R o W L 1 R

i

Creativity, Design and Computer

Ewa Grabska Institute of Computer Science, Jagiellonian University
Nawojki 11, 30-072 Krakow, Poland
uigrabsk@cyf-kr.edu.pl

Abstract

This paper deals with computational aspects of creative design. A new approach
to structural design representations in the framework of graph transformations is
discussed. The representations are generated and modified by graph operations.
Graphs represent structures of designs. A new software tool which enables designers
to transform the design specification into the graph design structure is proposed.
Examples of designing gardens and floor layouts for one-storey houses illustrate the
presented methodology.

Keywords: CAD, creative design, hierarchical graph, graph operations, composite
representation.

1 Introduction

This paper is concerned with computational aspects of creative design.

The development of creative design methods aided by computer is still in its infancy.
There are reasons for this situation. First of all design eludes formal description.
Furthermore the concept of creativity can mean very different things.

When tackling a design task for the first time designers try to handle the task by
free-hand sketches. They, at the early stage, create rough drawings which help them
to induce images of the entity that is being designed. CAD tools still appear to be
too cumbersome for genuine sketching.

This paper does not consider the next computer imitation of traditional tools of
sketching but tries to show that a chance of succeeding in using computers in the
process of creative design is elsewhere. Such a chance lies in persuading the desig-
ner to use CAD tools which force him/her to think about the object that is being
designed at 2 levels: the higher level of structural properties (syntax) and the lower
level of geometry, primitives, attributes etc. (semantics). It is so because the real
benefit of CAD is defining both syntax and semantics of the designed objects in an
explicit way.

The proposed methodology used in design is based on a composite representation
(Grabska and Borkowski, 1996) which assumes that the object graph structure is
seperated from its realisation. The composite representation of a design consists
of a graph reflecting the object structure and a realisation scheme for interpreting
the graph in the form of a graphical representation of an artefact. Several types
of graphical representations from line drawings to rendered images can be used for

International Journal of Computing Anticipatory Systems, Volume 6, 2000
Edited by D. M. Dubois, CHAOS, Liége, Belgium, ISSN 1373-5411 ISBN 2-9600179-8-6

presenting artefacts.

The main goal of this paper is to present graph operations as a way of handling a
design task. They allow to consider aspects of creative design on the higher level of
abstraction and provide a new method of creating non-recursive structures of desig-
ned objects. They are not only used for generation of structural representations but
also enable modifications of object representations and facilitate to explore a space
of potential design solutions by supporting reasoning about design on the syntactic
level.

From the aesthetic point of view, the operations suggest syntactic characteristics
of beauty. Such characteristics can be insufficient but can help the designer to be
aware of ideas important for achieving desirable aesthetics of the object that is
being created. In other words, application of such operations for describing object
structures gives a chance that the probability of the objects attaining an acceptable
appearance will enhance.

If design process begins with specifying the purpose then the reason for which an
artefact is created is mapped into functions which enable to achieve it. The desig-
ner considers the decomposition of an artefact and the correspondence between the
smaller units and the functions. The structure of the object that is being designed
emerges from these considerations (Borkowski and Grabska, 1998).

The next goal of this paper is to present the Functional Structure Edytor (FSE), i.e.,
a new software tool which enables designers to transform the design specification
into the composite representation and then to modify this structure by means of
graph operations. FSE is a prototype program written in Visual Basic developed
by the author and her students.

2 Composition Graphs and Interpretation

Our approach to design is atomistic. Artifacts are formed from simple buiding bloks
called primitives. Given the primitives, we define the rules limiting the way they
may be combined together. These rules determine the syntaz of an artifact and allow
us to define its structure. The structure of an artifact is described by a composition
graph (CP-graph) (Grabska, 1993). In the definition of CP-graphs, the pattern the-
ory developed by Grenander was used as a helpful framework (Grenander, 1972).
Grenander drew his inspiration from Wittgenstein’s Tractatus Logico-Philosophicus
(Wittgenstein, 1955).

