
A Systems Approach for Workllow Management Reality

Nikitas A. Assimakopoulos
Department of Informatics, University of Piraeus,

80, Karaoli & Dimitriou Str., GR-185 34 Piraeus, Greece.
p4ç ; +3014179064, E-MAIL: assinik@unipi.gr

Abstract
It has been over ten years since the first workflow product was introduced. Despite the large
number of workflow vendors and various research efforts all over the world, as well as the hype
about the workflow market, workflow technology is still far pervasive. This paper approaches
workflow systsms and assesses the situæion from the technical point of view, focusing on the
development and enactnent aspects of workflow processes. We discuss the current capabilities
ofworkflow productq major issues that need to be addresscd before workflow can be pervasive,
as well as possible future trends and research ttrat will help workflow succeed.
Keywords: Workflow lvlanagement, W'ide Area Workflows, Transactional Workflows,
Distributed Workfl ows, Dynamic Workfl ows

I Introduction

1.1 Background

Computer technology has evolved to the extend that is being used successfully in
application domains such as banking, finance, and telecommunication. Such
applications ofcomputer technology have greatly increased productivity and provided
better services. Despite their success, these versions of computer applications have two
major drawbacks.

First, they are monolithic in nature. All business policies and information accesses
were originally hard-coded into the applications. These systems were diflicult to
maintain and enhance where business policies and data changed. The advance of the
database technolory has successfrrlly separated data access from the applications. As
database applications, the applications are more adaptive to data changes. On the other
hand, business policies are still hard-coded and any change requires modiSing the
application code.

Second, they are isolated (i.e., stand-alone applications). The computer applications
(especially those developed in old days) are usually designed and developed to work
independently to solve specific problems. The advance of network and distributing
technologies have made it possible for them to collaborate in primitive ways such as
receiving and sending messages. There is, however, a great need to integrate those
isolated information and process islands at a higher level so that they can
collaboratively provide business solution that each individual application is unable to
provide.

Intemational Joumal of Computing Anticipatory Systems, Volune 9,2001
Editpd by D. ll[. Dubois, CHAOS, Liègc, Belgiun, ISSN 1373-9'll ISBN 2-9fln262-2-5



Workflow has been proposed to address the above problems of early computer
applications. The basic idea behind the workflow technology is to separate business
process and workflow management component from the existent applications to
increase flexibility and maintainability. The major driving forces of workflow are two
fold : first is the need for business re-engineering whose main purpose is to increase
productivity, reduce cost, and respond to the changing environment rnore quickly, and
second is the advent oftechnologies such as distributing computing, object technology,
databases etc. that facilitate open and reliable information exchange and collaboration
across the organization.

The separation of business policies from applications makes (workflow-based)
applications easier to maintain and enhance, because changes in procedures can be
made using workflow tools without having to rewrite the application, as well as
providing several other advantages. For example, as business procedures are automated,
production can increase dramatically. A workflow system supports policy-driven
allocation ofresources and can therefore adapt dynamically to change workloads. Since
workflow processes can be understood by computers, it is also possible to develop
workflow tools that track process executions and control proc,ess execution in more
flexible ways. Another big advantage of workflow systems is that they simpliff
application development, not only because application components can be reused, but
also because functions common to many applications such as recovery have already
been provided by the underlying workflow management systems.

1.2 Workflow Systems

Workflow management is a diverse and rich technology and is now being applied to an
ever increasing number of industries. Workflow is also a generic term which may refer
to different things at different levels such.as process modeling at the business process
level, or process specification and enactment at the system level. In this paper, we
discuss issues of process specification and enactement for various kinds of workflow
systems (e.g., ad hoc, administrative, production, and collaborative workflow systems).
The business perspective, such as issues ofbusiness re-engineering, process modeling
and BPR tools. will not be covered.

A workflow process is a coordinated (parallel and/or serial) set ofprocess activities
that are connected in order to achieve a common business goal. A process activity is
defined as a logical step or description of a piece of work that contributes toward the
accomplishment of a process. A process activity may be a manual process activity
andlor an automated process activity. A workflow process is first specified using a
process definition language and then executed by a workflow management system
(WMS). A WMS is a system that completely defines, manages and executes workflow
process through the execution of software whose order of execution is driven by a
computer represetation of the workflow process logic.

It has been over ten years since the first workflow product was introduced. There are
now at least several dozens of workflow products available on the market with certain
workflow capabilities. Workflow technology has been used in a wide nange of

302



application areas such as banking, finance, insurance, health care, telecommunication,
manufacturing, and document management.

