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Abstract
Adaptive hypermedia are suitable to offer flexible Web-based courses and can be useful to
solve problems associated with the use of educational hypermedia as the inability to satisfy
heterogeneous needs, match a web course to students and build different courses from a
setof hypermedia materials. In this context, a framework based on Automata Theory and
Category Theory named Hyper-Automaton is defined in order to create a semi-automated
system for developing Web Courses. Courses are (nondeterministic finite) automata with
output and links between pages are automata transitions (not HTML source) and thus,
reusing the instructional material is straighforward. The categorial constructions of
products, coproducts, limits, colimits, restriction, relabeling and reification morphisms have
meaningful interpretation as constructors to define (possible complex) hypertext
documents for web courses. Then we show how adaptive web courses (i.e., courses that
adapt itself according to the behavior of the student) can be defined in this framework
using categorial operations for adaptive presentation (or contentJevel adaptation) and
adaptive navigation (or linkJevel adaptation).
Keywords: web courses, adaptive courses, composition, automata theory, category theory.

1 Introduction
Web-based application systems, as well as other complex hypermedia systems with a

large variety of users, suffer from an inability to satisfy heterogeneous needs. A remedy
for the negative effects of the traditional "one-size-fits-all" approach is to enhance a
system's ability to adapt its own behavior to the goals, tasks, interests, and other features of
individual users. In pafticular, adaptive hypermedia may be applied to computer-based
leaming environments and are suitable to offer flexible Web-based courses.

With the movement of hypermedia systems towards the web, some authors realized the
new environment didn't have the necessary features for integrated network based learning
environments. As pointed out by (Maurer, 1997) a more powerful V/V/W system is
needed to be able to structure the material into modules (Halasz & Schwartz, 1994) that
can be reused and updated without the need to change any links to and from them: "It is of
extreme importance that we understand that in WWW we have to replace links by
structure. ... embedded links used for structuring purposes must not be used in
sophisticated multimedia networked educational environments...".

This paper discusses how to augment the WWW with a hypermedia service (named
Hyper-Automaton (Machado et a1,2000)) based on the application of concepts inherent in
Computing Science, specially Automata Theory (Hopcroft & Ullman, 199), Category
Theory (Mac lane, l97l) and Hyperdocuments (Nielsen, 1990), that provides a basic
framework for building Adaptive Web Courses (Brusilovsky, 1998).

With categories of automata we can use tools from Category Theory in order to
formally define and precisely understand some operations over hyperbase components
(Menezes & Machado, |99,2OOO). A category of automata is used in tlree levels during
the construction of a web course environment: finite automata with output structures the
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hyperdocuments, categorial operations (limits, colimits, restriction, relabeling) are automata
composition and adaptation schemes in order to build new hyperbases, and reification
introduces a notion of transaction.

The categorial operations (mainly relabeling and restriction) in the Hyper-Automaton
framework are able to provide Adaptive hesentation and Adaptive Navigation
(Brusilovsky,1999). The goal of adaptive presentation is to adapt the contents of a
hypermedia page, and adaptive navigation is aimed at supporting the user in hyperspace
orientation and navigation by manipulating the link structure.

To experiment the proposed model, the Hyper-Automaton System is aimed at
supporting Web-based courses at the Computing Institute of the Federal University of Rio
Grande do Sul (http://teia.inf.ufrgs.br). The presentation of the instructional Web pages is
accomplished through the composition of several documents, chunks of HTML texts,
images, Java simulators and other hypermedia resources.

With respect to previous works as in (Menezes & Machado,2m0), in this paper the
categorial framework is analyzed in terms of adaptive web courses while the results are
still applicable to hypertext systems as a whole. The framework of duo-internal graphs
(Menezes & Machado, 1999; Menezes, 2000) is replaced by a simpler one know as
internalgraphsasin(Conadini,l99O)and (Asperti & l,ongo, l99l). Also we review and
complement some results about the inheritance of limits and colimits properties of intemal
graphs presented in (Menezes & Machado, 2000) with the purpose of keeping this paper
self-contained.

Initially, the concept of hyperdocuments structured as automata is presented and we
discuss the use of anticipation in adaptive hypermedia systems. Next, we introduce an
example depicting the use of categorial operations as course composition and adaptation
schema in the Hyper-Automaton framework. Then, we define a category of intemal graphs
and present the results about limits and colimits. Also we present, in detail, a category of
automata from which we define the restriction, relabeling and reification operations used in
the hypertext framework. With respect to the system, a representative part is implemented
and tested (see (Machado et a1,2000).

2 Hypertext are Automata
The formal model of hypertext we propose is based on a Finite Automaton with

Output (Hopcroft & Ullman, 19f9; Menezes, 2000b) representation of a hyperbase
structure. V/e take advantage of the fact that automata not only capture the descriptive
power of Directed Graphs, known to be a useful abstraction in hypertext systems
(Conklin, 1987), but provide as well a mathematically precise abstract machine for control
and analysis of hypertext execution or browsing and is also an universally known
formalism.

For completeness of our discussion we first provide a short set of definitions for the
Hyper-Automaton. Following this, we give the definitions for the categorial framework of
the hypertext model. The notation style is that commonly used in Automata Theory.