CP-graphs have nodes equipped with bonds. Given a node, in-bonds and out-bonds
are distinguished (see: Fig. la). We draw the picture of a CP-graph representing
bonds as small circles placed in the nodes and showing edges as the lines connecting
the pairs of bonds (see: Fig. 1b). The number of node bonds expresses the maximal
number of the connections between the primitive corresponding to the node and
other primitives. A CP-graph has two kinds of bonds: engaged bonds which are
connected by means of edges and the remaining bonds called free bonds. Each node

194

@
RED

Fig. 1: The CP-graph a) its node b) its structure.

node

node label

in-bonds

has a label. When mapping a CP-graph into a graphical representation the label
determines a primitive (a basic geometrical shape) whose transformed copy (a gra-
phical component) is assigned to the node. Edges indicate the existence of different
relations between graphical components. Names of these relations constitute edge
labels.

Graph operations require an extension of CP-graphs to hierarchical graphs. We
assume that nodes can contain inner nodes called their descendants. A descendant
can also have bonds and be connected to other nodes. Although there exists an
exception - any node can not be connected by edges with its ancestors. Descendants
can be visible or hidden, depending on details required by the designer. Fig. 2a
shows an example of the CP-graph with its visible descendants. Some of them are
hidden in Fig. 2b.

Fig. 2: The Hierarchical CP-graph a) with visible descendants b) with hidden
descendants.

Before defining Hierarchical CP-graphs (HCP-graphs) in a formal way, we start with
the definition of a set of hierarchical nodes with their descendants.

195

Let us denote a set of nodes by X. Let assume that a node of X consists of a
numerical identifier, a set of descendants, a set of in-bonds and a set of out-bonds.
Given a node v € X, we denote its identifier, set of descendants and sets of bonds
by 2., Cy, In, and Out,, respectively. Descendants of v can be direct or indirect.
Let us define the set:
Ch*(v) = U;ro Ch™(v), where

VuexCh%(v) = v

Ch™(v) = {w : Jyecpn-1w € Cy}
It is easy to see that C'h'(v) is a set of direct descendants of v and the following set
Ch*(v) = Ch*(v)\ Ch°(v) contains all descendants of v.

Definition 1 By a set of hierarchical nodes we understand a set

X={v:ve U X, Vweoh (v)(Inw U Outy) < oo}, where

n=0
Xo = {(¢,C,In,Out) : i€ IN,C =0,In C IN x {i},0ut C {i} x IN}
X, ={(,C, I,,0ut) : i € IN,C C JpZy X, In C IN x {i},0ut C {i} x N},n>1

Definition 2 Let X be a set of hierarchical nodes and Ch*(v) be a set consisting of a
given node v € X and all its descendants. By a Hierarchical CP-graph (HCP-graph)
we mean a pair (V, E), where

o V€ X and Vyueon(vyiv = tw = v = w, i.e., nodes identifiers are unique,

o E C IN? x IN? is a set of edges, where edge an e is denoted by (out.,in.), and
the following conditions are satisfied:

— VeerTvwech (vyoute € Out, Aine € Iny, Av & Ch*(w) Aw & Ch*(v), ie.,
each edge e is directed from starting point out. to endpoint in. and does
not connect hierarchically related nodes,

— Veeer(oute = oute Vin. = ing) = e = €, i.e., only one bond can be
connected to any given bond. :

HCP-graphs define only structures of designed objects. In order to create a graphi-
cal representation of a given artifact, an interpretations is required. In this paper we
simplify and only sketch the concept of interpretation. More details can be found
in (Grabska, 1993).

Given a HCP-graph G = (Vg, Eg) we define a pair of interpretation functions:
Iy, : Vg — D and Ig, : Eg — Rp. Iy, establishes correspondence between nodes
and real objects. D is an application domain. For instance, if we are designing
a garden, then D would contain objects like trees, benches, different flowers, rec-
reation grounds, lawns, etc. [g, assigns relations defined between objects of D to

196

edges. Rp is a set of possible binary relations defined on D, for instance ”to the
north”, ”bigger”, etc.

