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Abstract

To understand the real picture of the deformation of materials and to efficiently control
their properties there should be uniting approaches. We developed an approach that was
based upon the combination of the computer simulation with the physical experiment.
Computer simulation was done using the originally designed “Cellular Model”; several
new geometric objects (such as “Cloud of internal stresses”, “Thick yield surface”) were
introduced for the in-depth understanding and predicting of the structure — properties
interconnection.
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1 Introduction

| Classical plastic flow models are not satisfying the modern requirements. There are two
| main directions in their development. The first, mathematical, is connected with the
development of the general theory of rheological relationships; the second, physical, is
connected with the development of the representative volume element (RVE) models
which are based on specific ideas about deformation mechanisms. Within the frame-
work of the first direction, the macroscopic experimental data is formalized; the second
approach deals with the generalization of physical research results for the different scale
levels that are involved in plastic deformation.

These approaches have advantages and disadvantages. In phenomenological theo-
ries, the advantages are the mathematical simplicity and laconic formulation of constitu-
tive relations, which allows using them in practical calculations. However, the mathe-
matical models of this class can not be considered as general, they are useful only for the
description of limited range of deforming processes. On the other hand, physical theo-
ries that are based on the description of real plastic deformation mechanisms are very
explanatory and predictive, but they lack mathematical simplicity.

The above circumstances lead us to the necessity of compromise that can be found
in determining the constitutive relations for RVE, which structure and parameters would
bear the information about microlevel and mesolevel phenomena. In this synthesis di-
rection, the fundamental role belongs to Asaro (1983), Hill and Rice (1972), etc.
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In present work, we extend the definition of such a typically "macroscopic" con-
cept as yield surface by means of including the additional information about material
structure in it. "Thick yield surface" and "cloud of internal stresses" are introduced here
to fulfill this need.

Yield surface is one of the fundamental concepts of mathematical theory of plas-
ticity (Hill, 1950). It represents a geometric image of the yield condition in the space of
stresses. If a point mapping stressed condition of the material in this space resides inside
the area limited by the yield surface, the material is deformed as elastic. In case when
the indicated point hits on a surface, the plastic flow starts. The state mapped by points
lying outside of the area limited by the yield surface is impossible. There are various
interpretations concerning the form of yield surface and its evolution during the plastic
deformations of material. In work by Koiter (1953) the explanation of sliding theory
(Batdorf and Budiansky, 1949) is given within the framework of yield surface approach.

In several known works the yield surface is represented as the classical surface,
i.e. two-dimensional object. Hypothesis of the present work is that the yield surface can
be presented as thick, "foamed surface" with dimensionality exceeding two. By other
words, perhaps, the yield surface is fractal, i.e. it belongs to the class of geometric ob-
jects with fractional dimensionality. Properties of such objects have been heavily stud-
ied (Mandelbrot, 1983). Apparently, fractal structure of the yield surface is determined
by the fractal structure of natural materials.

In many cases, the self-similarity of objects, or "scaling" as it is used by physicists,
has already allowed to take into account their structure during the macroscopic descrip-
tion (see, for example, Mandelbrot, 1983; De Gennes, 1979; Barrenblatt, 1979). It in-
spires to have new attempts, as there are evidences (see, for example, Hornbogen, 1984)
about a fractal structure of metal alloys.

2 Speculations about the “thick yield surface”

Let us represent RVE (characteristic linear dimension /gyg) as a structure whose defor-
mation is determined by the deformation of its interacting elements belonging to the
scale level M1 (mesolevel 1 with a characteristic linear dimension /;). The same way we
will treat M1-level elements and so on, down to the simplest elements whose deforma-
tion can be described by certain mechanisms such as sliding, sliding with the change of
volume, isotropic elements with the possibility to change the volume, and so on (See
Figure 1). The elements that contain sub-elements will be called complex. At any level
there can be both complex and simple elements (for instance, look at the M2-level on
Figure 1).
To analyze the RVE behavior and the behavior of complex elements, let us intro-
duce the following notions:
e Cloud of Internal Stresses (ISC) - area in the stress space that represents the stressed
state of an element taking into account its inhomogeneity.
e Thick Yield Surface (TYS) - area in the stress space where, in which ISC experiences
a plastic strain.
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Fig. 1: Hierarchical structure of the material.

