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Abstract

Embedding techniques provide a powerful advance in the development of experiment
chaos. However there seems no universal method to find the best set of parameters to
use. In this paper, we analyze the drawback of an algorithm of automatic embedding
dimension and time delay presented in Reference!'{(Massayuki Otani and Antonia Jones,
Oct. 2000), and propose a new approach for computing the embedding dimension and
delay time based on the multiple autocorrelation and I'-test. This approach is provided
with a sound theoretic basis, and its computing complexity is relatively lower and not
strongly depended on the data length. The experimental results indicate that a near
optimum embedding dimension and delay time can be estimated by using this approach,
and the accuracy of invariants in phase space reconstruction is efficiently improved.
Keywords: Phase Space Reconstruction, Embedding Dimension, Delay Time, Multiple
Autocorrelation, I'-test.

1 Introduction

The characteristics of strange attractors of a chaotic system can be analyzed by
sampling a part of the output chaotic time series of system. The method in common use
is the state space reconstruction in delay coordinate proposed by Packad?. It can be
proved by Takens’ theorem!” that the unstable periodic obits (strange attractor) could be
recovered properly in an embedding space whenever a suitable embedding dimension m
=2d+1, (d is the dimension of chaotic system) were found out, i.e. the obits in the
reconstructed space R™ keeps a differential homeomorphism with the original system.

It is very important to select a suitable pair of embedding dimension m and time
delay T when performing the phase space reconstruction. For doing this there are two
different points of view: one is that m and 7 are not correlated with each other, i.e. m
and T can be selected independently (Takens has proved that m and T are independent in
a chaotic time series with infinite length and noiseless). Under this golden rule, a
commonly used approach, G-P algorithm for calculating the embedding dimension m
was proposed by Grassberger and Procacial®. For the time delay T, there are three
criterions to select it: 1. Series correlation approaches, such as Autocorrelation [,
Mutual Information ), and High-order Correlations 8] etc. 2. Approaches of phase
space extension, e.g. Fill Factor 2 Wavering Product ® Average Displacement Pl and
SVF 19 etc. 3. Multiple Autocorrelation and Non-bias Multiple Autocorrelation L
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The second viewpoint is that m and 1 are closely related, because the time series in
the real world could not be the infinite long, and hardly avoid being noised. A great deal
of experiments indicate that m and 7 tie tightly up with the time window t,= (m-1)t for
the reconstruction of phase space. For a given chaotic time series, ty is relatively
steadfast. An irrelevant partnership of m and t will directly impact the equivalence
between the original system and the reconstructed phase space. Therefore, the
combination approaches for computing m and t are accordingly come into being, €.g.
small-window solution ['¥, C-C method ''*! and automated embedding"). We consider
that the second viewpoint is more practical and reasonable than the first one in the
engineering practice. The research on the combination algorithm of embedding
dimension and delay time will become a hotspot in the category of the chaotic time
series analysis.

2 Automated embedding algorithm

This algorithm was proposed by Masayuki Otani and Antonia Jones in Oct. 2000,
which is based on the Average Displacement Method (AD) and I'-test''*. By means of
this algorithm, a near optimum embedding dimension and delay time can be estimated.
A brief description about this algorithm is given as follows.

1. Let X={x(t)}, i=1,2...N, be a part of chaotic time series whose evolution through
time is described by a d-dimension dynamical system. Set an initial value for the
embedding dimension, i.e. let m = mo. Take the time delay 7 as a variable and let it
increase by one for each iteration. At each determinate value of 1, reconstruct X
into M=N~(m-1)t dimensions of vectors{x;}, i=1,2, ...M, X;= (Xi, Xi+1, --.5 Xirm-1)z)
x;ER™ Then calculate the average displacement of entire vector space by using

formula (1).
S(r)=§f; S, -5 ()