3 Graph Operations

There are many reasons why graph operations should be introduced. First, struc-
tural properties which can be handled by means of them are essential in inducing
images of the entity that is being designed. Secondly, evaluating potential design
solutions often suggests the designer some improvements and modifications. As a
consequence, structural changes can be necessary to obtain better results. Moreover,
graph operations allow to describe general aesthetic characteristics common to att-
ractive objects on the syntactic level. To show how the proposed graph operations
handle design tasks we shall present designing gardens.

Four important operations on CP-graphs are:

e gluing operation,

e merging operation,

e splitting operation, and
e concatenation.

3.1 Gluing operation

Designing is contextual. Gluing operation reflects this fact. Creating components of
the designed object should include their context. Let us consider a class of gardens
which contain both a patio and an extra recreation ground. We assume that adding
next components of gardens is contextual, i.e., the components are placed between a
patio and a recreation ground. Besides the context our preliminary design contains
a rock garden and a lawn. Adding a flower bed to the central part of the designed
garden requires a gluing operation (see: Fig. 3a). We glue the context and add the
next component to the central part.

A gluing operation of two drawings shown in Fig. 3a requires the existence of the
common, i.e. (context) in these drawings. The two elements (recreation ground
and patio) belonging to both drawings satisfy this requirement. In this example the
gluing operation can be seen as adding a new fragment of the second drawing to the
first drawing with preserving their context.

Let us consider this example using the gluing operation for CP-graphs which repre-
sent the drawing structures. The CP-graphs depicted in Fig. 3b correspond to the
drawings shown in Fig. 3a.

The CP-graph having 4 nodes and 4 edges is glued with the CP-graph with 3 nodes
and 2 edges. The edges are determined by the relation being below. The result of
gluing operation is the CP-graph which has 6 edges and 5 nodes. Its nodes with

197

Fig. 3: Gluing operation: a) user interface; b) CP-graph representation; c) interp-
retation of the result.

labels r and p are the results of gluing two pairs of nodes of the glued CP-graphs,
which have label r and p, respectively. The edges of glued nodes are added. There-
fore in the resulted CP-graph the number of in-bonds of the node with label r and
the number of out-bonds of the nodes with labels p are equal to 3.

In Fig. 3c we can see one of possible interpretations of the resulted CP-graph.

In general, a gluing operation can be seen as an operation of matching subgraphs.
Matching, described by means of two functions, consists in detecting subgraphs
which are ”similar enough” and can be candidates for gluing. The matching func-
tions work in a hierarchical way - two nodes can be considered to be equal only if
their parents are equal. These functions should base its decisions not only on the
graph structures alone, but also on details found in the interpretation. Two nodes
assumed to be equal do not have to have identical interpretations. When two nodes
with different interpretations are glued into one? An answer to this question has to
provided by the matching functions.

Before the formal definition of matching let us define a set B(V') of all bonds for a
given HCP-graph G = (V, E):

B(V) = {b € IN? . EweCh‘(V)b € In,U Outw}

As it has been considered bonds are attached to the nodes. Let us denote the node
v with bond b by v(b).

198

Definition 3 Let G = (V, E) and G' = (V', E') be two HCP-graphs. By a matching
M for G and G' we mean a pair of functions (mv, mb), where

mv : Ch*(V) x Ch*(V') — {0,1} and mb: E x E' — {0,1},

satisfying the following conditions:

o mo(v,w) =1 = (Vuevupemv(u,w) = 0 A Vyeyr ywgomo(v,u’) = 0), ie., for
any given node, there is no more than one matching,

e mu(v,w) =1= (Vueon(v)Vwecn(vyv € Ch{u) Aw € Ch(u') =
= mu(u,u’) = 1), i.e., if two nodes match, their parents also must match or
these nodes are topmost nodes in their HCP-graphs,

o mb(a,b) = I .= (VeeB(v)etamb(c,b) = 0 A Vaep(vryazsmb(a,d) = 0), i.e., for
any given bond, there is no more than one matching,

o mb(a,b) = 1 = mu(v(a)) = mv(v(b)) = 1, i.e., if two bonds match, their
nodes also must match,

o mb(a,b) = 1 = (pech(vye € Out, & Iyeonr(v)b € Out), i.e., out-bonds can
match only other outbonds, in-bonds only in-bonds.