The visual interface of the browser environment provides the user with a tangible
interpretation of the Mealy/Moore Machines. The output alphabet À is annotated with
units of information (hypermedia HTML pages) and, in that case, the result of the next-
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output function ôg: Q - Â* (Moore) or the next-state function ô: QxX - QxÂx
(Mealy) is the display of the HTML documents concatenated in one browser window. The
input alphabet > that labels the transitions between states Q in the automaton are displayed
as HTML links that a user can select. The link itself is the projection of the next-state
function ô in the hypertext environment. If a link is followed, then the current displayed
contents are deactivated and the contents mapped to the output nodes (Moore) or
transitions (Mealy) are activated, in accordance to the transition executed.

Although the essence of the model is its machine-supported linking, the way the
output-alphabet (hypertext contents) is constructed has an important role in the system.
The sizing of the HTML files are small and are the result of the modularization of a
document into information fragments within a syntactic unit, such as a definition, an
example, an explanation paragraph, etc. Thus, keeping the notion of output-word, a
hypertext node is composed by several other small fragments (some kind of composite
node).

With the use of Finite Automaton the links are implemented as transition functions and
are stored in a matrix representing the source state and destination state, and they are not
embedded in the HTML code. Such structure constitutes what is defined as extemal links
(Halasz & Schwartz, 19Ç4), and has the following advantages: we can define any number
of automataovera hyperbase and the linked files themselves are not changed by creating
hypertext references between them; any HTML file can be edited without altering the
automaton structure; in terms of reuse of hypermedia materials, once there is no hard-
coded links in the pages it is a straightforward procedure.

3 Adaptive Hypermedia and Anticipation
An important topic of work on using this automaton model involves the problem of

matching a web course automaton to an audience. Because readers have different interests,
authors tend to create automata with branching paths and side trips. The issue then
becomes how to determine which branch to take at the various choice points. Another
problem is how to build different web courses starting from the same set of hypermedia
instructional materials (for instance, see Fig. l).

To make the scope of this paper more clear, we use the following definition for
adaptive hypermedia: "by adaptive hypermedia systems we mean all hypertext and
hypermedia systems which reflect some features of the user in the user model and apply
this model to adapt various visible aspects of the system to the user" (Brusilovsky, 1996).
The problem of user modeling, i.e. building and updating the user model in adaptive
systems is not a focus of this paper.

According to (De Bra, 1999; Brusilovsky, 1996), an adaptive hypermedia system tries
to guide the user manipulating the link structure or the link presentation. The adaptive
system also provides additional or alternative information to ensure that the most relevant
information is shown and that the user can understand the information as it is presented
(some technical terms may need to be explained or avoided for instance). In other words,
the system tries to use knowledge about a particular user, represented in the user model, to
adapt the information and links being presented to that user. Adaptation can also protect
the user from getting lost in hyperspace.
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In the sequence of works (De Bra & Calvi, 1998; De Bra, 1999), adaptive hypermedia
concept is related to systems that try to anticipate (Dubois, 1998) the needs and desires of
the user. Depending on the user's knowledge, state information on a given subject may
need to be presented in different ways. Students who are first reading about hypertext for
instance may be confused when they see the term "node" whereas the word "page", used
in the same context, would be meaningful to them.

(Brusilovsky,l9%, 1997, 1998, 1999) distinguishes several types of adaptation
technologies, mainly Adaptive hesentation (adaptive multimedia presentation, adaptive text
presentation) and Adaptive Navigation (direct guidance, adaptive sorting of links, adaptive
hiding of links, adaptive annotation of links, map adaptation).

The goal of adaptive presentation (or contentJevel adaptation) technology is to adapt
the content of a hypermedia page to the user's goals, knowledge and other information
stored in the user model. In a system with adaptive presentation, the pages are not static,
but adaptively generated or assembled from pieces for each user. For example, with several
adaptive presentation techniques, expert users receive more detailed and deep information,
while novices receive more additional explanation.

The goal of the adaptive navigation (or linkJevel adaptation) is to support the student
in hyperspace orientation and navigation by changing the appearance of visible links. In
particular, the system can adaptively sort, annotate, or partly hide the links of the cunent
page to make easier the choice ofthe next link to proceed. The goal is to help students find
an "optimal path" through the learning material.

In section 4, we show how the Hyper-Automaton framework copes with the task of
providing both content and linklevel adaptation.

In general,the adaptation procedures are implemented as a function of the knowledge
the system has about the user's prior actions (e.g. the navigation path over a hyperbase) or
the system tries to anticipate tle user's goal based on a predefined user's model (e.g. goal
driven navigation). An adaptive web test using the Hyper-Automaton - a Mealy Machine in
which the sequence of questions (easy, medium and hard levels) is determined by the
answer to the previous question - is an example of adaptation based on past events.
Previewing the future browsing path a user will follow based on the categorization of
classes of user - obtained from user interaction logs over a hyperbase - is an example of
anticipative behavior on adaptive hypertext.

4 Categorial Operations as Hypertext Documents Composition and
Adaptation
In what follows, we show how the categorial constructions of limits, colimis,

restriction, relabeling and reification morphisms can be interpreted to define (possible
complex) hypertext documents for Web courses.