Structures of ISC and TYS are shown on Figure 2. You can clearly see that RVE
recursively splits into smaller elements. Every split occurs by splitting a higher-level
element into the corresponding elements of a lower level. This structure can be treated
as a fractal in case of scaling.

Consider the following algorithm for constructing ISC and TYS. Initially, yield
surfaces of simple elements are obtained. They are represented by thick sheets of paper
on the Figure 3d. Frontal and side views of the yield surfaces of simple elements are
shown schematically. In this case an element has two sliding systems, one of which can
experience densification or loosening, the other one cannot. Putting these sheets to-
gether forms a book representing a complex element; book thickness is /.. You can see
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Fig. 3: Algorithm of TYS and ISC construction.
a—RVE in classical understanding; » — RVE as a microinhomogeneous element;
¢ — complex element; d — simple element.

TYS and ISC of the element on the cover of the book. By combining several books we
can make a bigger one representing RVE; TYS and ISC of RVE are drawn on the cover
of the bigger book. The last picture shows the classical yield surface of RVE, where
RVE is considered to be homogeneous. That is why it appears as a sheet of paper with
no thickness, and elements are shown as points in the deformed macro-body.

In order to investigate the RVE deformation and build the corresponding TYS and
ISC, we developed a cellular model of inhomogeneous material that allows to predict
and control the properties of materials subjected to the plastic deformation.
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' 3 Cellular model

Structure of actual polycrystalline is simulated with the help of 3D cellular structure; the

| cells can be simple and complex. Simple ones do not have an inner structure; the com-

| plex cells consist of the simple and/or complicated ones while a complex cell may con-
tain ones similar to itself, which allows to simulating of fractal structures.

In the present work, the complex cells having cubic lattice structure and consisting
of 27 (3x3x3) smaller cells are considered. In general case, other spatial structures and
other amounts of components can be modeled.

| Neighborhood of a cell is understood as the group of its nearest neighbors. Each
| cell is given a coordinate (m,n k) that defines its position (m,n k are integers 1 through
| 3). Defining a boundary cell neighborhood we suppose that the cells’ system is sur-
rounded by ones similar to itself from different directions, complying with the periodical
boundary conditions meaning that the neighborhood of each cell is formed by the re-
maining 26 cells.

Proposed model of a polycrystalline allows taking into account heterogeneity of a
material at each scale level, to reflect a fractal nature of mesoscopic and structural levels
and to describe easy interaction between processes happening at different scale levels.

Loaded polycrystalline is characterized by inhomogeneous stressed-strained state
(SSS). To describe it we will take into consideration the stress tensor ¢" and the plastic

deformations tensor e’; for each cell described above. The index » in these terms speci-

| fies a level to which the considered cell belongs. The largest cell simulating the macro-

| level RVE belongs to the level 1; its component 27 cells belong to the level 2; compo-
nents of each from these 27 cells belong to a level 3, etc. It is obvious that there are a7
cells at the level n.

| As the plastic deformation of » level cell is stipulated by plastic deformations of

| its component cells of a level (n+1), we suppose

e =<e';*‘>, (1)

where the angular brackets mean averaging on » level cell volume.

We assume that the stress tensor and the plastic deformations tensor of »n-level cell
of and corresponding tensors of its »n+1 level 27 cells are connected by a Kroner’s rela-
tionship

o™ -o” =M:(e’;, —e’:'), )

where M, in common case, is the 4™ order tensor.
The last relation shows that the difference between the plastic deformation of any

(n+1)-level cell and the average value of the corresponding n-level cell produces the in-
ner microstresses seeking to level these strains. All that leads to the redistribution of
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stresses within n-level cell, and then the inhomogeneous SSS arises inside the complex
cells.

Relationship (1) allows calculating plastic deformation of complex cells through
the plastic deformation of their components. Plastic deformation of simple cells is de-
termined by the strain mechanism operating in them.

In particular, for plastic deformation realized by means of dislocations glide, the
velocity of plastic deformation is calculated by toting components, stipulated by all sys-
tems of sliding operating in cell. In this case, for small elastic-plastic deformations the
magnitude € p 18 calculated using the following equation

QU
ép=5§}/“(s“m“+m“s”’), 3)

where m* and s are the vector normal to a sliding plane and the vector along the sliding
direction in a system a, correspondingly; ¥ — shear strain velocity in a system c.