Before our consideration of gluing operation let us define a set I(V') of all identifiers
for V:
](V) = {Z € N : HwECh‘(V)é = lw}

Let G = (V,E) and G' = (V',E’) be two HCP-graphs for gluing and let H =
(Vi, Eg) be the result of this operation. G and G’ must have unique identifiers:
IV)nI(V')=0.

If topmost nodes do not match, then nothing else will match, and both HCP-graphs
will be copied fully. We have to create a new node and link V and V' as its children,
because there can be only one topmost node in each HCP-graph.

On the other hand, if V' and V' match, then they will be glued, and we have to test
their children to see whether some of them can be glued also.

T { L {V,V'},0,0),i ¢ I(V)UI(V'): mv(V,V))=0
uwv,v'y: mv(V,V’) =1

where U(V, V') = (iv,UC(Cv,Cv/),UB(Inv,Iny:),UB(Outy,Outy/)) is a result
of gluing nodes, where
UC(CV7 CV’) = {U(y7z) : Hyecvﬂzecv,mv(y,z) == I}U
U{y : y € Cv—3.e0,, moly,2) =1} U{z: 2z € Cvi—Iyec, mu(y, z) = 1} is a result of
gluing descendants, and
UB(A,B) = {a: Jscadvenmb(a,b) =1} U{a:a € A=Fpepmb(a,b) = 1}U
U{b:b & B-3,eamb(a,b) = 1} is a result of gluing bonds.
After defining the set Vi of nodes the set Ex of edges is determined in the following
way: if two edges have matching bonds on one end, then bonds on the other end

199

must mutch also, and we glue these edges. Otherwise, we just copy them. In a
formal way:

Eyg = {(a,b) 3 (a,b) € EVE!(c,d)eEV,mb(a,c) = I}U

U{(a,b) : (a,b) € Ev=3I(ca)cr, mb(a,c) = 1}U

U{(C./ d) : (C, d) € EV"ﬂE(a,b)eEv7nvb(fl',C) = 1}.

Interpretations of newly created graph H is based on interpretations of V and V.

3.2 Merging operation

A certain amount of hierarchy is necessary when keeping in mind rationality and
efficiency of the design process. The merging operation allows one to group together

Fig. 4: Merging the subgraph with three nodes into one node.

nodes of a CP-graph and to represent them by one hypernode. This operation igno-
res-the structure of nodes which are grouped but preserves their free-bonds which

ecreationyey
ground //k

\

N
0 0 %50
garnce)
b 9, S Q %‘?o
28
O30 G

lrecreatlon | %
ground

355
arden S
arden, & APDEMNE

Ao 1 gﬁg
- g™
a B - CWC%%QD

IIIIIILIITIIIITIY

Fig. 5: Merging operation: a) user interface; b) CP-graph representation; c) inter-
pretation of the result.

represent connections of the formed hypernode with its environment. In other words,

a node which is substituted for a subgraph formed by nodes which are grouped has

the same number of in-bonds and out-bonds as the number of free in-bonds and
out-bonds, respectively, of the replaced subgraph (see: Fig. 4).

Let us consider the resulted CP-graph in Fig. 3b. The merging operation is applied
to two nodes with labels rg and [of this CP-graph. These nodes are replaced by
one node (hypernode) with label rgl. The result of the merging operation is shown
in Fig. 5b. Fig. 5a presents the drawing corresponding to the resulted CP-graph.
Components of the drawing being the rock garden and the lawn are joined. The
interpretation of this CP-graph is the rock garden on the lawn (see: Fig. 5c).