A path-control mechanism can be implemented using restriction rules applied over the
Hyper-Automaton. Basically, we have 3 different restrictions: transitions - the author may
select specific transitions which will not be available in the automaton anymore, thus
removing possible links between content pages; labels - one can choose transition labels to
be removed from an entire automaton, restricting the available browsing paths; s/a/es - the
author may rvant to remove certain contents from the hyperdocument, this operation can be
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accomplished by removing states from the automaton and corresponding labeled
transitions. In the adaptive context, the restriction morphisms are related to the adaptive
navigation process. In particular,the adaptation procedure called link removal results from
the restriction of transitions and labels. A restriction applied to states corresponds to
adaptive presentation ofcontents where selected states are removed and the corresponding
hyperdocuments become unavailable to the user.

Another operation is built over the input alphabet. The author can relabel in order to
alter the link's keyword anchors inside a set of hyperdocuments in a fast and safe
procedure, without the need to alter the HTML code of the pages. The relabeling
procedure also represents the adaptive presentation of hyperdocuments. The relabel
morphism allows the system to adapt the content of a page (name of link anchor or the
output hyperdocument) according to the user's goal.

In some cases, a restriction can be simulated by a relabeling with encapsulation, i.e.,
instead of "erasing" a transition, in many cases it is possible to encapsulate it (an
encapsulated transition still exists but can not be selected by the user).

During the development phase of a hyperdocument, the author may be interested in
gradually adding new contents to the hyperbase. Usually these materials are not
completely finished and the author may want to specify in the automaton structure which
states are in "beta form", so the users will not be allowed to browse them. Such procedure
illustrates an application of the categorial construction of encapsulating (hiding or
windowing) components of an automaton. The procedure known as link disabling (an
adaptive navigation process) can be obtained with a special kind of relabeling of the input
alphabet (see encapsulation in section 7), which means that the link is not made invisible
but its link functionality is removed.

In the context of web-based courses, reification morphisms are related to the concept
ofteaching lessons or lectures. In other words, a lesson is defined as a specific sequence
(transition mapped into transactions in a hyperbase automaton) of selected hypermedia
elements that must be fully browsed by the students. As the reification process implies a
kind of "atomic transaction" in the sense that it is (a possible complex) task that must be
fully done, it also supports the concept of tests or formative assessment (a set of questions
must be completed in order to the students accomplish the task).

In terms of anticipaton (Dubois, 1998), a set of relabel and restriction morphisms
represents the models of possible adaptations that can be applied to the presentation and
navigation of the current hyper-automaton representing the user's browsing session (see
Fig. l), and it is quite practical to think of generating even more models as the user gets
involved in a certain navigation. During the navigation over the hyperbase, several different
hyper-automata for that set of hyperdocuments may be created by the system and the
adaptation mechanisms (restrictions, relabelings, and reifications) represent the
instantiation of one possible future automaton in the current automaton for the hyperbase.
The dynamic creation of hyper-automaton is not the goal of this article. However, all
features to achieve this purpose are presented.

Example 1 The example depicted in Fig. 2 (Menezes & Machado, 2000)shows how
categorial operations are used as course composition scheme in order to build new courses
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Fig. l: Relabeling and Restriction as Adaptive Navigation (Linking)

from a set of existing courses. In Fig. 2, the single boxes stand for the original course
automata for a given hyperbase, the highlighted boxes are the courses resulted from the
categorial operations, shown as labeled arrows. Course represents the hypertext version of
the book "Formal Language and Automata" (Menezes, 2m0b), consisting of texts and
illustrative pictures; Simulator is the set of HTML pages designed to frame a Java applet
that simulates automata and related concepts, for example; Exercises 1...n represents a
database of formative questions; Full Course is the desired resulting course and Courses
w/ Lectures and Tests is the full course organized in lessons (or lectures) and tests. In
this context, we have that:
a) Colimit. The Professor wants to improve the course and decides to include an existing

database of questions, so the students can access related exercises. The Course with
Exercises is the resulting object of a colimit between Course and Exercises i;

b) Product. In the next step, the Professor builds a course containing links attached to the
content pages pointing to a simulator that helps the students learn the concepts
introduced in the text pages. A resulting object of the product operation between
Course w/Exercises and Simulator is such that students can access the Java applet
simulator from every page;

c) Restriction and Relabeling. In order to attend requests from more advanced students,
the Professor builds a course with an alternative path or trail as an "expert" version of
the book contents without simulators or exercises. An Expert Course is a resulting
object of a restriction and relabeling operations in order to remove undesirable labeled
transitions and relabel transitions for the new purpose;

d) Coproduct. The Full Course is a resulting object of the coproduct operation between
the "enhanced" Easy Course and the "plain" Expert Course;

e) Reification. The Full Course is organized in terms of lessons and tests which are a
kind of "atomic transaction" in the sense that they are (a possible complex) task that
must be fully done, resulting in a Course w/ Lectures and Tests;

d) Encapsulation. In this example, Subject on Development represents web course
pages that are not yet finished and the Professor wants to "hide" or "encapsulate" the
new subjects so the students will not be allowed to browse them. The Encapsulation
operation (or relabeling 1o r) results in Course w/ Encapsulated Subject. û
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Remark 2 ln the universe of categories, all the original components involved in
operations remain intact or are easily recuperated. For instance, in the example depicted on
Fig.2, the creation of Course w/Exercises is such that the original modules Course and
Exercises 1...n remain unchanged. tr

Remark 3 It is important to highlight that the categorial operations provide a support
for the definition of a highJevel language for the creation and the organization of web
courses.
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Fig. 2: Construction of a Composed Course