i=1 | j=1
Where M is the number of data points used for the estimation. As the delay time
increases from zero, the reconstructed trajectory expands from the diagonal and S(t)
increases accordingly until it reaches a plateau. With large values of m,
reconstruction expansion reaches a plateau at smaller value of the delay time, which
maintains the time span approximately constant. The corresponding value of delay
time when S(t) gets in saturation is the near optimum 7 under the certain value of m.
2. Take the result of step 1 as a constant and let embedding dimension m is a variable.
Estimate the near optimum m by means of I'-test, which can estimate the best mean
squared output error of a continuous or smooth underlying input/output model
without overfitting, i.e. suppose the samples of chaotic time series are generated by
a continuous function f: R™ —R, and let y be defined as y = f(x;,~--x,)+7 .
Where y represents an indeterminable part, which may be due to noise or lack of

functional determination in the input/output relationship. At each given value of m,
reconstruct X into M=N-(m-1)t dimensions of vectors{x;}, and construct the
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input/output pairs {£;,,}as follows:

& = {x(@@), x((i + D7), -, x((i + m =)z} 2

yi=x((i+m)r, i=12,--M

Then find out the p™ nearest neighbour & (N(i,p)) 10 & (pmax=20~~50) and
‘ compute the distances by means of the formula 3.

151 & ; ;
‘ dr(h) ==Y — DN G, P) - £G)
PimMT 3
L2 | X 3)
(h)==Y. — > V(NG p) - y@)*
‘ & P ; 2M 21 _
Perform a least squares fit on the coordinates (dx, dy) to obtain a regression line in

the form of (@ =44+ 1) where T is the estimated value of .

‘ Increase the value m by one gradually and repeat steps 1 and 2. The estimated value
of y will decrease accordingly until it is much closed to zero. At this moment, the values
of m and T are the near optimum embedding dimension and time delay for the given

‘ chaotic time series. By chance if the estimated value of vy is not close to zero, the data
set is non-deterministic; therefore we cannot hope to reconstruct the attractor accurately.

| This may happen if the SNR is lower, or the choice of time delay is poor.

The experimental results indicate that this algorithm is very efficient for the
continuous chaotic time series. But the computing accuracy of this algorithm is tightly
depended on that of AD algorithm. The average displacements of Lorenz and Rossler

| flows are depicted in fig.1 and fig.2. It can be seen clearly that the time delay is

| decreasing with the increasing of embedding dimension, and also there are some
waviness when the waveshapes get into saturation.

Figure 1: Average Displacement of Lorenz Flow.
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Figure 2: Average Displacement of Rossler Flow.

However, this algorithm cannot directly process the discrete chaotic time series, such
as Henon, Logistic and Quadratic, etc. The major causation is that the sampling spacing
of the discrete chaotic time series is “too large” that make the relativity between the data
change so swiftly, and it seems that those maps behave like the random series. Hence,
the discrete chaotic time series must be interpolated before processing. Fig.3 and 4
depict the average displacements of Henon and Quadratic maps after the interpolation
with spline function. The data are the 10 times more than that of the originals.
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Figure 3: Average Displacement of Henon Map.
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Figure 4: Average Displacement of Quadratic Map.

The average displacement algorithm is a geometry-based approach that can
overcome the drawbacks of the autocorrelation-based methods, since the autocorrelation
can ensure X; and X+, Xi+r and Xis2, are not correlated respectively, but it cannot
guarantee that x; and x;:.are not correlated, too. Therefore, the autocorrelation-based
method cannot be generalized in the high-order dimensions. So the AD algorithm looks
like a suitable approach for the high-order system. In practice, the sloping variation of
statistic S(1) should be measured to figure out the corresponding delay time, usually we
take the time point at the slope decreases to 40% of its initial value as the near optimum
time delay. But from Figures 1 and 2 we can see that there intermix some wobbles in
the entire variation of S(t). Thereby, using the changing slope to determine the time
delay sometimes will introduce a non-ignored error, and this error will influence the
computing accuracy of embedding dimension in I'-test. Hence, a modification should be
done for the algorithm of time delay.