In general, merging operation can be applied to HCP-graphs. This operation defined
for a given HCP-graph consists in removing all descendants from the graph. The
result graph is the topmost node.

3.3 Splitting operation

Apart from the merging operation, also an inverse operation proves to be helpful in
design. The splitting operation adds an internal structure. It represents division of

(N
ofite
@Eb)@
Q

Fig. 6: Splitting the node into the subgraph with three nodes.

components into smaller parts by replacing one node with a CP-graph having the
same number of free in-bonds and free out-bonds as the number of in-bonds and
out-bonds, respectively, of the replaced node (see: Fig. 6). The splitting operation
can be applied to the node representing the recreation ground. This node is divided

% fw u:gon ‘
3 ‘

Fig. 7: Splitting operation: a) user interface; b) CP-graph representation.

into three nodes. Two nodes which represent trees and dwarf pine are seperated
from the recreation ground. Fig. 7 presents this operation.

In general, the splitting operation can be applied to HCP-graphs. This operation
defined for a given HCP-graph consists in adding some descendants to this graph.

201

3.4 Concatenation

| The concatenation operation does not require any context in a design. Generally,
concatenating CP-graphs consists in creating edges between free bonds of these CP-
| graphs.

Fig. 8: Concatenation operation: a) user interface; b) CP-graph representation.

Let us consider the result of the splitting operation shown in Fig. 7. The two nodes
representing trees an dwarf pine are connected with the node corresponding to the
‘ rock garden on the lawn (see: Fig. 8). In the following the CP-graph being the
result of the concatenation operation will be essential in the structure describing a
regular garden.
A formal definition of the concatenation together with its properties is presented in
(Grabska and Hliniak, 1993).

4 The Key to Aesthetics

In this section ideas essential to achieving desirable aesthetics in object design are

Va&b
af # e ECMQ\Q\Q\D@%

sssasmamaEss TILIT IIIITYTITIIIY XX

| Fig. 9: Visual balance: a) user interface; b) CP-graph representation; c) interpre-
tation of the result.

202

sketched. An internal structure of the object has a great influence on its form. This
idea is used as a basis for the esthetic considerations presented here.

It is difficult to define beauty. Through the study of aesthetics it is possible to i-
dentify general characteristics common to attractive objects. Although possesion of
such characteristics does not guarantee beauty, they greatly enhance the probability
of the object attaining an acceptable appearance.

Characteristics for beauty in object design are identified as unity and harmony (Tjal-
ve, 1978). They can be achieved through balance, rhythm and proportion. Syntactic
level restricts the discussion to balance and rhythm.

Usually, in both symmetric and asymmetric designs, visual balance is seen, as exis-
tence of the same visual weight on both sides of the object’s centre line.

A structure of symmetric design with visual balance is considered as the result of
gluing operation of two copies of the same CP-graph which is a proper subgraph of
the total CP-graph design structure (see: Fig. 9a). The garden being a symmetric

Fig. 10: Converting functions into the graph.

design with visual balance is depicted in Fig. 9c.

Rhythm refers to repetition of patterns and can be achieved through variations of ar-
rangement, colour, etc. Operation of concatenation allows to connect such fragments
which preserve appropriate arrangements. By grouping elements into hypernodes
the hypernode operation makes it possible to preserve rthythm. For instance, this
may be achieved by applying the same colour to mark the distinguished hypernodes.

203

5 Converting Functions into Object Structure

Usually, design process begins with specifying the purpose, i.e., the reason for which
an artefact is created. In this section we consider defining functional requirements
of the designed object and transforming them into the object strucure. The pro-

Fig. 11: The graph structure of the sleeping area.

posed methodology will be illustrated by an example of designing a floor layout for
one-storey house.