Example 4 The example depicted in fig. I shows how categorial operations (mainly
relabeling and restriction morphisms) are used to define adaptations in adaptive web
courses. In this example, a small portion of a course is composed of content pages, an
example and a related exercise test. The Coursel (for beginners) represents the adaptation
procedure called link removal in which a specific transition is removed from the course; in
other words, a restriction on transition results in a course where the exercise is only
available after the user sees an example. Link removal can also be obtained by restricting
states, in this case the Course2 (for advanced users) had the example and exercise
completely removed. Course3 (for intermediate level students) is obtained by relabeling
transitions to r, which is equivalent to a special kind of adaptive navigaûon known as link
hiding; thus, the user will have access only to the example pages. O

Couse w/
New Subject
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Fig.3: Adaptations in Vy'eb Course

5 Internal (Labeted) Graphs
As stated in (Conadini, 1990) and (Asperti & Longo, l99l) a graph can be considered

as a diagram in the category Set where nodes and arcs are sets and the source and target
operations are (total) functions. Moreover, graph morphisms are commutative diagrams in
Sef. This means that Sel plays the role of "universe of discourse" of the category of
graphs: it is defined internally to the category Set. This suggests a generalization of
graphs as diagrams in an arbitrary universe (base) category. This approach is known as
internalization and can be extended for reflexive graphs and categories. In this context,
limits and colimits of categories of internal graphs are inherited from the categories of
nodes and arcs. The results about inheritance of limits and colimits properties from the
base category are, for our knowledge, new.

Definition 5 l.et C be a (base) category. The Category of Internal Graphs denoted by
Gr(C), is the comma category AcIÂc where Âg: C-C2 is the diagonal functor such
that sends each C-object A to the C2-object (A, A) and sends each C-morphism f: A- B
ro the C2-morphism (f, f):(A, A)-(8, B). û

Therefore, a Gr{C)-obiect G is a quadruple G=(V, T, ô0, ô1) where V, T are
C-objects, ôs, ô1:T-V are C-morphisms and a Gr{C)-morphism h=(hv, h1): (V1, T,
ô91, ô11)-(V2,T,692, ô12) where hy: V1 -Vz and h1: T1 +f, are C-morphisms, is
such that hy : ô;1 = ô;, hT, for i e {0, 1}.

Proposition 6 lf C is complete (cocomplete) then Gr(C) is complete (cocomplete).
Proof: Since Gr{C) is the comma category ÀC ù ÂC, the proof is a direct corollary (see,
for instance, (Casley, l99l)). Remember that Ag preserves colimits and limits (since it has
right and left adjoints - see (Mac l-ane, 197 l)). tr

Definition 7 l.et C be a (base) category. An internal reflexive graph is a quadruple G =
(V, T, ôs, ô1, r,) where (V, T, ôs, ô1) is a Gr(C)-object and L: V-T is a C-morphism such
that ô; : r, = idv, for i€{0, 1}. A morphism between internal reflexive graphs h = (hy, h1):
(Vr, T, ôe1, ô1r, rt)-(Vz, 7, ôoz,ôv, q)is a Gr(C)-morphism such that 12 hy = 11
r,1 .Intemal reflexive graphs and the conesponding morphisms constitute the Category of
Internal Reflexive Graphs,denoted by RGr{C). û
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Proposition 8 If C is complete (cocomplete) then RGr{C) is complete (cocomplete).
Proof: Let u: RGr{C) -Gr{C) be a forgetful functor such that, for each RGr(C)-object
G = (V,T, ôe, ô1, r,), uG = (V, T, ô0, âr) and for each RGr(C)-morphism h = (hy, fu):
G1*G2, zh = (hv, h1): zGl -uGz.Since u is a faithful functor, (RGr(C), u) is
concrete category over Gr{C) (Adâmek et al, l99O). Suppose that C is complete
(cocomplete).Then Gr{C) is complete (cocomplete). Therefore, to prove that RGr{C) is
complete (cocomplete) we have just to prove that for each RGr{O-diagram D, the limit
(colimit) of D in Gr(C) can be lifted as a initial source (final sink) in RGr(C). Suppose I a
family of indexes, i€ I and ke {0, 1}. For simplicity, in what follows, we omit that i€ I and
ke{O, 1}. Lifting products. Iæt {G; = (Vi, Ti, ôs;, ô1;, q)} be an indexed family of
RGr{C)-objects and XuGi = (XV;, XT;, Xôs;, Xô1;) the corresponding Gr{C)-product
together with {r;: Xu G;- 2 Q;}. Then, XG; = (XV;, XT;, Xôs;, Xô1,, Xr4), together witl
ftr;: XG;-Q;) is an initial source of {Gù where Xq is uniquely induced by the product
construction as illustrated in Fig.4 (left). Lifting equalizers. Consider the RGr{C)-objects
G1 = (V1, Tr, ôor, ôrr, rr), G2 = (V2, Tz, ôoz, ôtz, r2l,the RGr(O-morphisms f1 = (v1,
t1), f2 = (v2, t2): Gr*Ge andthecorrespondingGr{C)-equalizer (ev, er): (v, T, ôs,
ôr)-uGr. Then G = (V,T, ôs, ô1, r) together with e = (ev, er): G-Gr is an initial
source in RGr{O, where r is uniquely induced by the C-equalizers, as illustrated in Fig. 4
(right).The lifting ofcoproducts and coequalizers are analogous. tr

Fig.4: Morphisms uniquely induced

As the Hyper-Automaton is build over the concept of automata, we need to identify
transitions (hypertext links) and states (hypertext nodes). We do that by labeling arcs and
nodes in a graph.

