft) = S In(1 —e7?) (51)

and 1 1

— t —t

ﬁ(t)-—et+lln(1+e)+e_t+1ln(1+e )- (52)

It holds for temperature Ty that Tw > T when z > p, i.e. W > Weit, Tw =T
when W = Wy, and T < T when W < Wyie.

2.5 B-E Channel Capacity

In this subsection we will study the other extreme case for which the value r = oo
in the general model.

Theorem 2.6. For all the power parameters W > 0 and parameters 0 < p < 1,
the capacity of the respective B-E channel is given by the formula

Cpe = Cpe(p|W) = % - %: (33)
where =W
_bp —P
) € (0,1) (54)

and h(-) is the entropy function from (11). The capacity is achieved, i.e. the equality
Cge = I(; 0) holds, in the state @ with the distribution

= if i=0
q(110) = - (35)
Uosleple™ 3 > 1.

3Formula (51) corrects a small misprint in formula (26) in [6].
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Proof. It is sufficient to apply Theorem 2.1 and notice that in this case Wi is
reduced to 0, and that ¢ from the relations (24) and (22) also shrinks to 0. With re-
gards of these features the condition (31) is reduced to W > 0, the variable z stated
in (24) shrinks to the value (54), and h(p"**)/(1 — p™*') from (10) is reduced to 0.
Therefore the formula (53) follows from (32). The formula (55) follows from (14) and
from the equations (29) after setting r = oo and ¢ = 1—p, as it follows from (3) for g.

The effective temperature Ty > 0 can be established from the condition
oy = Pt (=g
1+(1-pW

As z is now a solution of the equation z/(1 — z) = p/(1 — p) + W, see (23) with
¢ =0, where W > 0, it holds

r, where z<1.

P €
e kTw e kT

1- g-ﬁ% 1- e—kLT ’
i.e. in the B-E channels the effective temperature Ty of the variable a in the state
of the maximum information rate is always higher than the temperature 7' of the

whole system.

3 Conclusion

We presented the generalized formula (32) for the capacity of the physical infor-
mation transmission channel with the additive system noise with an arbitrary, finite
or infinite, number of discrete levels, which is considered to be a novelty. This noise
follows the Gibbs canonical distribution (3). All our results we demonstrated for
the special cases of the B-E and F-D noise.

The main result and novelty of this paper, however, is the formula (31) for the
expectation value (8) of the input variable (the average energy level of the input
signal, input parameter W) for an arbitrary number of levels of the system noise.

The further result, also of importance and novelty, is in the hypotheses (42)
that the capacity C exists even when the input parameter W does not follow the
condition (31), and that the lower capacity estimation C, from (37) is then defined
by (34) for the critical value W,y from (33) and, that is the capacity C for this case.
For the case the input parameter W is above the critical value W, the capacity
C is equal to the upper capacity estimation C* in (37). Both these estimations
streamline together when the equation (33) holds as stated in (41). The probability
distributions (47), (48), of not canonical type, also are to be considered as a novelty
and of interest similarly as the distribution (29) and its limit (38).

As mentioned at the end of Section 2 the hypotheses about the existence and
properties of the non zero and positive capacity under that condition of the critical
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and lower value of the input parameter W is to be studied more deeply in a math-
ematical way. The same is for a physical description of this phenomenon.
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Abstract

Embedding techniques provide a powerful advance in the development of experiment
chaos. However there seems no universal method to find the best set of parameters to
use. In this paper, we analyze the drawback of an algorithm of automatic embedding
dimension and time delay presented in Reference!'{(Massayuki Otani and Antonia Jones,
Oct. 2000), and propose a new approach for computing the embedding dimension and
delay time based on the multiple autocorrelation and I'-test. This approach is provided
with a sound theoretic basis, and its computing complexity is relatively lower and not
strongly depended on the data length. The experimental results indicate that a near
optimum embedding dimension and delay time can be estimated by using this approach,
and the accuracy of invariants in phase space reconstruction is efficiently improved.
Keywords: Phase Space Reconstruction, Embedding Dimension, Delay Time, Multiple
Autocorrelation, I'-test.

1 Introduction

The characteristics of strange attractors of a chaotic system can be analyzed by
sampling a part of the output chaotic time series of system. The method in common use
is the state space reconstruction in delay coordinate proposed by Packad?. It can be
proved by Takens’ theorem!” that the unstable periodic obits (strange attractor) could be
recovered properly in an embedding space whenever a suitable embedding dimension m
=2d+1, (d is the dimension of chaotic system) were found out, i.e. the obits in the
reconstructed space R™ keeps a differential homeomorphism with the original system.