The main function of the house is providing a well organised and pleasant living
space for the family. To perform this purpose the designer specifies more detailed
* functions as: sleeping, communication, recreation and cooking. Then he/she creates

Fig. 12: The preliminary layout

a graph composed of four nodes, where each of them represents one of these func-
tions. To convert these functions into the graph the designer can use the Function
Structure Editor (FSE) (see: Fig. 10). FSE allows the designer to apply graph ope-
rations. For instance, when applying splitting operations each node can be replaced
by several different subgraphs as one can have different arrangements of the rooms

204

playing the same roles. One of the possible structures of the sleeping area is shown
in Fig. 11. The node sleeping is replaced by a subgraph composed of four nodes,

Fig. 13: The first way of establishing the accessibility relations.

where three of them, representing a bedroom, room and bathroom, are connected
with the node communication. These connections represent the accessibility of the
| three places from a hall which will be placed inside the house. Moreover, the node
shower is connected with the node room and the node bathroom is connected with

Fig. 14: The second way of establishing the accessibility relations.

the node bedroom as the shower and the bathroom should be accesible from the
appropriate places.
The node recreation is replaced using a splitting operation by a two-node graph,

205

where the first node represents a living room accessible from the communication
area, while the second one corresponds to a terrace accessible from the lining room.
The node cooking is replaced also by a two-node graph whose nodes represent a
kitchen and a dining room, both accesible from the communication area and from
each other (see: Fig. 12).

While considering the graph presented in Fig. 12 the designer can suggest the
division of the communication area into two halls as it is not feasible to arrange

Fig. 15: The third way of establishing the accessibility relations.

direct access from a single hall to a six places. Then the places represented by the
nodes connected with the node communication will be accessible from one of these
two halls. There are several ways of establishing the accessibility relations between
halls and other places. Three of them are presented in Fig. 13, Fig. 14, and Fig.
15.

Modifications of graph structures by means of graph operations constitute a space
of potential design solutions. FCE enables the designer to explore the design space
and to reason about designs on the syntactic level.

6 Conclusions

This paper discusses a new approach to structural design representations in the fra-
mework of graph transformations. A train of thoughts leading to the creation of an
artefact is described by means of graph operations. In our opinion advanced human-
computer interface with successful implementation of graph operations allows the
computer to provide information to the designer, related to structural properties of
the entity that is being designed.

Moreover, our attention has been focused on a tool enable us to bridge a gap between
specification and the object structure being an element of a composite representa-

206

tion. It would be naive to imagine that the specification of functional requirements
of the designed object could be automatically translated into its structure. This
mapping is obviously non-unique and many crucial decision should be taken by the
designer. But the aim of FSE is to assist him/her in the descision-making process
and to facilitate achieving the plausible design solutions.

References

Borkowski Adam and Grabska Ewa (1998); Converting Function into Object; in
Smith, I. (ed); Lecture Notes in Artificial Intelligence, 1454, pp. 434-439; Springer-
Verlag, Berlin.

Grabska Ewa (1993); Theoretical Concepts of Graphical Modeling: Realization of
CP-graphs; Machine GRAPHICS and VISION, 2(1), pp.3-38, Warszawa.

Grabska Ewa and Borkowski Adam (1996); Assisiting Creativity by Composite Re-
presentation; in Gero, J.S. and Sudweeks, F'. (eds); Artificial Intelligence in Desi-
gn’96; pp.743-749; Kluwer Academic Publishers.

Grabska Ewa nad Grazyna Hliniak (1993): Structural aspects of CP-graph Langua-
ges, Zeszyty Naukowe UJ, Prace Informatyczne, 5.

Grenander Ulf (1976); Pattern Synthesis, Springer Verlag.

Tjalve Eskild (1978); Systematische Formgebung fur Industrieprodukte, VDI-Verlag
GmbH, Dusseldorf, und FACHPRESSE GOLDACH, Hudson&Co.

Wittgenstein Ludwig (1955); Tractatus Logico-Philosophicus; Sixth Edition, Lon-
don.