Despite all these efforts and its usefulness, workflow is far from pervasive in the
business and industrial world. while there are many reasons for this, some major
technical ones include :

Infrastructure
Workflow systems are much more than just workflow engines that execute workflow

processes. Successful execution of a workflow process requires proper supports from
the underlying infrastructure. For example, technologies such as distributed computing,
object orientation, and security are necessary for the workflow engine to invoke extemal
applications (especially legacy applications). Unfortunately, distributed computing and
object technologies such as Corba and ActiveX{DCOM have not been mature enough
for real applications until recently.

Standards
The lack of standarts has been one of the major obstacles to wide application of

workflow technology. Unlike relational databases, each workflow vendor has its own
rvorkflow model, specification language, and API. Recent efforts by the Workflow
Management Coalition (WMC) have made significant progress, but there is still a long
way to go.

Complexity
Workflow application development is a complex task involving more than simply

specifying a process definition, itself is a formidable task. Other and more difficult tasks
include wrapping external applications to be invoked by the workflow engine, managing
workflow resources, and setting up communication infrastructure. Unfortunately,
current workflow systems provide little help for facilitating these tasks. Every major
rvorkflow applications require lengthy and intensive collaboration between the
workflow vendors and the application developers.

Technology
Despite all the technical progress, workflow technology is still far from mature. For

example, none of the edsting workflow products or research prototypes can provide the
same level of support as relational database management systems do for reliable and
consistent process executions. It is true that many workflow applications do not need
this level of support. But it is also important for workflow management system to have
the ability so that mission critical applications that are currently implemented using
other technologies (e.g., database) can be re-engineered using workflow.

There are other papen discussing the limitation of existing workflow products and
outlining important research issues (Alonso G., Agrawal D., El Abbadi A., and Mohan
C., 1997). This paper focuses on identifying the technical solutions so that workflow
will be more pervasive. We discuss both the current capabilities of workflow products

303



and the major issues that need to be addressed before workflow can be successful in the
market place.

2 Workflow Products

In this section, we first summarize the major features, enabling technologies, and
successful applications of the cunent generation of workflow systems. We then describe
a few industry trends that we believe are important to the next generation of workflow
systems.

2.1 Current Status

Workflow systems have evolved at least three generations. The first generation of
workflow systems are monolithic applications of a particular application area (e.g.,
image or document management). Second generation workflow systems factored out the
workflow components but were still tightly coupled with the rest of the products. Third
generation workflow systems have generic, open workflow engines which provide an
infrastructure for robust production oriented workflow. The workflow specification is
given separately through a graphical user interface and is interpreted by the workflow
engines. It has been a research effort (Assimakopoylos, 1988; Assimakopoulos, 1999;
Assimakopoulos, 2000) for a fourth generation of workflow systems that will be part of
the middleware and will offer workflow services among other services.

2.1 .l Workflows Product Features

Workflows products of the early age (e.g., WorkFlo by FileNet) are image-based. The
purpose of such systems is to automate and manage the flow of images, data, text, and
other information throughout an organization.These systems are thus also data- or
document-centric. The main function of a data-centric workflow process is to route the
data(e.9., design document ) around so that people can work on the data.

In recent years, most workflow vendors have either developed or relabeled their
products as non image-based. Most of the workflow products are also process centric
(instead of data-centric) in the sense that workflow processes formalize and enforce
business policies. On the other hand, there are still needs for data-centric workflow
products and some vendors focus on that market segment.

In the following, we summarize major features of the current generation of workflow
products that are non image-based and process-centric. Note that this is not a complete
list and the listed features may also not be supported by all workflow products.
Nevertheless, we believe that these features characterize the current generation of
workflow products and are supported (at least partially) by most workflow products.

Graphical representation
Perhaps the most significant improvement of the current generation of workflow

products over earlier generations is the ability to specify and represent workflow

304



processes as gaphical maps. In the map, major steps, data and control flows, as rvell as
other components of a workflow process are displayed graphically using icons and lines
connecting icons. The idea is to provide an intelligible process view to non-
programmers such as business analysts, re-engineering consultants, end-users and
supervisors.

The workflow process map is now a standard component of all workflow products.
But it differs significantly from vendor to vendor with respect to the information
contained in the map and the way it is represented. For example, some products
support only a single oneJevel map while others represent process maps hierarchically,
i.e., that there is one main map which contains icons representing submaps. Some
products manipulate workflow data explicitly on the map while others do not. The
granularity of process maps is also different. For example, many products do not
include specifics of the workflow activities. As noted in process maps in most
workflow products fail to describe the workflow process with sufficient clarity and
completeness.