It is very important to select a suitable pair of embedding dimension m and time
delay T when performing the phase space reconstruction. For doing this there are two
different points of view: one is that m and 7 are not correlated with each other, i.e. m
and T can be selected independently (Takens has proved that m and T are independent in
a chaotic time series with infinite length and noiseless). Under this golden rule, a
commonly used approach, G-P algorithm for calculating the embedding dimension m
was proposed by Grassberger and Procacial®. For the time delay T, there are three
criterions to select it: 1. Series correlation approaches, such as Autocorrelation [,
Mutual Information ), and High-order Correlations 8] etc. 2. Approaches of phase
space extension, e.g. Fill Factor 2 Wavering Product ® Average Displacement Pl and
SVF 19 etc. 3. Multiple Autocorrelation and Non-bias Multiple Autocorrelation L
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The second viewpoint is that m and 1 are closely related, because the time series in
the real world could not be the infinite long, and hardly avoid being noised. A great deal
of experiments indicate that m and 7 tie tightly up with the time window t,= (m-1)t for
the reconstruction of phase space. For a given chaotic time series, ty is relatively
steadfast. An irrelevant partnership of m and t will directly impact the equivalence
between the original system and the reconstructed phase space. Therefore, the
combination approaches for computing m and t are accordingly come into being, €.g.
small-window solution ['¥, C-C method ''*! and automated embedding"). We consider
that the second viewpoint is more practical and reasonable than the first one in the
engineering practice. The research on the combination algorithm of embedding
dimension and delay time will become a hotspot in the category of the chaotic time
series analysis.

2 Automated embedding algorithm

This algorithm was proposed by Masayuki Otani and Antonia Jones in Oct. 2000,
which is based on the Average Displacement Method (AD) and I'-test''*. By means of
this algorithm, a near optimum embedding dimension and delay time can be estimated.
A brief description about this algorithm is given as follows.

1. Let X={x(t)}, i=1,2...N, be a part of chaotic time series whose evolution through
time is described by a d-dimension dynamical system. Set an initial value for the
embedding dimension, i.e. let m = mo. Take the time delay 7 as a variable and let it
increase by one for each iteration. At each determinate value of 1, reconstruct X
into M=N~(m-1)t dimensions of vectors{x;}, i=1,2, ...M, X;= (Xi, Xi+1, --.5 Xirm-1)z)
x;ER™ Then calculate the average displacement of entire vector space by using

formula (1).
S(r)=§f; S, -5 ()

i=1 | j=1
Where M is the number of data points used for the estimation. As the delay time
increases from zero, the reconstructed trajectory expands from the diagonal and S(t)
increases accordingly until it reaches a plateau. With large values of m,
reconstruction expansion reaches a plateau at smaller value of the delay time, which
maintains the time span approximately constant. The corresponding value of delay
time when S(t) gets in saturation is the near optimum 7 under the certain value of m.
2. Take the result of step 1 as a constant and let embedding dimension m is a variable.
Estimate the near optimum m by means of I'-test, which can estimate the best mean
squared output error of a continuous or smooth underlying input/output model
without overfitting, i.e. suppose the samples of chaotic time series are generated by
a continuous function f: R™ —R, and let y be defined as y = f(x;,~--x,)+7 .
Where y represents an indeterminable part, which may be due to noise or lack of

functional determination in the input/output relationship. At each given value of m,
reconstruct X into M=N-(m-1)t dimensions of vectors{x;}, and construct the

50




input/output pairs {£;,,}as follows:

& = {x(@@), x((i + D7), -, x((i + m =)z} 2

yi=x((i+m)r, i=12,--M

Then find out the p™ nearest neighbour & (N(i,p)) 10 & (pmax=20~~50) and
‘ compute the distances by means of the formula 3.

151 & ; ;
‘ dr(h) ==Y — DN G, P) - £G)
PimMT 3
L2 | X 3)
(h)==Y. — > V(NG p) - y@)*
‘ & P ; 2M 21 _
Perform a least squares fit on the coordinates (dx, dy) to obtain a regression line in

the form of (@ =44+ 1) where T is the estimated value of .

‘ Increase the value m by one gradually and repeat steps 1 and 2. The estimated value
of y will decrease accordingly until it is much closed to zero. At this moment, the values
of m and T are the near optimum embedding dimension and time delay for the given

‘ chaotic time series. By chance if the estimated value of vy is not close to zero, the data
set is non-deterministic; therefore we cannot hope to reconstruct the attractor accurately.

| This may happen if the SNR is lower, or the choice of time delay is poor.

The experimental results indicate that this algorithm is very efficient for the
continuous chaotic time series. But the computing accuracy of this algorithm is tightly
depended on that of AD algorithm. The average displacements of Lorenz and Rossler

| flows are depicted in fig.1 and fig.2. It can be seen clearly that the time delay is

| decreasing with the increasing of embedding dimension, and also there are some
waviness when the waveshapes get into saturation.

Figure 1: Average Displacement of Lorenz Flow.
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Figure 2: Average Displacement of Rossler Flow.

However, this algorithm cannot directly process the discrete chaotic time series, such
as Henon, Logistic and Quadratic, etc. The major causation is that the sampling spacing
of the discrete chaotic time series is “too large” that make the relativity between the data
change so swiftly, and it seems that those maps behave like the random series. Hence,
the discrete chaotic time series must be interpolated before processing. Fig.3 and 4
depict the average displacements of Henon and Quadratic maps after the interpolation
with spline function. The data are the 10 times more than that of the originals.

L i I i L I L L

0 2 4 6 8 10 12 14 16 18 20

Figure 3: Average Displacement of Henon Map.