The magnitude of ¥ is determined by tangential stresses 7* operating in a system

o. The magnitude of 7% is calculated in conventional way using the stress tensor of the
corresponding cell:

" =m°s":0°. “)

The relations connecting ¥ with * for various mechanisms controlling disloca-

tions migration could be found in a number of publications on physics of plastic defor-
mation, in particular according to Frost and Ashby (1982)

oo - OF[ (L) 5
}/ -;/O p kT z_a ’

c

where AF is the activation energy necessary for overcoming the obstacles in lack of ex-
ternal stresses; 7, - critical tangential stress for a system a; p and q - parameters de-
pending on the mechanism controlling the dislocation migration (0<p<1, 1<¢<2); k —
Boltsman constant; 7 — temperature; }/: — a parameter describing system a.

According to the cellular automata concept, the process of the SSS forming is re-
searched in discrete time #,, with the discretization step At (tn=mAt, where m is the inte-
ger value). At the upper level we set the dependence of operating stress on time
6'=6"(tm). In the initial moment of time (m=0) we suppose that the plastic deformations

e, are equal zero at all levels.
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Relation (2) will be written in a modified shape

o™ (tm) = G"(tm) =M: (e'; (tr) €2 (2,0 )) (6)

That will allow to calculate cell stresses at f, by the plastic deformations in the
previous instant fn.;. Relations (1)-(6) enable one to determine the SSS of polycrystal-
line under the given program of the upper level loading. As the program of the defor-
mation of material at the upper level is known, that is the tensor of full strains e'=e'(fy)
is defined, the magnitude of cl(tm) is determined under the Hooke law

o'(tm=E:el(t,) (7

in dependence on an elastic strain ele (tm) , where E is the elasticity modulus tensor.

Magnitude of elastic strain is calculated under the formula

ei(tm) = e](tm) — efp(z‘m_l ) t))

Relations (1)-(8) enable one to determine the polycrystalline SSS under the spe-
cific deformation program at the upper level.

Cellular model allows to study the macrobehavior of the whole ensemble of cells
depending on the local microscopic laws that determine the evolution of each cell and
its interaction with the closest neighborhood.

This section was intended to reveal the main structure and constitutive relation-
ships of the Cellular Model. More explicit description of the model is given in (Beygel-
zimer and Spuskanyuk, 1999).

4 Evolution of the Cloud of Internal Stresses

Cellular Model was used to investigate the behavior of h.c.p. alpha-iron, results of the
computer simulation of the ISC evolution inside the TYS are described below.

Figure 4 shows that each penetration of ISC in "thick yield surface" results in
distortion of this set. The beginning of plastic flow of material is connected with the
first signs of such a distortion. Figure 5 shows the evolution of ISC at the complex two-
stage loading going in opposite directions. It is clearly seen that ISC starts to distort at
the smaller outer stresses during opposite sign loading, compared to the initial loading,
which reveals the Bauschinger's effect.

While the magnitude of penetration depth increases, the diameter of ISC grows, as
each from the mapping points can move only along the yield plane, which corresponds
to the growth of internal stresses.
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Fig. 4: Evolution of ISC at the consequential penetration inside the TYS.

The latter reaches maximum size and stops growing at the certain value of increas-
ing strain. It means that at the rather deep penetration inside "thick yield surface" there
should be rotation or fraction of yield planes, most considerably stretching ISC. Obvi-
ously, the first stated effect corresponds to the rotation of units, the second effect — to
the partition of simple units, producing parts rotated one from another (fragmentation of
grains). At the same time, the recess forms on the internal boundary of "thick yield sur-
face".

Classical yield surface determines an increment of plastic deformation at each
loading stage (Hill, 1950) by means of the associated flow law. It is easy to see that
"thick yield surface", proposed by us, has similar properties. The difference is that in
this case the macroscopic vector of plastic deformations increment of representative
volume is obtained by summation of microstrain increments vectors of separate ele-
ments. Vector that is orthogonal to the appropriate yield plane determines the increment
of plastic deformations, which is stipulated by a sliding system.
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Fig. 5: Evolution of ISC at the complex two-stage loading: a — ISC at the end of direct
loading; b — ISC after unloading; ¢, d — distortion of ISC at the opposite sign loading.