Architecture
Workflow systems, by nature, are distributed systems. Most workflow systems

employ three tier clienV server architecture and run on multiple platforms. There is a
workflow engine which acts as a coordinator and stores meta information in the
underline database. Other components of workflow systems such as the process
monitor, the process starter and the process controller are all clients of the engine.
External applications that perform workflow tasks can be both geographically dispersed
and on different platforms.

The workflow engines in most existing workflow systems are still centralized in the
sense that the entire execution ofa process is handled by a single workflow engine (or a
cluster of engines that share the same data storage). It is possible in some workflow
systems to start a subprocess at a different machine as a step of the containing process
execution. But the subprocess execution and the containing process execution can be
considered as sep@rat€ process executions with little interaction except data passing at
the beginning and end of the subprocess execution. No workflow systems can currently
support reliable and consistent process execution collectively by more than one
independent (share nothing) workflow engine.

Data model
In WMC workflow reference model, three kinds of workflow data have been

identified: process control data t}nlt is manipulated by the workflow management
system only; process relevant data tlmlt is used by both the application and workflow
management system; and application data that is used by the workflow application
only. The idea is to separate business policies (e.g., control flow and data used in flow
control) from application details (e.g., data used to perform a task).

All work{low products have their data models but some of them are quite different
from the WMC model. For example, many workflow systems do not distinguish

30s



between process relevant data and application data. In these systems, worldlow
engines have accesses to all workflow data (including application data).

User model
A user model specifies each user's role and the role the user coordinate. The idea is

to separate the concept of the logical role which is the specification of capabilities
needed to perfiorm a task, and the concept of physical resources, that have the
capabilities to perform said tasks. Process designers speciff roles for workflow tasks at
design time. Similarly, specific resources which have the required capabilities will be
assigned to the tasks at process execution time. The advantage is that the workflow
process is not tied to specific resources which may change over the process lifetime.

There are still workflow products that do not distinguish between logical roles and
physical resources. However, many workflow products do support this basic user
model. Some even support a more complicated model that allows for the specification
of a user's organization and manager, the function and the processes that the user is
authorized to use, and other features.

Rule capability
Almost all workflow products allow process executions more complicated than

simple sequences. Complex flow control requires workflow products to have rule
capability. Most workflow products have built-in rule engines. But the rule specification
can be quite different. Some products provide script languages for rule specification
while others have graphical rule editors that are easier to use.

Tools
One of the advantages of using workflow over monolithic applications is that

workflow management systems include tools for process monitoring tracking and
controlling. Most workflow products provide process development tools and some even
provide animation and simulation tools.

2.1.1 Standards and Enabling Technologies

Standards and enabling technologies are important factors that must be addressed before
workflow technology can be pervasive. In the past few years, significant progress has
been made with respect to workflow related standards such as WflvIC, MAPIWF, and
OBC and enabling technologies such as email, CORBA, and Active)V DCOM.

WMC standards
WMC was founded in 1993 and is now considered the primary standard body for the

workflow market. The standardization work of WMC is centered around the workflow
reference model (see Figure 1).

The reference model specifies a framework for workflow systems, identifying their
characteristics, functions and interfaces. The focus has been on specifuing the five APIs
that surround the workflow engine. These APIs provide a standard means of

306



communication between workflow engines and clients (including other workflow
components such as process definition and monitoring tools). So far, WMC has draft
speciflrcations for all APIs except interface 3. Most workflow vendors plan to support
the WMC APIs and some vendors have already demonstrated the WMC APIs (e.g. , for
interface 2) working with workflow engines.

Workflow interoperability and standards are vital as automation technology becomes
more complex, and the Coalition's work in this industry is central to keeping up with
the rapid progress. On the other hand, workflow standardization is still in its preliminary
stage and has a long way to go.

Interface 1

Fig. 1: WMC workflow reference model

MAPI workflow Framework
MêJI is a message API standard promoted by Microsoft and the MAPI workflow

framework (MAPI-WF) is Microsoft's initiative to the WMC. The idea is to combine
the functionalities of workflow systems and the flexibility of messaging systems so that
applications can be deployed. It addresses interoperability issue between messaging
systems and workflow systems. In a message environment, a workflow request (e.g.,
interface 4) can be packaged within some body part of a message. lvfAPI-WF provides a

307

Other Woiltfrow
Enrcftnnt

Worlrflow and

Wortflow Enactment
Service



standard set ofbody parts and properties so that workflow package can be delivered to
and from the workflow engine. Workflow components (e.g., workflow engines,
workflow applications, and workflow tools) that conform to MAPI-WF can
communicate via messaging systems such as Microsoft Exchange.