52




0.9998

0.999

0.998%

0.99

0.997

L I 1 : (S | I I L T

0 2 4 6 8 10 12 14 16 18 20

¢

Figure 4: Average Displacement of Quadratic Map.

The average displacement algorithm is a geometry-based approach that can
overcome the drawbacks of the autocorrelation-based methods, since the autocorrelation
can ensure X; and X+, Xi+r and Xis2, are not correlated respectively, but it cannot
guarantee that x; and x;:.are not correlated, too. Therefore, the autocorrelation-based
method cannot be generalized in the high-order dimensions. So the AD algorithm looks
like a suitable approach for the high-order system. In practice, the sloping variation of
statistic S(1) should be measured to figure out the corresponding delay time, usually we
take the time point at the slope decreases to 40% of its initial value as the near optimum
time delay. But from Figures 1 and 2 we can see that there intermix some wobbles in
the entire variation of S(t). Thereby, using the changing slope to determine the time
delay sometimes will introduce a non-ignored error, and this error will influence the
computing accuracy of embedding dimension in I'-test. Hence, a modification should be
done for the algorithm of time delay.

3 Multiple Autocorrelation Approach"!

The multiple autocorrelation approach is derived from autocorrelation and average
displacement. From formula 1 we can rewrite the statistic S( T ) of the chaotic time
series {x;} in m dimension as follows:

M m-1

S2(r)= -;722@(” J1)-x()* (4)

i=1 j=1
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Extend the left part of formula 4 and ignore the errors caused by the border data.
M M

Consider thatE:Ill-z:x(i)2 =—1‘1}-2x(i+jr)2 is a constant within 1<j<m-1, we
=1 i=1

can get :
m-1

Sn(x)=2(m-DE-2) R.(j7) ®)
=

Where, R.(j T)is the autocorrelation function of {x;}.
m-1
Define R (7) = Z R_(jt), the multiple autocorrelation approach for the series {xi}
J=1
in m dimension space can be described like that: select the corresponding time as the
time delay T when the value of Ry (7) decreasing to the 1-¢"! times of its initial value.

Obviously, this approach is the ecdysis of AD algorithm. It inherits the geometric
property of AD in the reconstruction of phase space. Meanwhile, it can be regarded as
the extension of autocorrelation approach in the high-order dimensions. It overcomes
the drawback of the autocorrelation, i.e. the multiple autocorrelation not only guarantees
that x; and X+, Xi+- and X;+2- are not correlated with each other respectively, but also
ensures that x;and X, - are not correlated. Therefore, the multiple autocorrelation has a
sound theoretic basis.

Finally, the algorithm we adopt to replace the AD algorithm is the “Non-bias

Multiple Autocorrelation”:
M m-1

m 1 < i T

Caln)= M;;(m) INx(i + j7) = %) -

= R(7)—(m~1)(®)*
Where, X is the mean value of {x;}. So employing the non-bias multiple autocorrelation
for {x;} to select a near optimum time delay T in m dimension of phase space is to
choose the corresponding time when C7(z) goes to zero at first time. The strongpoint
of this approach is that it is endow with the merit of AD algorithm but gets rid of its
drawback. The mathematic expression is sententious and easy to computation.

In order to validate the accuracy of the improved approach, we took Henon map and
Lorenz flow as examples to reconstruct them with AD and non-bias multiple
autocorrelation plus I'-test respectively. Thereinto, the data of Henon map has been
interpolated 10 times with spline function and then took out 500 data to be in for
experiment, for Lorenz flow, we firstly generated 10,000 data and then chosen 1,000
points between 5,000 and 6,000 for experiment. Then calculate the correlation
dimensions of them and made a comparison with their nominal values 5] 1o figure out
the errors. The experimental results are shown in table 1.
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Table 1. Experimental Results

AD-HT -test CHT -test
Sample | Embedding Embedding Nominal
Modle Correlation Correlation.
Period | Dimension Error Dimension Error Value
Dimensior Dimension
Time Delay Time Delay
Henon m=3 m=3
0.1 1.3158 | 0.0558 1.2734 0.0134 1.26
(a=1.4,6=0.3) 7=0.8 1=0.7
Lorenz
m=5 m=5
(a=10,b=8/3, 0.01 2.0772 | 0.0172 2.0539 0.0061 2.06
. 7=0.35 7=0.25
7=28)

4 Conclusion

We have described an efficient method for choosing a pair of delay time and
embedding dimension which facilitates an accurate reconstruction of the high
dimensional dynamics. This technique is based on the non-bias multiple autocorrelation
and T'-test methods, the combination of which is computationally inexpensive. The
choices of delay time and embedding dimension are important, as a good choice can
reduce both the amount of data required and the effect of noise. Throughout our
experiments, we have consistently found that the delay time and embedding dimension
are tightly correlated. Choosing a near optimum pair of them can effectively describe
the strange attractors in a nonlinear chaotic system. Since the embedding techniques are
widely employed to model a physical system in cases where the mathematical
description is unknown, such an automated reconstruction has a wide applicability.
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