Velocity of polycrystalline plastic deformation growth depends on the structure of
the "thick yield surface" area, occupied by ISC, and on the direction of macrostress in-
crement vector defining evolution of ISC.

In this connection, even though the magnitude of movement into the "thick yield
surface" may be identical in specific cases, there may be different increments of plastic
deformation in different parts of this surface and along the different directions of
movement inside it. Here, the ideal plasticity (plasticity without hardening) corresponds
to some limiting formations in a "thick yield surface". To reach those, there should be
indefinitely large residual strain.

In the Table 1, we will summarize our experiments with a cellular model and de-
scribe several effects of plastic deformation using the language of TYS and ISC.
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Table 1: Connection of ISC evolution and TYS with the structure and macro-properties
of micro-inhomogeneous materials

elastic

plastic

Elastically-plastic deformation and
plastic flow of RVE

As load increases, more and more
RVE elements become involved in the
plastic deformation. In addition, ISC
spreads out, and even a larger number
of its components start to penetrate
their yield surfaces. Plastic flow starts at
the moment when the elastic cluster pene-
trating RVE, breaks. At this moment, a
non-negligible fraction of ISC compo-
nents are in their yield surfaces.

Hardening caused by the increase of
internal stress.

Increase of ISC diameter loading the ma-
terial without grain fragmentation.

Grain fragmentation under large de-
formations.

Grain fragmentation caused by large in-
ternal microstress. In addition, the diame-
ter of ISC decreases, and partial relaxa-
tion of internal microstress takes place.

Hardening of RVE region caused by
grain fragmentation under pressure.
"Thin" yield surface transforms into
"Thick"

v

Ideal plasticity of microinhomogeneous
material.

Under large plastic deformations under
high pressure, the following things hap--
pen:

» Material finally becomes isotropic;

® TYS gains the structure of concentri-
cally ordered cylindrical hulls;

e ISC stretches along the radius of the cut
of the hulls;

o In addition, a stationary porosity set in
the RVE.
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Structure Formation. Loss of deforma-
tion stability with the formation of

////// // /// shear band
lj N7 . / 7 Under grain turning the following things
happen:

o There emerges a corner point in TYS;
¢ ISC collapses to this point.

Non-proportional cyclic plasticity
Deformation under loading along TYS

(Tanaka et al, 1985).

5 Conclusions

To summarize everything that was stated about the thick yield surface, it is possi-
ble to conclude that, due to a number of reasons, it is an interesting object, especially
while considered together with the cloud of internal stresses. This object should not be
reduced just to a new label. Several reasons from the above-mentioned are given below.
o Thick yield surface allows distinguishing between the hardening mechanisms con-

nected with internal stresses and those connected with modifications in material
structure. First ones are revealed as modifications of "cloud of internal stresses" and
have no effect on thick yield surface; second ones change this surface.

o Thick yield surface allows giving a new geometric image to effects caused by internal
stresses and by disproportionate loading and unloading. For example, the Bausch-
inger's effect is explained not as a migration of the whole yield surface, but rather as
extension of the internal stresses cloud. Plastic flow during the neutral additional
loading can be connected not with formation of the angular point on a smooth yield
surface. Here, the center of internal stresses cloud (point mapping the stressed state
of RVE as whole) is moving inside the body of thick yield surface.

e Numerical experiments show that the size and the form of internal stresses cloud de-
pend on the trajectory and the length of path followed by the center of this cloud

along the trajectory of its movement inside "thick yield surface". In turn, the geome-

try of internal stresses cloud and local structure of thick yield surface determine RVE
deformation velocity. All this encourages to think that the geometric properties of
the proposed objects can be used as parameters in constitutive relationships for RVE.
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Concept of the thick yield surface allows obtaining the additional correlation be-
tween the micro-mechanical models of polycrystallines and the phenomenological the-
ory of plasticity. Evidently, the thick yield surface is fractal. Structure of this "surface"
as well as other properties of deformable polycrystalline can be investigated with the
help of the developed cellular model.
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