Given the popularity of messaging systems and the influence power of Microsoft,
MAPI-WF will play an important role. Many workflow vendors have already expressed
their intentions to support MAPI-WF in their workflow products. To the best of our
knowledge, however, no vendors have actually demonstrated in their products.

Enabling Technologies
'[he two most important enabling technologies for workflow systems in recent years

are object technology and distributed computing technology. Unlike other software
systems such as database management systems, by nature workflow systems are
distributed and open. To perform a workflow task, the workflow engine needs to
invoke remote workflow applications. Object and distributed computing technologies
such as CORBA and ActivdVDCOM are very useful in wrapping, managing, and
invoking heterogeneous applications.

Several workflow products have used CORBA and ActiveX/DCOM as transport
services to invoke remote applications. There are also research work investi gating
CORBA-based workflow enactment system which supports a scalable software
architecture, multi-database access, and an error detection and recovery framework.

2.2 Industry Trends

Workflow is a young rapidly changing area with existing workflow products evolving
with new features and new products being introduced almost daily. lt is still not clear
what the next generation of workflow products will be. In the following subsections, we
list some industry trends that are both important and general enough that they may be
adopted by most workflow vendors. In the next section, we discuss some more
advanced issues that are also important but are either not mature enough or general
enouglr to that their adoption by workflow vendors in the near future is likely.

2.2.1 Open and Extensible Interfaces

As mentioned, workflow systems are distributed and open by nature. The organizations
that will use workflow systems already have computer networks, applications (e.9.,
spreadsheets), data (stored in files, databases, etc ) and other information. To be useful,
a workflow management system must fit into the organization's existing computing
environments.

Most existing workflow products include application programming interfaces.
Extemal applications can be integrated with the workflow system, and external data can
be used for workflow process execution via, e.g., application data handlers. To be a
really open workflow system, extensible interfaces are needed for incorporating other
existing resources and information that are needed in workflow process execution.

308



For example, events are one of the major means that workflow processes interact
with each other and with the external environment. A telecommunication network
management process must be able to react to alarms generated by the managed
telecommunication network and generate events to effect changes in the network.
Although, most workflow products still don't support events (especially external events
that interact with external environments), some workflow systems do. Research projects
that address this issue also exist.

Another example that requires extensible interfaces is the integration of existing
corporate directories. lnformation about users and the corporate hierarchy is necessary
for assigning resources to perform workflow tasks. Requiring users to register
themselves to the workflow system as some products do is clearly not the best way. A
more flefble method is to provide interfaces to integrate existing corporate directories
into the workflow engine. This not only saves workflow application development time,
but also makes later maintenance easier and avoids possible inconsistencies.

Some workflow products with exûensible interfaces for integation of existing
resource management systems already exists. In near future more products will
incorporate the interface as this is a feature greatly appreciated by workflow application
developers.

2.2.2 Process Development Environments

The development of workflow applications is generally diflicult, due to their
complexity. Current workflow products address this problem by providing graphical
user interfaces for process desigrr and management. GUI tools, however, only address
one aspect of the problem which is relatively easy to deal with: specifying process
templates. A harder problem is to integrate the workflow process with the computing
environment. This is difficult because of the heterogeneity and complexity of the
computing environments. To make things worse, most workflow vendors designed and
marketed their products as generic tools trying to cover all application areas.

We believe that workflow will not become pervasive until the complexity of
developing workflow applications can be significantly reduced. One way of doing that
is to provide a good development environment. A good environment must be domain-
specific to provide commonly used process templates, commonly used data forms, tools
to wrap and manage commonly used applications, basic communications infrastructure,
etc. Currently, there are special-purpose workflow products available on the market for
specific domains. For example, Araxsys has products specifically targeting a healthcare
market (Araxsys, 1997), and Ariba's products focus on operating resource management
(Ariba" 1997).

For the general-purpose workflow products, it is possible to develop special
packages based on the general-purpose workflow engrne. For example, FileNet has
introduced VisualFloÆayable for account payables. HP has introduced AdminFlow for
business administration. Future such packages will be expected to cover application
domains such as telecommunications, banking, and finance.

309



As mentioned, an important aspect of a workflow process development environment
is to wrap external applications to be used by workflow process. The wrapped
applications can be packaged into a library and then reused by workflow processes.
Workflow process development can be further simplified if workflow activities can be
reused. Workflow activities include more than just external applications to be invoked.
Other information include: logical role specification that maps to the specific external
application; data needed to perform the task; communication mechanisms; consistency
and deadline specification, etc. Unfortunately, most workflow products do not support
this level of reuse, as workflow activities contain process-specific information (e.g.
position in the process) that cannot be reused. It is thus necessary to separate process-
specific and process-independent parts of workflow activities. For example, HP's
workflow product distinguishes between the two parts and allows the reuse of the
process independent parts of workflow activities. This allows a special-purpose
workflow environment such as AdminFlow to be easily developed based on the general
purpose workfl ow engine.