Usually, the labeling of graphs is restricted to arcs. However, it may be the case that
labeling must be both, on arcs and nodes and, in this case, it is usual that labeling for each
arc preserves the labeling of conesponding source and target nodes. In this context,
labeling can be seen as a graph-morphism where the source graph represents the "shape"
and the target one represents the "labels" (of arcs and nodes). The approach is analogous
for alf internal graphs introduced. Therefore, G(C) denotes Gr(C) and RGr{C).

Definition9 The Category of Internal Labeled Graphs is the comma category
LG(shape, lab) = shapefiab where shape: G(S)-G(O,lab: Lab-G(C) are
functors, G(S) is the category of "shapes" and Inb is the category of "labels". O
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Therefore, aLG(shape,Iab)-object is a triple A = (G, lab, L), where the "shape" G is
a G(S)-graph, the "labels" L is a Lab-object and lab: shapeG-labL is a graph
morphism in GQ) corresponding to the labeling. A LG(shape, lab)-morphism is (h6,
h;) :(G1, fabl ,  L1)-(G2,lab2, L2) such that labhr,  labr =lab2 shapehç.

Proposition l0 l-et shape: G(9 - GC),lab: Lab - G(C) be functors. lf G(S), Lab
are complete (cocomplete) and lab preserves limits (shape preserves colimits) then
L& shape, Iab) is complete (cocomplete).
Proof: Sinc e LG(shape, lab) - shape I lab , the proof is a direct corollary. tr

6 Finite Automata
A finite automata is basically a finite graph with labeling on arcs. The corresponding

category of intemal graphs is finitely bicomplete. However, while the coproduct
construction can be interpreted as a choice between component systems, the product
construction defines a kind of "total synchronization" with little practical applications. A
more useful category can be obtained using reflexive graphs. Since labeling is restricted to
arcs, the target object of a labeling morphism is a reflexive one-node graph. In this case, a
notion of "encapsulation" of transitions can be defined. In what follows, FinSet denotes
the category of finite sets and finite functions which is finitely bicomplete. For simplicity,
in this paper we do not deal with outputs, which is a simple extension.

Definition I I Consider the category of finite reflexive graphs RGr{FinSet), the identity
functor shape: RGr(FinSet) -RG{FinSet) and the functor lab:
FinSet-RGr(FinSet) where each finite set L is taken into the conesponding one node
reflexive graph ({.}, Lr, !, !, 4) such that L, = L+Finset{r}, !: L' - {.} is the unique
function and 4: {.}-Lt takes the unique element of {'} into t. Then, the Category oJ
Finite Automata is the category of internal graphs Auf = LRG{shape, lab). tr

Thus, the shape of a sequential automata is a reflexive finite graph and labeling is over
an one node reflexive graph, i.e., aAut-object is a triple A = (G, lab, L) where G = (V, T,
ôs, ô1, L) is a RGr(FinSel)-object, Lis a FinSel-object and lab: (V, T, ôs, ôr, r) - ({ .},

Lr, !, f , k) is a RGr{FinSef)-morphism. A transition labeled by r (the identity transition
ofthe one node reflexive graph) can be considered as an encapsulated transition. Note that
all identity transitions of the shape are labeled by r (usually an identity transition means
"no operation" and they are encapsulated). The proof of the following proposition is a
direct corollary of previous results.

Proposition I2 The Category of Finite AutomataAu/ is finitely bicomplete. tr

Example 13 ln Aut, the coproduct and product constructions can be interpreted as
choice and parallel composition (all possible combination of component transitions) as
illustrated in Fig. 5. For simplicity, the label r of the identity transitions is omitted. tr

7 Restriction and Relabeling: Functorial Operations
Restriction and relabeling are functorial operations defined using fibration and cofibration
techniques based on (Menezes & Costa, 1996) and inspired by (Winskel, 1987). Both
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Fig. 5: Automata - coproduct and product
functors are induced by morphisms at the label level. A restriction restricts the transitions
of an automaton according to some table of restrictions (of labels). A similar approach can
be done for restrictions on transitions and states. A relabeling relabels the transitions of an
automaton according to some morphism of labels. Encapsulation and synchronization are
special cases ofrelabeling and restriction (synchronization restricts a parallel composition
"erasing" all those transitions which do not reflect some given table of restrictions).

