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Abstrâct
Embedding techniques provide a powerful advance in the development of experiment
chaos. However there seems no universal method to find the best set of parameters to
use. In this paper, we analyze the drawback of an algorithm of automatic embedding
dimension and time delay presented in Referencet'r(Massayuki Otani and Antonia Jones,
Oct. 2000), and propose a new approach for computing the embedding dimension and
delay time based on the multiple autocorrelation and f-test. This approach is provided
with a sound theoretic basis, and its computing complexity is relatively lower and not
strongly depended on the data length. The experimental results indicate that a near
optimum embedding dimension and delay time can be estinrated by using this approacb,
and the accuracy of invariants in phase spzrce reconstnrction is efftciently improved.
Keywords: Phase Space Reconstruction, Embedding Dimension, Delay Time, Multiple
Autocorrelation, f -test.

I Introduction

The characæristics of strange attractors of a chaotic system can be analyzed by
sampling a part of the output cbaotic time series of system. The method in common use
is the state-space recsnstruction in delay coordinate proposed by Packadtzl. It can be
proved by Takers' theoremt'r that the unstable periodic obits (strange ætractor) could be
recovered properly in an enùedding space whenever a suitable embedding dimension m
>-2d+1, (d is the dimension of chaotic system) were formd out, iæ. the obits in the
reconstructed space R- keeps a differential homeomorphism with the original system.

It is very important to select a suitable pair of embedding dimension m and time
delay t when performing the phase space rcconstnrction. For doing this there are two
different points of view: one is that m and t are not correlated with each other, i.e. m
and t can be selecæd independently (Takens has proved that m and t are independent in
a chaotic time series with infinite length and noiseless). Under this golden rule, a
commonly used approach, G-P algorithm for calculâting the embedding dimension m
was proposed by GrassbergEr and Procaciatal. For the time delay r , there are three
criterions to select it: l. Series csrrelation approaches, such as Autocorrelation tal,

Mutual Information t5l, and High-order Correlations [ul, etc. 2. Approaches of phase
space-.extension, e.g. Fill Factorf4, Wavering Product t8l Average Displacement t9l and
SïF trol, etc. 3. Multiple Autocorrelation and Non-bias Multiple Àutocôrrelationtrtl.

International Journal of Computing Anticipatory Systems, Volume 15,2004
Edited by D. M.I)ubois, CHAOS, Liège, Belgium,ISSN 1373-5411 ISBN 2-930396-01-6



The second viewpoint is that m and r are closely related, because the time series in
the real world could not be the infiniæ long, and hrdty avoid being noised" A great deal
of experiments indicate that m and t tie tightly up with the time window t*= (m-l)a for
the reconsûtrction of phase space. For a given chaotic time series, t* is relatively
sreadfast. An irrelevant partnenhip of m and r will directly impact the equivalence
between the original system and the reconstnrcted phase space. Therefore, the
combination approaches for computing B-?nd t are accordingly come.into being, e.g.
small-window solution tr21, C-C nr"tnoA tt3l and automated embeddingtU. We consider
that the second viewpoint is more practical and reasonable than the fint one in the
engineering practice The research on the combination algorithm of embedding
dimension and delay time will become a hotspot in the category of the chaotic time
series analysis.

2 Automrted emb€dding algorithm

This algorithm was proposed by Masayuki Otani and Antonia Jones in fu. 2000,
which is based on the Average Dijphcement Method (AD) and f-testtlal. By mems of
this algorithrn, a neæ optimum embedding dimension and delay time can be estimaæd.
A brief descripion about this algorithm is given as follsws.
l. 1,et X={x(t)}, i:1,2...N, be a part of chaotic time series wlrose evolution though

time is descriH by a ddimension dynamical system. Set an initial value for the
embedding dimension, i.e. let m:6a. Take the time delay t as a variable and let it
increase by one fsr each iteration. At each deterrrinate value of r, neconstruct X
intoM=N-(m-l)rdimensionsofvectors{x;1 , i=l2,...M,ri=(x;,xi+1,...,xi+{*r)")
xi€Rn. Then calculate the average displacement of entire vector space by using
formula (l).