2.2.3 Wide Area Workflow

The current generation of workflow products has been criticized for rigid process
models, narrow application focus, and platform restrictions. These workflow products
best service applications where business rules, process flows, and work participants are
known in advance and rarely change. The advent of wide area networks and the World
Wide Web has provided new opportunities for workflow. Most workflow vendors have
provided web interfaces to their workflow products. There are also research projects
trying to develop workflows on the web.

It has been predicted that one possible change for workflow technology is users'
environments where workflow tasks are performed. Workflow users will have universal
access to them via open interfaces such as email, telephone, fax" pager, Web, and
intranets/ extranets to perform workflow tasks. The key is to separate workflow
processes from the user environment so that changes on one side will not affect the
other. The major difference between traditional and wide area workflows is that
workflow users have control over what kind of information they receive and how they
receive it. The advantage is faster response time and greater productivity by providing
multiple access points to the same information and allowing usen to use tools of their
choice.

3 Workllow Research

Workflow is an active research area with research efforts occurring both in the
academia and industry. However, workflow research, especially that from academia,
has made little impact on workflow products. There are two reasons for this situation.
First, early workflow systems, having evolved from different areas such as office
automation systems, job control systems, and document management systems, have
struglled to define basic models, architectures, and functionalities, while workflow

310



researchers, most rvith strong database backgrounds, have focused on introducing
advanced database techniques to workflow systems. In addition to this, workflow
vendors have not been very successful in applying workflow technology to applications
that require advanced database features such as ACID transactions. Workflow
researchers have also failed to develop techniques that are flexible enough for workflow
systems. Nevertheless, we believe that on-going research can address issues that are
very important in making workflow pervasive. Our experience with customers shows
that there are many workflow applications that require some level of transaction
supports. The requirements, however, are very different from those in database systems.
As a result, not only do existing database techniques need to be adapted to fit into the
workflow environment, but new techniques also need to be developed to address issues
unique to workflow systems.

In the following section, we discuss some of the important research issues. We will
emphasize the differences between the database and workflow environments. Note that
this is not a complete list of workflow research issues. The purpose here is to inspire
research in these and other related areas.

3.1 Transactional Workllow

The concept oftransactions was first introduced for database applications. A transaction
is an execution unit with ACID properties : it maps a database from one consistent state
to another (consislency); either all or none of its effects take place (atomicity); and the
effects are made permanent once committed (durability). Multiple transactions may be
executed concurrently, but the overall effect must be equivalent to some sequential
execution (isolation or seriali:ab il ity).

Workflow models that support certain transactional properties have been viewed by
many researchers as extensions to the relaxed transaction models (Eder J. and Liebhart
W., 1995; Kamath M. and Ramamritham K., 1996). It has been proven both possible
and very useful to incorporate transactional semantics such as recovery, atomicity and
isolation to ensure correct and reliable workflow executions (Juopperi J., Lehtola A.,
Pihlajamaa O., Sladek A., Veijalainen J., 1996). Database techniques have been adopted
to provide transactional properties for workflow processes. For example, failure
atomicity is ensured via both forward recovery (Eder J. and Liebhart W., 1996) and
backward recovery. Execution atomicity can also be ensured by specifying consistency
units (or execution atomic units) of workflow processes and coordinating their
executions to ensure M-serializability (Rusinkiewicz M. and Seth A., 1994).

On the other hand, a workflow process is fundamentally different from a database
transaction as discussed in Worah D., and Sheth A. (1997). First, a workflow
environment is more complicated than a database and involves heterogeneous and
distributed components, as well as human interactions. Second, a workflow process is
structurally more complex than a database transaction, and the execution of a process
may establish quite complex control and data flow dependencies among the activities of
the process. A workllow process specification may include conditional branching
concurrent execution ofactivities, loops and other complex control sûuctures.

3 1 1



Database recovery techniques such as logging have been successfully adopted in
workflow systems. There are workflow products that support reliable workflow process
executions. Ensuring atomic and consistent process execution, however, is still missing
from workflow products and remains an open research issue. In this subsection, we
discuss new issues in workflow compensation and concurrency control as the result of
the above differences between the database and workflow environments.