Proposition 14 The forgetful functor u: Aut-FinSet that takes each automaton A =
(G, lab, L) onto its underlying set of labels L, is a fibration and a cofibration.
Proof: Fibration.Let f : Lr., - L-, be a FinSet-morphism and A2 = (G2, lab2, Ç) be an
automaton where G2 = (V2, Tz, ôoz, ô.r2, vl is a RGr(C)-object. [æt the object G1
togetherwith labl: shapeGl-Iablq and u6: Gl-Gz be the pullback of lab t: Iab
Lq-lab Lt, and lab2: shapeGz-labL-r. Define A1 = (G1, lab1, L.,) which is an
automaton by construction. Then u = (uc, f): A1 -4, is cartesian with respect to f and A2.
Cofibration. [æt f: L".,-L", be a FinSet-morphism and A1 = (Gr, lab1, L.') be an
automatonwhereGl = (V1, T1 , ôor, ôrr, r1). Define A2 = (G2, lab2,Lrl where G2 = G1
and fab2 = Iab I labt. Then u - (idy.t, id11, f): Ar *Az is cocartesian with respect to f
and A.t. A

Definition /5 Consider the bifibration u: Aut-FinSet. I-€t A=(G, lab, L) be an
automaton and restr: Tabler- 1t a restriction FinSet-morphism. The Restriction of A is
restrA where the functor restr: u-Il-.-u-ITable" is inducedby u and restr. [æt A =
(G, lab, Lt) be an automaton and relab: kr-L' be a relabeling morphism. The
Relabeling of A is relab A where the functor relab: u-1kt-u-l Lrzis induced by u and
relab. t

Emmple 16 Consider the automaton in Fig. 6 (left). Suppose that we want a joint

behavior sharing the transitions flip and tic. Then, Table = { flop, tac, flop ltac, flip ltic }.
The resulting restricted automaton is illustrated in the Fig. 6 (center). Suppose that relab:

\t-|-12 is such that relabels flop to r (all other labels are not relabeled). The resulting
relabeled automaton is illustrated in the Fig. 6 (righ$. If we consider that transitions
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usual, the label r is omitted).

labeled by t are encapsulated, then the resulting automaton has two transitions
encapsulated by the relabeling operation, represented by a different texture in the figure (as

Fig. 6: Automata - Original (left), restricred (center) and encapsulated (nght)

8 Internal (Labeled) Categories
The intemalization approach for categories has to consider that the composition

operation of morphisms is partial, i.e., for a category B = (V, T, ôg, ô1, l, ), the operation
-' is defined for { (f, 9) | a161 = ôo(g) } which is the resulting object T xyT of the puttback
of ôg and ô1. Thus, we can generalize the internal category concept to an arbitrary universe
category provided that it is finitely complete.

Definition 17 l-etC be afinitely complete category. The Category of Internal Categories
denoted by Cat(C) is constituted by internal categories and functors to C where:

a) An Internal CategoryisB = (V, T, ôe, ô1, r, )where(V, T, Ao, ô1, r) is an RGr{C)-
object and i:TxVT+T is a C-morphism such that the diagrams in Fig. 7 commute
(the morphisms rxyidl, id1xyr,, xyidl and idlxy are uniquely induced by the
pullback construction);

Txv
I

f
T

t xvidT
V XyT rnrnrrrr"',ll1tr" T XyT

TxyT r 1

p' l  lq
Vô,t
r -=+v

idTxVr
.rtllll,'urnrrrrrn TXyV

xvictr
TxyTxyT uuu""""""jllllr', TXVT

=
idrxv i I

=Y
TxyT ---t'1

h x/"fr
T1 xy1 T1 nu,uuuu-uulllllr" TZ>NzîZ

1r l '' '  
) T e

t ----+t

1,,
'o  tY

\;"-..*lr.a
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b) An InternalFunctorf :Bl-BZwhereBl = (V1, T1, ô91, ô1r,  l r ,  . r )  and82= (V2,
Tz, ôoz, ôtz, t2, 2) is a RGr(C)-morphisms f = (ty: Vi -V2, f1: T1 +1r) such that
diagram in Fig. 7 (bottom, right) commutes (the morphism fTxy2fu is uniquely
induced by the pullback construction). D

The approach for labeling of internal categories is analogous to the one for graphs.

DefinitionlS The Category of Labeled Internal Categories is the comma category
LCat(shape, Iab) = shape llab where shape: Cat(S)-Cat(C), lab:
Lab-Cat(C) are functors,Cat(S) is the category of "shapes" and Lab is the category
of "labels". D

Therefore, a LCat(shape, Iab)-obiect is a triple D = <8, lab, Ll, where B is a
Cat(S)-category representing the "shape", L is a.Lob-object representing the "labels" and
lab: shapeB -lab L is a functor in Cat(C) corresponding to the labeling.

9 Finite Computations
The Category of (Sequential) Finite Computations is the Category of Finite Automata

extended with the operation of composition on transitions. Therefore, the Category of
Finite Computation is just the category of all finite categories with labeling on morphisms.

Definition 19 Consider the internal category Cat(FinSet), the internal subcategory of
one object Catt(FinSet), the identity functor id.: Cat(FinSet) - Cat(FinSet) and the
inclusion functor irrc: Catt(Fin$sS)+Qat(FinSet). Then, the Category of Finite
Computation is the category of internal labeled categories Comp = LCat(id, inc). o

Thus, the shape of a sequential computation is a finite category and labeling is over an
one object finite category. A transition labeled by r (the identity transition of the single
object) can be considered as an encapsulated transition. All identity transitions of the
shape are labeled by t.

The operation of composition on transitions gives us, in the Hyper-Automaton
universe, all the possible navigation paths over the hyperbase structured as an automaton.