3 Multiple Autocorrelation Approach"!

The multiple autocorrelation approach is derived from autocorrelation and average
displacement. From formula 1 we can rewrite the statistic S( T ) of the chaotic time
series {x;} in m dimension as follows:

M m-1

S2(r)= -;722@(” J1)-x()* (4)

i=1 j=1
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Extend the left part of formula 4 and ignore the errors caused by the border data.
M M

Consider thatE:Ill-z:x(i)2 =—1‘1}-2x(i+jr)2 is a constant within 1<j<m-1, we
=1 i=1

can get :
m-1

Sn(x)=2(m-DE-2) R.(j7) ®)
=

Where, R.(j T)is the autocorrelation function of {x;}.
m-1
Define R (7) = Z R_(jt), the multiple autocorrelation approach for the series {xi}
J=1
in m dimension space can be described like that: select the corresponding time as the
time delay T when the value of Ry (7) decreasing to the 1-¢"! times of its initial value.

Obviously, this approach is the ecdysis of AD algorithm. It inherits the geometric
property of AD in the reconstruction of phase space. Meanwhile, it can be regarded as
the extension of autocorrelation approach in the high-order dimensions. It overcomes
the drawback of the autocorrelation, i.e. the multiple autocorrelation not only guarantees
that x; and X+, Xi+- and X;+2- are not correlated with each other respectively, but also
ensures that x;and X, - are not correlated. Therefore, the multiple autocorrelation has a
sound theoretic basis.

Finally, the algorithm we adopt to replace the AD algorithm is the “Non-bias

Multiple Autocorrelation”:
M m-1

m 1 < i T

Caln)= M;;(m) INx(i + j7) = %) -

= R(7)—(m~1)(®)*
Where, X is the mean value of {x;}. So employing the non-bias multiple autocorrelation
for {x;} to select a near optimum time delay T in m dimension of phase space is to
choose the corresponding time when C7(z) goes to zero at first time. The strongpoint
of this approach is that it is endow with the merit of AD algorithm but gets rid of its
drawback. The mathematic expression is sententious and easy to computation.

In order to validate the accuracy of the improved approach, we took Henon map and
Lorenz flow as examples to reconstruct them with AD and non-bias multiple
autocorrelation plus I'-test respectively. Thereinto, the data of Henon map has been
interpolated 10 times with spline function and then took out 500 data to be in for
experiment, for Lorenz flow, we firstly generated 10,000 data and then chosen 1,000
points between 5,000 and 6,000 for experiment. Then calculate the correlation
dimensions of them and made a comparison with their nominal values 5] 1o figure out
the errors. The experimental results are shown in table 1.
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Table 1. Experimental Results

AD-HT -test CHT -test
Sample | Embedding Embedding Nominal
Modle Correlation Correlation.
Period | Dimension Error Dimension Error Value
Dimensior Dimension
Time Delay Time Delay
Henon m=3 m=3
0.1 1.3158 | 0.0558 1.2734 0.0134 1.26
(a=1.4,6=0.3) 7=0.8 1=0.7
Lorenz
m=5 m=5
(a=10,b=8/3, 0.01 2.0772 | 0.0172 2.0539 0.0061 2.06
. 7=0.35 7=0.25
7=28)

4 Conclusion

We have described an efficient method for choosing a pair of delay time and
embedding dimension which facilitates an accurate reconstruction of the high
dimensional dynamics. This technique is based on the non-bias multiple autocorrelation
and T'-test methods, the combination of which is computationally inexpensive. The
choices of delay time and embedding dimension are important, as a good choice can
reduce both the amount of data required and the effect of noise. Throughout our
experiments, we have consistently found that the delay time and embedding dimension
are tightly correlated. Choosing a near optimum pair of them can effectively describe
the strange attractors in a nonlinear chaotic system. Since the embedding techniques are
widely employed to model a physical system in cases where the mathematical
description is unknown, such an automated reconstruction has a wide applicability.
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