3.1"1 Compensation

Compensation has been used to simulate the transactional properties for long-running
database applications that would be too expensive to be implemented as single
transactions. The idea was to implement such an application as a sago or sequence of
ACID transactions so that resources needed only at a particular stage could be released
after the corresponding transaction completes. Atomicity was simulated by
conesponding already transactions in reverse order.

ln workflow systems, compensation is used to deal with process activity failures.
When a process activity instance fails, the workflow management system is responsible
for bringing the process execution to a designed save point, which is a previous
execution step ofthe process. The save point represents an acceptable intermediate state
of process execution and also a decision point where certain actions can be taken to
either fix the problem that caused the failure or choose an alternative execution path to
avoid the problem. To roll back workflow process execution, compensation activities
will be invoked to undo the effects of the completed activities. Compensation is more
complicated (and thus interesting) in u'orkflow systems than in database systems for
two reasons. First, compensation specification (i.e., when, what, and how to
comp€nsate) is more diffrcult, due 1o the complexity of workflow processes and
activities. The compensation activity can be as complicated as (or even more
complicated than) the original activity that needs to be compensated. Second
optimization of compensation processes (i.e., what activities don't need compensation)
is important. Unlike database transactions which can be compensated and reæxecuted
easily and efliciently, workflow compensation can be very costly. Therefore it is very
important to avoid unnecessary compensation as much as possible.

Existing research on the issue has been focused on the static specification of
compensation scopes. For example, it has been discussed enhancement to IBM
FlowMark which allows the process designers to specify spheres of compensation to
determine the scope and extent of compensation in case of activity failures. The failure
of an activity may cause the compensation of just the failed activity, the entire
containing sphere, or the containing sphere and other dependent spheres. A similar
approach has also been proposed in Assimakopoulos (1992) for hierarchical workflow
processes. The compensation scope is determined in a bottom-up fashion: first to the
designated save point in the transaction containing the failed activity, then to the
designated save point ofthe higher level containing the transaction ifthe current level
transaction can not hundle the failure.

3r2



An interesting issue is how 1o make use of run time information in order to further
avoid unnecessary compensation. As we mentioned, the purpose of compensation is to
undo that which caused the failure so that the execution can resume. Thus, a workflow
activity needs compensation if it contributs to the failure, and lor its re-execution is
different from the original execution. Compensation scopes specifu the activities that
might affectthe failed activities in some execution environments. However it is possible
that an activity in a statically specified compensation scope did not contribute to a
particular failure. For example, an activity a1 affects a subsequent activity a2 if another
concurrent activity a: occured before ar. There is no need to compensate ar if az failed
before a; has started. This information, however, will only be available at run time.
Identifuing unnecessary compensation and avoiding it at run time is difficult because
other nodes may be affected. But in many cases it is worth the effort because
compensation and re-execution of workflow activities can b very expensive.

In general, we assume some kind of static relationship between the original execution
and its compensation. For example, the same compensation strategy will be used for a
workflow activrty independent of the cause of failures. A compensation activity is
defined for each activity or a group of activities that need compensation. This, however
may not be true in real life. There can be many different ways to recover a failed
execution according to the cause of the failure, and the compensation process can be
structurally independent ofthe original execution. Little research has been done in the
area. The most fundamental issue of compensation is, perhaps, the correct criteria for
workflow process execution and compensation. In database systems, a compensation is
correct if everything between the save point and the failure point is compensated and in
the exact reverse order of the original execution. In workflow systems, we need a more
relaxed criterion for optimization purposes. For example, the order requirement could
be relaxed for compensation that are commutable. A good understanding of correct
compensation is essential to efficient workflow compensation and may even be
application-depended.

3.1.2 Concurrency Control

Concurrency control is classical technique in databases which ensures execution
isolation of a transaction from other conflicting transactions. Although, concurrency
control has been considered either unnecessary or too costly for many workflow
applications, it can be very imporant for some workflow applications where mission-
critical operation requires a consistent view of the execution environment (Juopperi J.,
Lehtola A., Pihlajamaa O., Sladek A., Veijalainen J., 1996).

The problem of concurrency control in workflow systems is, however, a little bit
different from that in database systems. The purpose ofconcurrency control in database
systems is to ensure execution isolation of database transactions which consist entirely
of atomic read/write operations that are visible to the DBMS. In workflow systems, the
WMS ensures the execution isolation of workflow activities which consist of atomic
read/write operations as well as extemal executions that are invisible to the WMS. The
WMS is responsible for the consistency of the overall execution environment which

313



includes both the intemal database that is visible to the WMS, and the external systems
which are invisible to WMS, as well as their cross consistency.