( t )srri = lf
M ;

Where M is the number of data points used for the estimation. As the delay time
increases from zero, the reconstructed trajectory expands from the diagonal and S(t)
increases accordingly until it reaches a plateau. With large values of m'
reconstnrction expansion reaches a plateau at smaller value of the delay time, which
maintains the time span approximately constant. The corresponding value of delay
time when S(t) gets in saturation is the near optimum t under the certain value of m.

2. Take the result of step I as a constant and let embedding dimension m is a variable.
Estimate the near optimum m by means of f-test, which can estimate the best mean
squared output enor of a continuous or smooth underlying inpuVouçut model
*i&o.rt overfitting, i.e. zuppose the samples of chaotic time series are generated by

a continuous firnction f: R'--R, and let y be defïned as.y= f(xr,"'x.)+r.
Where T represents an indeterminable part, which may be due to noise or lack of
functional determination in the input/output relationship. At each given value of m,
reconstruct X into M=N-(m-l)r dimensions of vectors{x1}, and constnrct the
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inpuVouput pafu {6,,/,\as follows:

6. = lx(i),x((i +l)r\,"',x((i+ m-l)rl

y, = x((i+ m)t, i =1,2,"'M

Then find out the pù nearest neighbour €,(N(i,p\) to $. ( P**40-50)

corrpute the distances by means of the formula 3.

&(h') =lÉ*Éffg*t,p)) - 6(,')fpa ME',"
l p  |  È t

ôy(h)= -l-t + t ( y(N (i, p)) - y(i))'^\ ' 
P-n-'t2M ît

perform a least squares fit on the coordinates @, dy) to obtain a regression line in

the fomr of (ù = A&+T) ,where F is the estimated value ofy'
Increase the value m by one grâduaily and repeat steps 1 and 2. The estimæed value

of y will fur€ase accordingly rmtil it is much closed to zero. At this momsnî, the values
of m and r æe the neæ optimtmt embedding dimension and time delay for the given

chaotic tims series. By chance if the estimated value of y is not close to ?-ero, the data

set is nondet€nninistic; therefore we cannot hope to reconstruct the attractor accurately.
This may happen if the SNR is lower, or the choice of time delay is poor'

fne expèrinentat results indicate tbat this algorithm is very efficient for the

continuous chaotic time series. But the computitg accuracy of this algorithm is tightly
d€e€nded on that of AD algoritbm. The avcage displacements of Lorenz and Rossler

flows are depicted in fig.l and fig.2. It can be sæn clearly that the time delay is

decreasing with the hæasiry of enibedding dinrension, and also there are some
waviness when the wavesbpes get into saturation-

Figure 1: Average Displacement of Lorenz Flow.

and

(2)

(3)
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Figûre 2: Average Displacernent of Rossler Flow.

However, this algorifui c:mrot directly prmc€xrs tb discrete cbaotic time series, srch
as Henon, Logistic and Quadratic, etc. The major causation is that the sarpling spæing
of the discrete chaotic time series is'too large" that make the relativity betweeir the data
change so swiftly, and it seems that those maps behave like the random series. Hence,
the discrete chaotic time series must be interpolated before processing. Fig3 ad 4
depict the average displacements of Henon and Quadratic maps after the interpolation
with spline function. The data are the l0 times more than that of the originals.

Flgure 3: Average Displacement of Henon Map.
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Figure 4: Average Displacement of Quadratic Map.

The average displacement algorithm is a geometry-based approach that can
ovencome the drawbacks of the autocorrelation-based methods, since the autocorrelation
can enslue xi and Xi+t, xi+r and xi+2r are not correlated respectively, but it cannot
guarantee that x; and xi+:tare not correlated, too. Therefore, the autocorrelation-based
method catrnot be generalized in the high-order dimensions. So the AD algorithm looks
like a suitable approach for the high-order system. ln practice, the sloping variation of
stâtistic S(r) should be measured to figure out the corresponding delay time, usually we
take the time point at the slope desreases to 40Yo of its initial value as the near optimum
time delay. But from Figrrres I and 2 rile can see that there intsrmix some wobbles in
the entirc vriation of S(t). Thereby, using the changng slope to det€tmine the time
delay soanetimes will introduce a non-ignored eror, and this error will influence the
computing accuracy of embedding dimension in f-test. Hence, a modification should be
done for the algorithm of tiæ delay.