10 Reification of Finite Automata and Vertical Compositionality
A reification maps transitions into transactions reflecting an implementation of an

automaton on top of another, based on (Menezes et al, 1998), but in a different framework.
It is defined as a special morphism of automata where the target one (more concrete) is
enriched with its computational closure that can be split into permutations of original
transitions, respecting source and target states, inspired by (Meseguer & Montanari,
1990). The computational closure is easily obtained in a categorial context there is an
obvious forgetful functor from the category Comp to Aut that forgets about the
composition operation; this functor has as left adjoint a functor that freely generates
computations from an automaton. The envisaged computational closure is obtained by
composing these two functors, i.e., tc = ca ac. The composition of two reification
morphisms Q: A1 +tcA2 and p: AZ-tc Ag (where the target of g is different from the
source of qr) is inspired by Kleisli categories. Automaton and reification constitute a new
category and therefore, the vertical compositionality is achieved, i.e., reification of
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automata compose. However, the construction does not satisfy the horizontal
compositionality. For instance, the computâtional closure of the product of automata is in
general different from the product of the computational closure of given automata.

Definiîion 20 Consider the categories Comp = LCat(id, inc) and Aut = LRGr(shape,
lab).The forgetful functor ca: Comp-Aut is such that:
a) Takes each Comp-object A = (G, lab, Z) where G = (V, T, ôs, ô1, 1, ) is a

Cat(FinSet)-object, L = ({.}, Lr, !, !, r-, 7l is a Cat{FinSet)-object and, lab:
G-incL is a functor intotheAut-object A = (G, lab, L) where G = (V, T, ôs, ô1, r),
L = Lt-{t} and lab: O - ({ .}, Lr, !, !, q) is induced by lab;

b) Takes each Comp-morphism h = (hG, hyl: (G 1, lab 1, L ) - (G2, Iab2,Z2) into the
Auf-morphism induced h = (ho, hL):(G1, lab1, L1)-(G2, lab2, L2).  t r

Definition 2l Consider the categories Comp = LCat(id, inc) andAut = LRGr(shape,
lab).The functor ac: Aut-Cornp is such that:

a) Takes each Azrf-object A = (G, lab, L) where G = (V, T, ôs, ô1, L) and lab: G - ({ .},

k, l, !, k) into the Conxp-objectA = (G,lab, Z) such that:
a.l) G = (V, Tc, ôoc, d1c, rc, I is a Cat(FinSet)-object where rc: V-Tc is

induced by L: V+T and Tc, ô6c, ô1c and are defined by the following rules
of inference:

t :  A -B€T t :  A - B e T c  u i  B + C e T c

t :  A -B€Tc  t ; u :  A -C€Tc

subject to the following equational rules:

t :  A - B c T c  t :  A - B € T c  u :  B + C e T c  v :  C + D € T c

t 4 i t : t  &  t ; t 4 = t t ; (u ;v)  = ( t ;u) ;v

a.2) Z=({.} ,  L.c,  ! ,  ! ,  ro,  1)whereLrcisdef ined as above such that r , r :  { . }-k
takes the unique element of {.} into t and lab: G-incL is induced by the
free generation above;

b) Takes eachComp-morphism h = (h6, h;): (G1, lab1, L1)-(G2, lab2, L2) into the
Azl-morphism h = (hC, htl: (Gt labt, L)-(G2, lab2, L2) induced by the free
generation. tr

Proposition 22 The functor ac: Aut-Corrzp is left adjoint to ca: Comp-Aut.
Proof: Consider 4 = (nC, 

"tù, 
id\u1-çs ac a natural transformation which is an

embedding on arcs of each component graph. Thus, for each automaton A = (G, lab, L),
computationA = (G,Iab, Ll and Azf-morphism f: A-caA, there is only one Comp-
morphism g:acA-A such that | = cag r1A. In fact g is ocf restricted to the target
objectA. By duality, e = (eM, eçl: ac. ca-idco*p is a natural transformation which
takes each freely composed arc (t) (r) into the arc (t , u) of each component category. D

Definilion 23 The Computational Closure Functor is fc = ca : ac: Aut-Aut. û
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yFâ E(c;b)

Fig. 8: Reification morphism from the automaton A into the computations of B

Example 24 In the Fig. 8 the automaton B is represented with its computational closure
(the structures added are represented using a different line). Since there is a cycle, the
resulting automaton has an infinite number of transitions, represented by i € i1 , 2, 3 ,...i D

I.'et (ac, ca, q, el: Aut-Comp be the adjunction above. Then, T = \tc, 11, p) is a
monad on Aut (see, for instance, (Asperti & [-ongo, 1991)) such that lt = ca.E ac:
tc2 -tc where ca.' ca+cd and ac: acèac are the identity natural transformations and
cae dc is the horizontal composition of natural transformations. A monad is useful to
understand the computations, i.e.:

. tc A is the automaton A with all its possible computations

. rlA: A*fcA includes A into its computations

. pA: tc2A-tc Aflattens computations of computations into computations.

If we define a reification morphism as an Aut-morphism ç: A-fcB, then the
composition of reifications can be as in Kleisli categories (each adjunction induces a
monad, which defines a Kleisli category). However, for several applications, reifications
should not preserve labeling (and thus, they are not Aut-morphisms). As we show below,
each reification induces a Aut-morphism resulting in a category whose morphisms are
Azf-morphisms induced by reifications. Both categories are isomorphic.