The fundamental issue of concurrency control in workflow systems is correctness
criteria. Serializability, as used for database transactions, is too strict, for most workflow
applications. The main reason for this is that workflow activities are generally long
duration. It is unacceptable in many workflow applications to schedule conflicting
activities sequentially as for read/write operations in database transactions. Relaxed
correctness criteria (which might be application domain specific) are essential in
specifying and enforcing the correct workflow process executions. Kamath M. and
Ramamritham K., (1996) discussed some of the existing research on the subject. Some
existing research addresses the problem by speciffing and enforcing data and execution
dependencies irmong workflow activities. There is also research that adopts database
techniques, but allows flexible specification of consistency requirements with respect to
scope and granularity. For example, it allows for groupping a collection of workflow
activities ofa workflow process into a consistency unit and uses traditional concurrency
control to ensure isolation of consistency units (in terms of serializability). Conect
execution ofactivities inside a consistency unit is ensured by enforcing the proper data
and execution dependencies.

3.2 Distributed Workflow Execution

Workflow systems are, by nature, distributed systems. First, extemal applications that
perform workflow tasks are often geographically dispersed. The workflow management
system itself can also be distributed. The most common form of distributed WMS is
function distribution. In such a system, different workflow components that perform
various workflow functions such as process definition, process execution, process
monitoring, and resource assignment run at different sites. WMS components interact
with each other via messages or remote procedure calls. Another form of disfribution is
to perform a workflow function by multiple functionally equivalent WMS components
that share common storage. For example, the execution of a workflow process can be
collectively performed by several workflow engines sharing the same data storage for
process definitions and execution states. Such a system provides better scalability and is
resilience to workflow engine failure, but is still vulnerable to the data storage failure.

The most difficult form of distribution is to have multiple independent WMSs
(sharing no common data storage) collectively execute a workflow process. ln such a
distributed system, each WMS is itself a complete workflow system with its own engine
and data storage. There is no centralized server keeping all the information about a
process execution. Such a system may be preferred for performance or reliability
reasons. The system is more efficient because workflow activities can be executed by
the WMSs that are close to the corresponding external applications (thus reducing
communication cost between the WMSs and applications) and because the WMSs
access process definitions and execution states locally (thus reducing communication
cost between the WMSs and the data storage). It is also more reliable because the failure
of one or more WMSs (including the corresponding data storage) does not stop

314



rvorkflow process executions. The overall system is functional as long as one of the
WMSs is still running. There are two issues that are key when implementing such a
distributed workflow system: data replication and execution coordination. Data
replication is necessary to ensure reliable process execution. For example, the process
execution can survive a single WMS failure if the process definitions and execution
states are replicated at more than one independent (e.g., primary and backup) WMSs.
Data replication (especially that of process execution states), however, can be very
costly. Data replication can be provided by the WMSs, or the underlying systems. The
advantage of the workflow system level replication is flexibility. For example,
workflow processes can be executed at different levels of reliability from no replication
(efficient but vulnerable to single WMS failure) to full replication (expensive but
resilience to single WMS failure).

Execution coordination is needed when more than one WMS collectively execute a
workflow process. For example, execution of a workflow activity by one WMS may
cause the entire process execution to be suspended, affecting all other WMSs. The key
is to transfer process information to a site when it is needed and in the right order. Static
information such as process definitions can be replicated to all relevant site, but run
time information such as process instance states has to be transferred at run time from
sites to sites. This can be done in two ways : by circulating all information pertaining to
a process and its execution across different sites, or pre-compiling the process definition
to determine at which sites the different activities are to be executed. The advantage of
the former approach is flexibility in the sense that the WMS can choose to execute a
workflow activity at any site according to the run time execution environment. The
disadvantage is possible high communication cost, as the information package can be
very large. The later approach, on the contrary, can be efficiently implemented because
only relevant information is transferred to the site, but is inflexible. For example, if a
workflow activity is pre-assigned to a site which is not accessible at the time, other
sites cannot take over the execution as they do not have the information. Another
problem with this approach is that most workflow products assigned resources to a
workflow activity at run time. The site that is pre-assigned to execute a workflow
activity at process specification time can be far away from the resources (e.g., computer
applications) to be invoked.

Concurrency control and compensation may also be complicated when the WMS is
distributed. For example, executions of conflicting activities at different sites have to be
coordinated to ensure the consistency ofthe overall execution. Locking is generally not
acceptable as workflow activities are often long running. Serializability, on the other
hand, may not be needed for the execution. New correctness criteria and coordination
algorithms need to be developed to ensure correct and efficient process execution.

3.3 Dynamic Workllow

One of the common assumptions made by most workflow research makes is the
availability of pre-specified workflow definitions. Althouglt there is research or even
workflow products which allows for the modification of process definition at run time

3 1 5



(Casti F., Ceri S., Pemice 8., and Pozzi G.,1996) it is still considered to be rare and
costly.