3 Multipte Autocorrelrtion Approechltrl

The multiple autocorrelation approach is derived from autocorrelation and average
displacement. From fornrula I we can rewrite the statistic S( r ) of the chaotic time
series {.rd in m dimension as follows:

si'z.1r1 = 
**EUrt 

+ i r) - x(i)\2 G)
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Extend the left part of formula 4 and ignore the errors caused by the borda data.
r M l M

Consider tltztE=llr(i) 'z=jlx(i+ ir)2 is a constânt within 1( j(n-l '  we
Mfr. '  Mfr '

call get:
m-l

Sjlr; = 2(m-r)E -zln*Qc) (s)
j=l

Where, R,,(j r ) is the autocorrelation fimction of {.rr}.
,_l

Define R.[(r) = In_U"), the multiple autocorrelation approach for the series {x1}
JEI

in m dimension sçrace can be described like thac select the corresponding time as the

time delay r when the value of ni(r) decreasing to the l-e-r times of its initial value.

Obviously, this approach is the ecdysis of AD algorithm. It inherits the geometric
property of AD in the reconstruction of phase space. Meanwhile, it can be regarded as
the extension of autocorrelation approach in the higb-order dimensions. It overcomes
the drawback of the autocorrclation" i.e. the multiple autocorrelation not only guarailees

that x; and xi+.r Xi+. and xi*2, are not correlated with each other respectively, but also

ensures that xi and xi+2, nf,€ not correlated. Therefore, the multiple autocorrelation bas a

sound theoretic basis.
Finally, the algorithm we adop to replace the AD algorithm is the "Non-bias

Multiple Autocorrelation" :

ci@) = #Zio, 
- ïX.x(i + i r) - î)

= Ri(t\-(n-lXrl'

Where, T is the mean value of {xi}. So employing the non-bias multiple autocorrelation

for {x;} to select a near optimum time delay r in m dimension of phase space is to

choose the corresponding time when C.l(r) goes to zero at first time' The strongpoint

of this approach is that it is endow with the merit of AD algorithm but gets rid of its

drawback. The mathematic expression is sententious and easy to conrputation.

In order ûo validate the accuracy of the improved approach, we took Henon map and

Lorcrlz flow as examples to reconstnrct them with AD and non-bias multiple

autoconelation plus f-test respectively. Thereinto, the data of Henon map has been

interpolated 10 times with spline function and then took out 500 data to be in for

experiment, for Lorenz flow, we firstly generated 10,000 data and then chosen 1,000

points benveen 5,fi)0 and 6,@0 for experiment. Then calculate the correlation

dimensions of them and made a comparison with their nominal valuestrsl to figure out

the erors. The experimental results are shown in table l.

( 6 )
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Table 1. Results

Modle
$splc

Pcriod

AD+f-ûest C;+f-ûest

Nominal

Value

EmHding

Dinffi6

TieDeliy

Coætdbn

Dimosio

Error

Emb€dding

Dimqsi6

TiæDehy

Cml,ùiotr

Dimsim

Enor

Henon

(p1.4,b4.3)
0.t

m=3

t=0.8
1 .3158 0.0558

m=3

eO.7
1.2734 0.0t34 1.26

Lqenz

(Flo,b4/3,

1E2t)

0.01
m=5

t-0.35
2.tt72 0.0172

m--5

çO25
2.0539 0.0ffi1 2.6

4 Conclusion

We bave described an efficient methd for choosing a pah of delay time and
embedding dimension which facilitates an accunate reconstnrction of the high

dimensional ôynamics. This technique is based on the non-bias multiple autocorelation
aod f-æst methods, the combination of which is computationally inexpensive. The

choices of delay time and embedding dimension tre important, as a good choice can
r€dlce both the amotmt of data required and th€ effect of mise. Throughout our
exp€rim€ntq we have consistently found that the delay time and embedding dimension
are tightly corelated. Choosing a ûear optimum pair of them can effectively describe
ùe strange aftractorc in a nonlinear chaotic system. Since the embedding techniques are

widely inptoyed to model a physical system in cases where the mathematical
description is unlnown" such m automated reccmstnrction has a wide applicability.
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