Definition25 LetT=(tc, 11, p) wheren=(qe, nù, p=(pe, pL) be the monad induced
by the adjunction (ac, ca, q, el'. Aut-Comp. Tbe Category of Finite Automata and
Reifications ReifAut, is such that (suppose the Aut-objects A1 = (Gs, labl, L1), for k €{1 ,
2,3\): Objects. ReifAut-objects are the Auf-objects; Morphisms. q=gc: Ar -A2 is a
ReifAut-morphism where g6: Gr -fcGz is a RGr{FinSet)-morphism and for each
Aut-object A, g=q6: A-A is the identity morphism of A in ReifAut; Composition. L-et
g: A1+A2, rp: A2+4a be ReifAut-morphisms. The composition r1r : q is a morphism
qrc Kqc: Ar -As where g6 Kqc is as illustrated in the Fig.9.

In what follows, an automaton (G, lab, L) may be denoted as a morphism
G-lab L or just by lab: G - L.
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tc Gz -" 
tl,G> 

rc2Gg 
rG 

> rcG3

Fig. 9: Composition of reifications: composition in the Kleisli category forgetting about the labeling

Definition26 I.etT=(tc,4, p)wheren=(Ic, ïù, !r = (po, lrrj be rhe monad induced
by the adjunction \ac, ca, q, t): Aut-Comp). The Category of Finite Automata and
Reifications with Induced Labeling ReifAutu, is such that (suppose the Auf-objects
A1=(G1, labs, L1), for k€{1 , 2, 3}): Objects. ReifAut1-objects are the Aut-objects;
Morphisms. [,et qq: G.t-tcGz be a RGr{FinSet)-morphism. Then q=(qo, qr_):
Ar *Az is aReifAutT-morphism where qs is given by the pushout illustrated in the Fig.
l0 (eft). For each Aut-object A,g=(46: G-/cG, gr: L+Lq): A-A is the identity
morphism of A in ReifAutp where q1 is as above; Composition Iæt q: A1 +A2, !r:
Az*As & ReifAut1-morphisms. The composition rp q is a morphism (qrc rçe,
rpl'ZqL): Ar *As where Q6 Kgc e rirr_ 1, çr_ is as illustrated in the Fig. l0 (riehD. D

Fig. l0: Reification rvith induced labeling

It is easy to prove that ReifAut and ReifAutp are isomorphic (we identify both
categories by ReifAut). Thus, every reification morphism can be viewed as a Aut-
morphism. For a ReifAut-morphism q: A-8, the corresponding Azl-morphism is
denoted by q:A-fcB.

Since reifications constitute a category, the vertical compositionality is achieved.
Proposition 27 The endofunctor tc: Aut-Aut does not preserve limits.
Proof: Consider the automata A1, A2 and the resulting object of the product A1 xA2 as in
Fig. 11. They also represent the automata tcA1, tcA2 e tcAlxtcA2, respectively.
However, tc Alxtc A2 is different from /c (A1 xA2). tr

c,  lô t  > L1

*ol, 
,.,"r, ,..$ .-r*

| ,""r., I

[-J-
qJGlftec 

+*

L,.lj*,-

RGr(FinSet)

L1

q,L LqL

p.o.

rcb___| L3,rge

tabo.ru o +
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BH
AlxAz+cAl>ccA2

Fig. I l: The functor computational closure does not presen,e limits

Therefore, the proposed model does not satisfy the horizontal compositionality. For
instance, the product of two reification morphisms may not be a reification morphism.
This means that reifications should be done after (or mixed with) operations based on
limits and colimits. If the horizontal compositionality is required, then we may construct
and adjunction between the categories of automata and nonsequential automata. In fact, we
show in (Menezes & Costa, 1995) that nonsequential automata is the least concrete model
(among the compared models) to satisfy the horizontal compositionality, extending the
approach in (Sassone et el,l93).

11 Concluding Remarks
Recently, adaptive hypermedia as a direction of research has received special attention

in the WWW context. We argue that adaptive hypermedia is one of the ways to increase
the functionality of WWW. Adaptive technologies can contribute to several directions of
research and development on Web-based Educational Systems. Adaptive presentation can
improve the usability of course material presentation. Adaptive navigation support and
adaptive sequencing can be used for overall course control and for helping the student in
selecting most relevant tests and assignments.

In this paper we have developed a categorial framework named Hyper-Automaton,
based on Automata Theory, Category Theory and Hyperdocuments technology for the
definition of Adaptive Web Courses. In fact, the results are applicable to hypertext
systems as a whole.

To experiment the proposed model, we defined the Hyper-Automaton System where
courses are automata with output, and categorial operations play the role of
hyperdocuments composition and adaptation (possibly representing anticipations). Hyper-
Automaton leads to a high level modularization of the hypertext materials, with the
following advantages: easy reusing pages in several documents, thus avoiding redundancy;
hyperdocuments are independent from the automaton structure which can be modified
without interfering in page design and vice versa; allows users to create links from and to
any document; easy to implement and to maintain; it has a simple and direct graphic
interface; permits the elaboration of different studying paths with specific goals, capable of
providing self-study; categorial operations are used as composition and adaptation scheme
in order to build new documents from a set of existing ones through high level
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constructions; it defines constructors for both adaptive presentation and adaptive
navigation.

The proposed framework is based on intemal (reflexive) graphs and categories,
making changes and proofs very easy. For the near future we plan to extend the
framework possibly using category-based Graph Transformations as proposed in
(Menezes, 1999) for the inclusion of new operations as expansion, abstraction, addition,
deletion, etc. We are also working on the definition of relabeling and restriction
morphisms over the output function of the Mealy and Moore Machines.
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