Dynamic workflow systems are special workflow systems that have no pre-specified
process specifications. They start with some initial activities. When an activity has
completed, new activities will be selected according to the execution status and results
of the current activity. In other words, the workflow is specified and executed at the
same time, which is different from dynamic modifications of pre-specified workflow
definitions.

Dynamic workflow systems are suitable for workflow applications where process
specifications are frequently modified or catrnot be pre-specified. For example, most
product desigrrs do not follow a strict process. They start with initial tasks (e.g.,
collecting requirements) and follow the general guidelines. Different tasks are
performed in different orders according to the status of the design.

Dynamic workflow requires revisiting most of the research issues discussed before
(as well as issues not mentioned in this paper). For example, specification of
consistency requirements will be different, due to the lack of the whole picture of the
processes. For the same reason, coordination (especially in distributed environments) of
activity executions would be difficult. There has been very little research regarding
dynamic workflow. Recently, some research efforts have tried to implement dynamic
workflow systems using mobile agents. But such efforts are still in their early stages and
have not addressed the aforementioned issues.

4 Conclusions

This paper tries to understand the situation in the existing computer systems where new
applications are anticipated to join the current systems due to technology developments,
and we presented a systems approach especially for the 4' generation workflow systems
from a technical point of view focusing on the specification and enactment of workflow
processes as an altemative in order to keep the existing data bases. While, there is a high
demand for workflow systems for all kinds of computer applications, workflow in
general is far from pervasive. It has been suggested that workflow systems is a solution
to address many monolithic computer applications and that has attracted interest from
both industy and academia.

Based on our knowledge and experience, we believe that the following factors have
all contributed to the current situation: (l) unavailability of proper infrastructure; (2)
lack of standards; (3) complexity of workflow process development; and (4) immaturity
of workflow technologies. Despite all the problems great progress has been made in the
last few years with respect to infrastructure, standards, and technologies. In the paper,
we discuss both state of the products and state of the art of workflow management
systems. The purpose of this paper is to inspire further research and development in
some workflow areas that are important or essential to the pervasive of workflow
systems.

316



References

Alonso G., Agrawal D., El Abbadi A., and Mohan C. (1997). Functionalities and
limitations of current management systems. IEEE Expert (Special Issue on
Cooperative Information Systems) 1 2(5).

Araxsys. (1997). The araxsys solution. htto://www.araxsvs.com .
ariUaltel4.Introducing*iUuOnUS4rt-nW*rl*..iu*
Assimakopoylos, N. (1988). The routing and cost of the information flow in a System,

Systems Practice, vol. l(3), 297-303.
Assimakopoulos. N. (1992). A systems approach for hierarchically organized systems.

Analyse de System, vol. l8(34), 3-13.
Assimakopoulos. N. (1999). An ever-changing systemic environment for Migrating

Workflows. Proc. of the 3'" Iinter. Conf. of Computer Anticipatory Systems,
Liege, Belgium, August 9-74, 1999, 212-220.

Assimakopoulos. N. (2000) The use of STIMEMS in Business Process Reengineering
with Workflow Specifications. Journal of Computer Anticipatory Systems, vol.
s,269-291.

Casti F., Ceri S., Pernice B., and Pozzi G. (1996). Workflow Evolution. ER Press.
Eder J. and Liebhart W. (1995). The workflow activity model WAMO. Proc. 3d Intl.

Conference on Cooperative Information Systems, CoopIS, Vienna. R.
Oldenburg Verlag, 249-265.

Eder J. and Liebhart W. (1996). Workflow recovery. Workflow Handbook, W. Liebhart
(ed.) Wiley.

Juopperi J., Lehtola A., Pihlajamaa O., Sladek A., Veijalainen J. (1996). Usability of
Some Workflow Products in an Inter-organizational Setting. IFIP WG8.1
Working Conference Proc. on Information Sysrems for Decentralized
Organization, 13 4-l 48.

Kamath'M. and Ramamritham K. (1996). Correctness issues in workflow management.
Distributed System Engineering, vol. 3(4), 303-327.

Rusinkiewicz M. and Seth A. (1994). Specifiacetion and execution of transactional
worKlows. In Modern Database Systems : The Object Model, Interoperability,
andBeyond W. Kim (ed.), Addison-Wesley.

Worah D., and Sheth A. (1997). Transactions in trnsactional workflows. In Advanced
Transaction Models and Architectures, S. Jajodia and L.Kerschberg (eds.)
Kluwer Academic Publisher.

317


